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STACK MACHINES AND CLASSES OF NONNESTED MACRO LANGUAGES

* L k% *dkk
Joost Engelfriet , Erik Meineche Schmidt , Jan van Leeuwen

ABSTRACT. We investigate a new class of generalized 1-way stack automata
called s-pd machines. The machines are obtained by augmenting a stack
automaton with a pushdown store whose bottom is attached to the top of

the stack and whose top follows the movements of the stack-pointer.

There are various motivations for the model, including a possible protocol
for macro-expansion with intermittent parameter-evaluation. The languages
recognized by these machines are characterized by a natural class of gram-
mars, viz. the class of OI macro grammars with set-parameters and non-
nested function calls (the "extended basic" macro grammars). If we demand
the stack to be nonerasing or checking, then we obtain a useful machine
characterization for the ETOL languages together with the known characteri-
zation of this language family by means of extended "linear" basic macro
grammars. It follows that the nonerasing 1-way stack languages are (strictly)
included in ETOL, but we prove that ETOL and the family of unrestricted 1-
way stack languages are incomparable. Certain deterministic restrictions
of s-pd machines lead to machine models for the linear basic macro (or,

EDTOL) languages and for M. Fischer's original basic macro languages.
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1. Introduction

The theoretical models of stack automata have_a traditional motiva-
tion in the compilation of higher-level programming languages [18,19]
and in the implementation of recursive procedures with parameters. A
(1-way) stack automaton is a pushdown automaton which may enter its
store in a read-only mode, whereas writing and erasing is still permitted
to occur at the top of the stack only. There have been several studies
to analyze the complexity of stack languages (see [26]) or to find a
syntactic characterization of such lanquages [24,9].

About 1968 Aho [2] proposed a generalized stack automaton (the "nested
stack automaton") which permits the creation of embedded ("nested") stacks
within an old stack, with the convention that an embedded stack must be
destroyed if the machine is to raise the stack-pointer beyond its top back
up the old stack again. The model is rather complex, and was designed
specifically for implementing the grammatical mechanism of indexed languages
(Aho [17).

About the same time M. Fischer [16] presented a detailed study of a
language-generating mechanism inspired by the use of (recursive) macros in
assembly-language programming. In this context a macro is made into a
string-generating function with symbolic parameters, with a macro-body con-
sisting of several possible strings containing new, perhaps nested, macro
calls. A macro expansion (or derivation) is obtained by replacing the
original call by one of the strings in the corresponding macro body, after
suitable passing of actual parameters.

The prime motivation for introducing macro grammars (as well as indexed

grammars) was their power to describe context-dependent features in the

syntax of various programming Tanguages. We shall only consider the OI



("outside-in") macro grammars, which always evaluate outermost calls
first and therefore model call-by-name as parameter passing mechanism.
The relation between OI and 10 (“inside-out") macro grammars was
studied in [16,13]. M. Fischer [16] originally proved that the family
of OI macro languages coincides with the family of indexed languages,
thus providing a further practical motivation for the latter family.

M. Fischer [16; section 7] observed as a corollary to his analysis
that OI macro grammars which permit nested macro calls generate a strictly
larger class of languages than the macro grammars which do not permit such
calls (as there is no difference between OI and I0 for such grammars).

It is one of the main objectives of this paper to investigate precisely
what the generative capacity is of macro grammars without nested calls
(the "basic" macro grammars) and to characterize a class of simple stack
machines which naturally corresponds to this class of languages. The
results suggest an interesting protocol for the expansion of macros with
intermittent parameter evaluations, and we obtain a natural machine model
for nondeterministic recursive program schemes with parameters but without
nesting of recursion within the parameters.

The study of basic and linear basic macro grammars was initiated in
[16]. Downey [4] observed that such grammars tie in appropriately with
the study of parallel rewriting systems also once we permit macros to have
set-parameters. A set-parameter can be manipulated 1ike any other symbolic
parameter, but in addition one may use the constant § (which denotes the
empty set) and the operation of union (denoted by +) in the parameter
positions of further macro calls in the defining body. In such "extended"
basic macro grammars we shall assume that all symbolic parameters are

actually set-parameters. Note that a set-parameter always denotes some



finité set in a particular derivation. It was proved in [4] that the
family of linear basic macro languages (LB) coincides with EDTOL, and
that the family of extended linear basic macro languages (ELB) corresponds
exactly to the family ETOL (for EDTOL and ETOL, see [25]). In this paper
we shall study the general family of extended basic macro languages (EB),
and establish the relation of this family to several classes of stack
languages. Another motivation to study EB is that the weak nesting capa-
city in EB grammars (due to the presence of +) seems to be sufficient to
describe some context-dependent features of programming languages syntax
which were originally described by general 0OI macro grammars.

The machine-approach in studying extended basic macro grammars was
inspired by a machine characterization of ETOL (or: extended linear
basic macro Tanguages) presented in [37]. The original model of a cs-pd
machine described in [37] (see Fig. 1.a) has a checking stack (left) and a
pushdown store (right) operating in synchronous order. (For the notion of

a checking stack, see [21]). The machine emerged from a theoretical model

1-way cs pd : cs pd
input tape
LT 1T s TT-- bottom
_ 7 L"“‘“%FD]r__
_J_ : 1
o | e 7] top :
finite E B e[ ] top
control :
bottom _t:
(a) (b)

Fig. 1



for studying Dijkstra's DO-construct (see [5,6]) as a single control-
structure in programming, and it proved useful in obtaining a uniform
characterization of certain hierarchies of complexity classes. It can
be shown (by simulating a Post-machine [28]) that a similar machine
model with a nonerasing stack replacing the checking stack can accept
all recursively enumerable languages. Hence there seems to be no way

of meaningfully generalizing this model in this direction. If we turn
the pushdown store "upside down" (Fig. 1.b) and attach its bottom to the
top of the checking stack, then we have a natural equivalent model which
can be generalized. With this alternative description it has become
easier to see how the machine is a (very) restricted version of the nested
stack automaton.

The main object of this paper will be the study of the generalized
model: the s-pd machine. The machine works as the cs-pd model except
that it now uses a general unrestricted stack rather than just a checking
stack. Note that in an s-pd machine the position of the bottom of the
pushdown store changes dynamically with the movements of the top of the
stack. We still require that the moves on the pushdown are synchronized
with the stackpointer, whenever the machine ehteré a stack-reading mode
(with the pushdown growing "downward"). We shall prove that the s-pd ma-
chines accept exactly the EB languages, generated by extended basic macro
grammars.

Using the machines Filé and van Leeuwen [14] have recently obtained
elegant characterizations of ETOL and EB by classes of indexed grammars .
It turns out that EB is precisely the family of lanquages aenerated
by "restricted indexed grammars" (Aho [1,2]), which were originally

unidentified in terms of macrogrammars.



From the machine characterization it follows further that the nonerasing
T-way stack languages are included in ETOL [37]1 and that the general 1-
way stack languages are in EB (where obviously ETOL € EB). We prove that
ETOL and the 1-way stack Tanguages are incomparable families, by ex-
hibiting a specific language which is in the latter family but not in the
former. The result shows at the same time that ETOL is strictly included
in EB, a substantial refinement of an earlier result of Ehrenfeucht,
Rozenberg and Skyum [8] asserting that ETOL is strictly included in the
family of indexed languages. In other words, the known result that ETOL
is strictly included in the family of OI macro languages is strengthened
here to strict inclusion in the family of nonnested 0I macro languages
with setparameters. (See [12] for indications that EB is a rather narrow
strict subfamily of the 0I macro languages). The relationships are sum-
marized in Fig. 2.

If we classify the allowable operations on a stack in the following
way: top operations (push,pop) and interior operations (movedown, moveup),

then we can observe the following from Fig. 2. The incomparability of ETOL

nested stack OI(INDEXED)
SJ d EB
nes—pd’5Es-pd Stack ELB ='ETOL s
< | >
pushdown nonerasing stack CF NES
| |
cheéking stack CS
(a) storage structure (b) language families (if
possible by grammar
name)

Fig. 2



with S shows that it is impossible to separate the top operations from
the interior operations by dividing the stack into two separate tracks, one
of which is used as a pushdown store and one as a read-only tape. This
holds even when pushing is allowed on the second track (i.e. nes-pd =cs-pd).
The incomparability of CF with NES shows that the top operations are in-
comparable with the interior operations (even when 'push' is added to the
latter). Both resuits together illustrate the power of the pop operation

in stack machines.

The remaining part of this paper consists of sections 2-5 and a con-
clusion. Section 2 contains the necessary definitions and some preliminary
results. In section 3 we exhibit a particular stack language that is not
an ETOL language (or even a tree transformation language). Section 4 con-
tains a proof of the equality EB=S-PD, where S-PD denotes the family
of languages accepted by s-pd machines. In section 5 we put certain deter-
ministic restrictions on the s-pd machine and obtain machine models for
the basic and linear basic macro languages. In Section 5 we also give a
complete inclusion diagram relating the many families of languages dis-

cussed in the paper.



2. Preliminaries

Our notations and terminology will follow standard texts in auto-
mata - and language-theory [26,35]. The reader is assumed to be familiar
with the main concepts concerning AFL-theory [17,20],lstack automata [26], and
the theory of parallel rewriting [25].

We denote the empty word by A and the length of a word w by |w]|.

An OI macro grammar G (for a formal definition see [161; cf. [13])

consists of an alphabet N of nonterminals (macro names, each with a
specific number of arguments or rank), an alphabet 3 of terminals, an
initial nonterminal S (the initial macro of rank 0), and a finite set P
of rules (or macro definitions). Each macro definition is of the form
F(x],...,xn)—+0, where 6 is a well-formed term compoéed of elements
from {x],...,xn} U Z and macro names by substitution and concatenation.
Formally, a term is either (1) an atomic term, i.e. an element of
{x],xz,...} U ZU {A}, or (2) of the form H(t],...,tmj, where H 1is any
macro name of rank m and t]”“’tm are terms, or (3) of the form t]tz,
where t1 and t2 are terms. Macros are expanded with outermost calls
first, the usual 0I manner. The collection of all words over I generated
by G is called an 0I macro language.

In basic macro grammars no term ® 1in any rule can have macro calls
inside other macro calls (i.e. they are "nonnesting"), in linear basic
Macro grammars each term 0 can have at most one macro call. The classes
of 0I, basic and linear basic macro languages are denoted by OI, B and LB
respectively.

Macro grammars are a powerful language-generating device. Through
Proper parameter-passing one can copy (sub)strings and build several sub-

strings at the same time in a controlled manner, thus largely extending the



original power of context-free grammars. An extended macro grammar

(cf. [4]1) permits the use of P (denoting the empty set) and finite
unions (denoted by +) in the macro definitions. Parameters become set-
parameters, which can denote arbitrary finite sets of stringvalues (as
opposed to singletons) during derivations. Macro expansion proceeds
as usual by substituting the actual parameters for the formal ones in
one of the righthand sides of a macro definition (with the standard
notion of substitution of languages). Formally, an extended macro grammar
is obtained by extending the former definitidn of terms as follows:
(1') each element of {x],xz,...} Uy {x,p} 1is an atomic term, and
(3') if t] and t2 are terms, then so are (t1 + t2) and t1t2‘
Instead of formalizing the notion of derivation for these extended grammars
explicitly we consider them as normal macro grammars in which + is
viewed as a macro of rank 2 (written infix) with rules +(x,y)-+x and
+(x,y) >y, and P as a macro of rank 0 without rules.

Whereas the extension by set-parameters does not increase the genera-
ting power of arbitrary OI macro grammars, it does increase the power of

nonnesting macro grammars. We define the extended basic (abbreviated as

EB) and the extended linear basic (ELB) macro grammars to be those ex-

tended macro grammars that are basic and linear basic respectively when
viewed as nonextended macro grammars with “terminals® + and p.

Example 2.1. In the description of the syntax of a programming
language the finite sets in the arguments of the nonterminals can be used
by the EB grammar to store the declared identifiers of a same type. This
can be seen from the following ELB grammar for the language

{uj #uy # ... #uy #uln=1 and wu e{u1,...,un}}:



S~F(),

F(x) >G(x,7),

F(x) »x,

G(x,y) ~aG(x,ya) for all aez,

G(x,y) ~ #F(x+y).

A derivation of the string ab#a#ab s

S => F(p) =G(P,A) >aG(P,a) = abG(p,ab) =
=> ab#F (P +ab) = ab#G(p +ab,\) >
=> ab#aG(P +ab,a) = ab#a#F((p +ab) +a) >
=> ab#a#((p +ab) +a) = ab#a#(p +ab) >
=> ab#a#ab. [

A further extension of macro grammars is obtained if we permit arbitrary
regular expressions over {x1,...,xn} UZ (involving +, + and *) to occur
in macro definitions. Formally, t* is now allowed as a term also
(provided t 1is), and a derivation is defined by viewing * as a non-
terminal A of rank 1 with rules A(x)+xA(x) and A(x)~+X. This further
extension does not increase the generative capacity of extended macro
grammars, but there will be technical advantages of this notational vari-
ant in later proofs. The following Temma shows that one can eliminate the
* and reformulate regular extended basic (REB) and regular extended linear
basic (RELB) macro grammars as ordinary extended macro grammars without
introducing any nesting in the parameters.

Lemma 2.2. (i) REB=EB.

(ii) RELB=ELB.
Proof: We shall only prove (ii), as (i) follows in a similar manner.
Consider a macro definition from an arbitrary RELB grammar

F(x1,...,xn)-+6]G(E1,...,Em)62
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where e]’GZ’E]""’Em are regular expressions over {x],...,xn}lJ z.
We may assume without loss of generality that 6] =62 =X (see the con-
struction in the beginning of the proof of Lemma 4.1).

We shall replace this macro definition by an equivalent set of ELB
macro definitions which can generate any finite approximation to
E],...,Em in the respective parameter positions. Since in the deriva-
tion of each string only a finite number of strings from the arguments of
the macros are really used, the resulting grammar generates the same
language. This can be derived formally from the fixed point characteriza-
tion of the grammar and the continuity of the operation of language sub-
stitution [13].

Let M, =<Qs{xys...5x 3 U Z’q0’61’F1> be a finite automaton defining
Ei’ for 1<1i<m. Replace the former RELB macro-definition of F by

qO(

F(x],...,xn)->G]

YR SURERN S
e’

m copies
and define new ELB macros Gg(y,x],...,xn,y],...,ym), for peQ and
1<is<m, as follows. The macro G? will be called after completion of
approximations Ypoeeoo¥io for E]”"’Ei-]’ with y; @ current approxi-
mation (a finite subset) to Ei’ and y a partially completed new

member of Ei which will eventually be added to Yi-
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" 4
Gi(ya,x],...,xn,y],...,ym)
for all aceg: ai(p,a) =q
q
Gi(yxk,x],...,xn,y],...,ym)
. for all x,: 8:(p>x,) =g
p 0
Gi(y,xl,-..,Xn,y1,...,ym)-+ G, (A,x],...,xn,y],...,yi-+y,...,y
? if peF,
% !
J
Gi+](k,x],...,xn,y],...,y1+y,...,y )
if pEFi and 1i<m

G(yys..-s m-1Ym *Y)
\\ if di=m and p ef .. O

We now turn to machines. The words ‘machine' and 'automaton' will
be used synonymously. The model of a Cs-pd machine was motivated and
defined in [37], see Fig. 1. In our present treatment we shall assume
that the pushdown store is initiated at the top of the checking stack,
growing and shrinking in synchronous order with the movements of the
stack-pointer, downwards and upwards respectively.

The model of an s-pd machine (Fig. 3) is obtained from a stack auto-

maton by adding a pushdown store which is rooted at the top of the stack

and whose top follows the movements of the stack-pointer. This synchroni-
zation means that the machine can change the contents of the stack only

when the pushdown is empty and, conversely, if the pushdown is active then

the stack-contents can be read only and not altered. The basic model of an s-pd
machine is nondeterministic, with acceptance by final state (as usual).

The machine starts with empty stack and pushdown. Particular s-pd machines

will be specified later by writing (nondeterministic) programs in a symbolic

Tanguage of instructions, tests, and standard identifiers which can be
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stack
1-way input tape top pd
, | bottom
IR N R ]
_*
‘ | < > top
, |
t

finite
control

%
i ]
! bottom |___ .
|
|
i

Fig. 3

implemented for s-pd (or cs-pd) machines in a straightforward manner
(Section 4). The definition of s-pd machines as an x-tuple would not
aid in the understanding of the model and is left to the interested
reader.

By restricting the stack to be nonerasing or checking respectively

we obtain the nes-pd and cs-pd machine models. A "program" for the

nes-pd machine is not allowed to use the pop-instruction for its stack.
A "program" for the cs-pd machine has to start execution with a number
of push-instructions for its stack, but afterwards is not allowed to use
any push- or pop-instruction anymore. The 1-way stack, nonerasing stack,
and checking stack automata are obtained by dropping the pushdown facility
from the extended machines. We shall use capital letters to denote the
class of languages accepted by a machine whose "type" is written in equi-
valent small letters.

Since the c¢s machine is less powerful than the nes machine [21], it is

remarkable that cs-pd machines are just as powerful as nes-pd machines
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(cf. also [37; Theorem 2.4]).

Theorem 2.3. NES-PD =CS-PD.
Proof: Obviously CS-PDi< NES-PD. To prove the converse we show a direct
simulation of a nes-pd machine M on a ¢s-pd machine M]. M] nondeter-
ministically fills its checking stack to some height, and tries to inter-
pret it as the ultimate contents of the nonerasing stack in an accepting
computation of M on the input as it proceeds.

When M] switches to checking mode, it returns to the bottom of the
stack to begin a simulation of M while filling up the pushdown with
dummy ¢'s. Simulating M, M1 now verifies that its stack contains the
symbols M would have written (meanwhile popping ¢'s off the pushdown)
until M wants to stop pushing temporarily. If M 1is about to enter its
stack for a read-excursion, then M] marks the current pushdown top with
a $ and uses the part of the pushdown from the $-marked square on downwards
to simulate M's instant pushdown store. M] “knows" when M returns to the
"current" top of its nonerasing stack, because the simulation will simultane-

ously return to the $-marked square. If M continues pushing, then M] removes

the marker and verifies the next symbols on its stack. This repeats until M stops. [J

. Finally we give a brief description of ETOL grammars (see [33] or [25]

for all further details). An ETOL-grammar [33] is a structure

G =<V,Z,{1],...,Tn},8> with V, I and S as usual and Tys---»7, finite
substitutions over V. The language generated by G is defined to be
L(G) ={T],...,1n}*(5) F]X*. Any such language is called an ETOL language.
If the Ty»---»T, are homomorphisms, then the resulting language is called
an EDTOL language.

The relevance of ETOL languages for our discussion follows from the

equalities ETOL =CS-PD [37], ETOL =ELB, and EDTOL =LB [4]. An alternative

proof of the first two equalities will be given in section 4.
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3. ETOL and one-way stack automata

It immediately follows from Theorem 2.3 and the equation
ETOL = CS-PD [37] that the nonerasing stack languages are included in
ETOL [37]. Strict inclusion follows because {anbnzcnln >1} e ETOL but
¢ S (by a result of [30]). In other words, each nonerasing stack
lanquage can be defined by an extended 1inear basic macro grammar. We
shall prove in this section that this is not true for all one-way stack
Tanguages (cf. [12]). From the results in the next section it will
follow that each stack language can be defined by an extended basic
macro grammar.

We need some additional preliminaries. Let L be a language over
alphabet . We say that L has "property P3“ [14] if and only if for
all Xx,u,y,v,z ez*: Xuyvz, xuyuz, xvyuz and xvyvz el 1implies wu-=v.
Property P3 states that there can be no two different nonoverlapping
substrings of a string in L which may replace one another without
leaving L. If L were defined by a "nondeterministic" grammar, then
having property P3 intuitively means that there can be no two occurrences
of the same "nondeterministic nonterminal” in a sentential form.

For a definition of topdown tree transducers we refer to [32,10].
Let yD, denote the family of tree transformation languages (i.e. the
yields of images of recognizable tree languages under topdown tree trans-
ducers), and let ydetD] denote the subfamily of deterministic tree
transformation languages. It was shown in [11] that ETOL € yD] and

EDTOL € ydetD The following result was obtained in [36,14].

1°

Lemma_3.1. (i) If L <ETOL has property P,, then L €EDTOL.

3,
(i1) If Le:yD] has property P3, then L.eydetD].
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We shall now present a specific language LO’ which can be recog-
nized by a one-way stack automaton but which is not in ETOL (indeed not
even in yD]). L0 will be the language of all possible (properly coded)
cuts of the infinite binary tree (Fig. 4a). A cut is a tuple of lexi-
cographically ordered paths such that the nodes which are endpoints of
these paths form a cross-section of the tree. A cut is also known as a
compiete binary code. Formally, a cut is a finite nonempty tuplie of
words over {0,1} defined recursively as follows: (i) (A) 1is a cut,
(ii) if <v],...,vk) and (w1,...,wn) are cuts, then so is
<0v],...,ka,1w],...,1wn). The strings w, ina cut (w],...,wn> are
called nodes. An example of a cut for Fig. 4a is given in Fig. 4b. The
following properties of cuts are well known and easy to prove.

(C]) A11 nodes in a cut are different

(

(C3) For given integers k

o

n ‘IW'l
) If {Wys...,w.2 is a cut, then £ 27/"il =7,
2 1 n =1

1""’kn there is at most one cut

(Wys...oW 2 such that lw;| =k, for T1sisn.

® VA

/
® ® AnAn
0 .\0 (00,01,100,101,11)
h ® A

N
0\
\. A
the infinite binary tree a cut
(a) (b)

Fig. 4



16

Definition 3.2. Let a and b be symbols different from 0 and 1.

Ly = {aw, Obw, Taw,0bw,1...aw Obw 1[<w;,....w ) is a cut}.

Note that for a string s =aw10bw11...awn0bwn] el, the tuple

0
(w]O,wll,...,wnO,wn1> is a cut also. This cut will be called the "cut
corresponding to s", whereas (w],...,wn) will be called the "cut under-
lying s".
One can define L0 by the following basic macro grammar:

S>F()\),

F(x)~F(x0)F(x1),

F(x) »~ax0bx1.
Thus L0 e EB. L0 can be recognized on a one-way stack automaton, as shown
in the next lemma.

Lemma 3.3. L S.

OE:
Proof: We shall program a one-way stack automaton which generates the
consecutive nodes of a cut in its stack (one after the other). The stack
automaton starts off with an arbitrary number of 0's in its stack. To

read in its stack it will use a simple subroutine VERIFY, which will be
called only when the stackpointer is at the top and which "thunks" the
pointer to the bottom square to test in subsequent moves that the stack
(from bottom to top) matches the next part of the input. After a success-
ful match the stackpointer is back at the top and the inputhead is pointing
to the code of the (alleged) next node of the cut. The process repeats
until the cut is verified or a mismatch occurs (in which case the machine
rejects). Let "read(x)" be the symbolic instruction to read an input sym-
bol x and move the inputhead one square to the right, rejecting if

no symbol x was read otherwise.
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The "routine text" for VERIFY is:

begin
while not bottom stack do move stackpointer down od;
while not top stack
do read (stacksymbol); moveup od;
read (stacksymbol)
end VERIFY;

We also need a subroutine PUSHZEROS which (nondeterministically) pushes
zero or more 0's on top of the stack once it is called. It is given by
begin

repeat push(0) or exit until false
end PUSHZEROS;

The compiete program starts with an empty stack and can be described
as follows (it uses the fact that two nodes W, and W, can be conse-

*
cutive nodes in a cut iff there is a w such that w]s:w01 and

*
W, ewl0 ):

begin PUSHZEROS ;
Toop: push(0); read(a); VERIFY;
pops push(1); read(b); VERIFY;
while stacksymbol=1 and not stack empty do pop od;
if stack empty then halt
else pop; push(1); PUSHZEROS fi;

goto loop
end.

It is left to the reader to prove the correctness of this program. ||

In the next lemma it is shown that L0 is not a tree transformation
lTanguage (and hence not in ETOL).

Lemma 3.4. L, ¢ ¥Dy.
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Proof: We first prove that L, has property. Pj. By Lemma 3.1 (ii)
it then suffices to prove that LT)¢ydetDl, which will be shown using a
pumping lemma for ydetD] due to Perrault [31].

To prove that L0 has property P, assume that the strings

S, T Xuyvz, S, = Xuyuz, S5 = Xvyuz and s,=xvyvz are all in L,. We have

0
(or v) cannot contain two

c & w

to argue that u=v. Note first that
occurrences of symbols a or b, because otherwise the cut corresponding
to s, (or Sy respectively) would not satisfy (C]) above. Hence there
remain three cases: (1) u,v 8{0,1}*, (2) u,v E{O,]}* a{0,1}* and (3)

u,v 5{0,1}*b{0,1}*; mixed cases cannot occur since in both s, and So
symbols a and b have to alternate. In case (1) it follows from CZ’
and

applied to the cuts corresponding to that |u] = |v|, and

S1 So>
then from (C3) that u=v. In case (2), equality of u and v follows
easily from the fact that the nodes surrounding any b in Sq and So
are of the form w0 and wl respectively, so that a change around any
a would influence at most one of these. In case (3), application of (C2)
and (C3) to the cuts underlying s, and So yields u=v (similarly as
in case (1)). This proves that L0 has property P3.

We now show that L0 ¢ydetD]. In [31] an intercalation lemma for
tree transducer languages is proved that in a straightforward way gives
rise to the following intercalation lemma for ydetD]: for each L.eydetD]
there is an integer p such that every u in L longer than p can be
written as u=uju, ... Uy with (a) luil <p for 1<isck, and (b) for
each N there are strings vq,...,Vy such that |v]...vk| >Ny vy e vy el
and, for 1-1i-k, a]ph(vi) =a]ph(ui) (where, for a string s, alph(s)

denotes the set of symbols occurring in s).
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Assume that L eydetD]. By the above result every long string

0
in L0 has small substrings which can be pumped up while staying on the

same alph without Teaving L Consider a string u==aw10bw]1 ...awnObwn]

0
in L, with |wi| zp for 1<i<n, and let u =Up...u  as in the
above lemma. No u; contains both symbols a and b because of the

length restriction. If we pump any u, to Vs (as above), the number of
a's and b's cannot change (because of the alternation of the a's and b's),
and so pumping of u to v does not change the a's and b's. This gives
a contradiction because there can be no arbitrarily long cuts with the

same number of nodes (viz. 2n). 0]

We conclude from Lemmas 3.3 and 3.4 the following (using that we
know 01 - yD1 # 0 for the second part of the result)

Theorem 3.5. ETOL and S are incomparable, and so are yD] and

OI.

The last part of this result settles an open problem in [14], where

the existence of a language in ydetD] -0I was shown.
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4. Extended basic macro grammars and stack machines

In this section we’obtain a machine characterization of the family
of languages definable by macro grammars with set-parameters without
nested macro calls. We shall prove that these extended basic macro
languages coincide with the family of languages accepted by s-pd machines.
The result immediately shows that S < EB, and it demonstrates what
power is cut off from arbitrary OI macro grammars by the constraint of
no nested calls (the s-pd machine is much simpler than the nested stack
automaton). At the same time we obtain interesting, alternative proofs
for the known results that ELB=ETOL [4] and ETOL =CS-PD [37].

A1l proofs will make use of the new machine-models. In order to
describe particular machines we shall use a symbolic “programming langu-

age" with the following primitives:

Instructions

read(a) : if the current input symbol is a, then move the input
pointer one square to the right, else reject the input

string
push{y) : push the symbol vy on top of the stack
pop : pop the top symbol off the stack

Both push(y) and pop can be executed only when the stack-pointer is
at the top of the stack; and they keep it at the top (an empty stack
is assumed to have "the stack-pointer at its top").

movedown(y) : move the stack-pointer one square down and simultane-
ously push the symbol y on top of the pushdown

moveup . move the stack-pointer one square up and simultaneously
pop the top symbol off the pushdown

Both movedown(y) and moveup keep the stack-pointer at the top of the

pushdown.

Tests

bottom stack : true iff the stack-pointer is at the bottom square of
the stack

top stack . true iff the stack-pointer is at the top square of the
stack

stack empty : true iff the stack is empty
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pd empty : true iff the pushdown is empty
Note that 'top stack' and 'pd empty' are equivalent tests.

Identifiers
stacksymbol : denotes the square the stack-pointer points at, and
its contents
pdsymbol : denotes the top square of the pushdown, and its con-
tents.
Lemma 4.1. ELB < CS-PD and EB £ S-PD
Proof: 1In order to provide some intuition as to why EB Tanguages can be
recognized on s-pd machines, we first show how ELB languages are recog-
nized on cs-pd machines.
Consider an arbitrary ELB grammar G. We may assume that all rules in

G are of the form F(x],...,xn)-+F‘(e],...,e ) or F(x],...,xn)-+e,

m
where 6,6],...,6m are atomic terms and 6 does not contain + or @.
Otherwise (cf. [4]), replace rules F(...)-+w]F'(...)w2 and F(...)-y

by F(x,...,y)-+F‘(xw],...,w2y) and  F(x,...,y)>Z(xypy) respectively,

where x and y are new arguments in which the left and right context of

the nonterminal are stored and Z is a new nonterminal with rule Z(x)->x.

We shall first write a recursive program to recognize G's language
using a checking stack for storage, and then show how to implement the
recursion using the extra pd-facility of the cs-pd machine. .

The c¢s machine nondeterministically generates a complete symbolic ex-
pansion of successive macros (see Fig. 5): F0-+F](e},...,el]), F](x],...,xk])-+
F2(...),...,Fi(x],...,xki)-+Fi+](...),...,Fn(x],...,xkn)-+e (which are
rules of G, with F0 the initial nonterminal). Thus, the checking stack
symbols are (codes for) the righthand sides of rules (and FO). After
completing an expansion, the machine moves down one square and calls the
recursive procedure EVAL to “evaluate" the symbolic term 6, i.e., to

determine actual values for the constituent parameters in it by retracing
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Fig. 5

the macro expansion. The (nondeterministic) program can be described
as follows:
begin push(FO);

while stacksymbol =F(...) do

push (any righthand side of a rule for F) od;
9:= stacksymbol; movedown;
EVAL(0)
end.

The recursive procedure EVAL has one argument, which always is a
string of terminal symbols and formal parameters xj. It determines (and
reads) a possible value of xj at the current level in the stack, which
is the current level of macro expansion.

We program EVAL as follows. By head(6) and tail(6) we denote the
first symbol of 6 and the string obtained from 6 by erasing head(8),

h

respectively; by a; we denote the it terminal symbol.
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procedure EVAL(6);
if 6#X then
case head(6) of
ai: read(a 1)'

: begin y:= any element of the set denoted by the Jth
argument of stacksymbol; movedown; EVAL(y); moveup

end
esac,
EVAL(tail(e))

Note that "aiz read(ai)“ abbreviates "a]: read(a]);...;ak: read(ak)"

where % ={a],...,ak}. Similarly for the xj-c]ause.

In this program it is understood that the machine rejects if there
is no value for vy, i.e., if the set denoted by the jth argument of stack-
symbol is empty. It is not hard to see that the procedure works correctly
and verifies that the expansion generated in the stack represents a deri-
vation of the input. Since the program runs with an ordinary checking
stack as storage, we only have to argue that the recursion can be imple-
mented using a synchronized pushdown store in addition to the stack. It
should be c]ear that this can be done by storing the current argument of
EVAL in the pushdown square at the current level of the checking stack.
Note that in no call to EVAL its argument is longer than the righthand side
of a rule. Hence the pd symbols can Just be codes for these arguments.
This leads to the following iterative program for the recognition of G's
language on a cs-pd machine:
begin push(F);
while stacksymbol =F(...) do
push (any righthand side of a rule for F) od;
movedown (stacksymbol);

EVAL
end;
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where EVAL denotes the following routine text (without a parameter
this time because we keep an explicit pushdown where the argument is

stored):

begin
loop: if pdsymbol = A
then moveup;
if pd empty then halt
else pdsymbol := tail(pdsymbol) fi
else case head(pdsymbol) of
a, : gggjg_read(ai); pdsymbol := tail(pdsymbol) end;

xT : begin y:= any element of the set denoted by the jth
J argument of stacksymbol; movedown(y)
end
esac fi;
goto loop

end EVAL;

A typical change of the cs-pd store effected by the "y:=...; movedown(y)"
statements is indicated in Fig. 6. Note that the arguments of F] can con-

sist of terminal symbols only, and the pushdown store cannot grow beyond

the bottom of the checking stack.

old pd new pd
| 6
) 6
Fk(e],...,es) < > xj... xj...
..._T___._) IPJ (‘J)Jee\])
| i
i :
F]( ..... )
Fig. 6
o



As an example we consider the grammar with rules

S>F(X,0),

F(z,x) »G(z,x,1),

F(z,x) »zx,
G(z,x,y)-+G(za,x,ya)
G(z,x,y) ~F(z#,x+y),

which generates the language of Example 2.1.

25

Snapshots from the recog-

nition of the string a#b#a on a cs-pd machine are given in Fig. 7.

ZX
L

G(z,x,A)

-G(z,x,k)

A

S

Flz#,xty)
G(zb,x,yb)

G(za,i,ya)

|
N® ]

/NN
o

FOLE)

Cs

We continue our proof and show now that EB < S-PD.

[ >N
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arbitrary EB macro grammar.

the grammar in a direct manner.
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Consider an
We shall program an s-pd machine which parses

On its stack the machine will symbolically

expand macro calls in leftmost order as if the grammar were context-free.

Each time a leftmost part resulting from the expansion does not contain

further macro calls,

this part as in the ELB case.

be codes for righthand sides of rules and their suffixes.

the machine will evaluate the formal parameters of

Thus the stack symbols of the machine will
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We may assume that the symbol + occurs only in the arguments of
macro calls. Thus each righthand side 6 of a rule is of the form
6 =e162 ...ek such that, for 1<i <k, either 61 is terminal, or

01 =xj for some formal parameter xj, or ei is a macro call

F(g75..-59 ). We shall denote 6, by head(6) and 6,...6_ by
1 n 1 2 n

tail(e).

ine program for the s-pd machine is as foliows.

begin push(initial nonterminal);
cycle: 1if stacksymbol =A
then pop; if stack empty then halt
else stacksymbol := tail(stacksymbol) fi
else case head(stacksymbol) of
F(...): push(any righthand side of a rule for F);
a.: begin read(ai); stacksymbol:= tail(stacksymbol) end;

i
x.: begin movedown(xj); EVAL;

) stacksymbol:= tail(stacksymbol)
end _
esac fi;
goto cycle
end;

where EVAL is the same routine as in the ELB case except for the assignment
to ¢ which should now read:

“"y:= any element of the set denoted by the jth

argument of
head(stacksymbol)".

Thus the new parameter value for EVAL is always picked from the Teftmost

macro call in the current stack square. Note that all stack symbols that

are not at the top of the stack start with a macro call.

It is an easy exercise for the reader to verify that the above program

indeed recognizes the EB language on the s-pd machine. [I
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For proving the converse of Lemma 4.1 we use the following, well
known fact from the theory of AFA and AFL (see [17; chapter 5]): each
family of languages defined by a class of "well-behaving" 1-way nondeter-
ministic acceptors (of the same "type") is a full principal AFL. Thus,
to prove that S-PD € EB we only have to show that EB is a full AFL
containing the full AFL generator of S-PD.

Lemma 4.2. EB is a full AFL.

Proof: It is straightforward to prove closure of EB under union, conca-
tenation and Kleene star (cf. [16]). To show closure under regular sub-
stitutions f one replaces in a given EB grammar each terminal symbo1l

"a" by some regular expression for f(a). This gives an REB grammar which
can be transformed into an EB grammar by Lemma 2.2(1). Closure under
intersection with regular sets can be shown as follows (cf.[16,4]).

Let an EB grammar G be given with terminal alphabet I and rules
of the form F(x],...,xn)-+G](...)Gz(...)...Gk(...) or F(x],...,xn)-+9,
where 6 does not contain nonterminals. Let a regular language R be
given as R==h'](E) where h is a homomorphism mapping Z* into a
finite monoid H and E ¢ H. An EB grammar G' for L(G) N R is con-
structed as follows. For each X; and each f eH, we introduce a new
formal parameter (xi,f> which will serve to store all strings w, ori-
ginally stored in X;» such that h(w)=f. We extend h to these symbols
by defining h((xi,f>) =f. The nonterminals of G' are of the form
[F,f] where F 1is a nonterminal of G of rank n and fecH; [Fsf] has
all formal parameters (xi,g> with 1<i<n and g €H, in some order.
The rule F(x],...,xn)-+G](...)...Gk(...) is changed into all rules of the

form
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[F,f](...)+[G],f]](...)[GZ,fz](...) [Gk,fk](...)

such that f]fz... fk='f and the arguments of [Gm,fm], l<ms<k, are
computed as follows: Tlet Si be the set denoted by the ith argument
of Gm in the righthand side of the original rule; let ¢ be the finite
substitution with ¢(xt) ={(xt,f>|fe:H} for 1<ts<n, and the identity
otherwise; then the argument of [Gm,fm] on the position of (xi,g) is
any term denoting the finite set {w e¢(51)|h(w) =g}.

Each rule F(x1,...,xn)-+0 is replaced by all rules of the form
[F,f1(...)»06"', where ©0' 1is any term denoting the set {we ¢(S)|h(w)="F},
S being the set denoted by 6. Finally a new initial nonterminal S0 is

introduced with all rules SO‘+[S,f], where S s the initial nonterminal

of G and fekE.

The formal proof of this construction is a standard exercise. 0

Lemma 4.3. S-PD < EB and CS-PD < ETOL
Proof: What makes an s-pd machine extend a finite automaton is the way its
stack-instructions can be nested and intertwined. If we could find a
language L which codes each possible sequencing of stack-instructions,
then only AFL-operations are needed to insert the input symbols at the
proper places and to make a "selection-pass" to extract those sequences
which are consistent with the finite state behavior of a particular machine,
i.e., L dis a full AFL generator of S-PD. By a standard equal-length
coding we may assume that the stack/pushdown alphabet of the s-pd machine
is {0,1}. In order to obtain a manageable L we reformulate the s-pd
machine to have 'stack empty' as the only basic test, and the following

basic instructions (apart from the read instruction):
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a@ : push the symbol a on top of the stack

aE * pop the symbol' a off the stack

aD : movedown from the stacksymbol a and push Y on top of the
Y pushdown

a$ - move up to the stacksymbol a and pop y off the pushdown

for a,ye{0,1}.
It should be obvious that the new instructions can be simulated by
the old ones, and vice versa. Checking the complicated definitions in
[17; sections 5.2, 5.3] shows that s-pd machines form a reduced, finitely
encoded AFA satisfying [17; Theorem 5.3.2]. Thus S-PD is indeed a full
principal AFL, with a generator L obtained by taking all permissible
sequences of basic instructions which lead from empty stack to empty stack.
L can be defined by an REB grammar with the following six rules.
1,2. S~+aF(x)aES, a=0,a=1
3. S=2,

*

4,5, F(x)—+xaF((a8xaU-+a?xa$) )aEF(x), a=0,1

0
6. F(x)»x.
The set-parameter x stands for the set of all sequences of as and
ag instructions that can be executed on a certain stack Sy starting
and ending at the top of Sy In rules 1 and 2 this stack is set to the
one containing only the symbol a, whereas in rules 4 and 5 the symbol a
is pushed on this stack for the first F in the righthand side, and it
stays the same for the second F. F(x) generates the set of all instruc-
tion sequences that can be executed starting and ending at the top of
stack Sy without changing its contents in the intermediate steps. By
formalizing these statements one can easily prove the correctness of the

grammar. By Lemma 2.2(1) one may convert the REB grammar into an EB grammar,
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and it follows that LeEB. As L s a full AFL generator of S-PD
and EB is a full AFL, we conclude that S-PD < EB.

The proof of CS-PD € ETOL is quite similar. Without making the
definition of the cs-pd machine as AFA precise, it should be clear to
the reader that a full AFL generator of CS-PD consists of the language

. . D U D _ U
of all instruction sequences w e{ao,ao,a],a]}

such that, on a certain
stack s, w can be executed starting and ending at the top of s. This
language is generated by the following RELB grammar:

1. S=>F()),
2,3. F(x)—*F((agxag-+a?xa$)*), a=0,1,

4. F(x) »x.

In the original proof in [37] the essential idea was to construct an

ETOL grammar with initial symbol x and regular (rather than finite)
substitutions fa and g such that: fa(x) =(agxag-+a?xa¥)*, g(x)=2x
and the identity otherwise, which clearly generates this lanquage also.
Since an ETOL grammar with regular substitutions can be transformed into
an ordinary one (compare e.g. [3]), it follows again that the language is
in ETOL. Since ETOL is a full AFL [33], we can conclude that CS-PD < ETOL.
{1

Combining the lemmas we obtain the main result of this section.

Theorem 4.4. EB=S-PD. |l

We also conclude the following (known) characterizations of ELB.

Theorem 4.5. ELB=ETOL =CS-PD =NES-PD.
Proof: CS-PD=NES-PD was shown in Theorem 2.3. ELB £ CS-PD € ETOL was
shown in the previous two lemmas. The proof of ETOL £ ELB is straightforward
[4]: the ELB grammar has, in addition to the initial macro S, only one

macro F; a finite substitution f of the ETOL grammar is simulated by a
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rule F(x],...,xn)->F(f(x]),...,f(xn)) of the ELB grammar, where
Xps-+esX o are renamings of the symbols a],...,an of the ETOL grammar
(f(xi) denotes the renaming of f(ai)); the final rule is F(x],...,xn)-+x]

(if ay is the initial symbol of the ETOL grammar), and the initial rule

15 5‘*F(6],.--,6n) where 61 =a, if a.

j is terminal and 61 =P

otherwise.

During a derivation the actual parameters of F denote the set of
all terminal strings derivable from the individual symbols a],...,an
for a particular (arbitrary) sequence of substitution-applications. When-
éver macro expansion stops (with the final rule) we produce a set of
terminal strings derivable from ass and all words of the language can be
obtained in this way. [

As the one-way stack automaton and the cs-pd machine both are degene-
rate versions of the s-pd machine, and since we have shown in section 3
that S and ETOL are incomparable, we get the following proper inclusions.

Corollary 4.6. (i) S g EB

(ii) ETOL € EB

4.6 (1) shows that each stack language can be defined by an extended
basic macro grammar, but not vice versa. It is open whether there exists
a natural restriction on EB grammars which characterizes .

4.6 (i1) seems to be at present the strongest ramification of the hard
result that ETOL ¢ INDEXED [8]. We recall that EB ¢ 0I [12].

The characterization of EB by s-pd machines gives us a handle on the
study of various subfamilies of EB like ELB, by simply varying restrictions
on s-pd machines. It is interesting to see how such restrictions are
directly reflected in the generator for S-PD, thus providing us with

generators for the subfamilies.
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Recall that the generator for S-PD was defined by the grammar
S >aF())ats,

S“")\,

*
F(x) > xaF ((agxap +ajxab) )atF (),

F(x)»x, ae{0,1}.

A generator for S is obtained by dropping the pd-facility, i.e.,

(agxag-+a?xa$)* into (anaU)*, and a generator for NES-PD

E ).

changing
is obtained by dropping the aEF(x) part (and the a Thus the following
RELB grammar defines a generator for ETOL:

S~>afF(A),

S,

F(x)-+xaF((a8xag-+a?xa$ *),

F(x) -+ x.
When we drop the pd-facility from this grammar (as for S ) we get a
generator for NES, and dropping the "work in the stack, before you push
more" - term xa produces a generator for CS:

S>F(A),

F(x) »F((a’xa)"), aef0,1}.

F(x) »x.

Digressing on EB (and remembering that OI = INDEXED [16,1]), we may
ask how the restriction of nonnested nonterminals in EB macrogrammars
perhaps corresponds to an equally natural restriction on indexed grammars.
Filé and van Lecuwen [15] have recently obtained characterizations of both
EB and ELB by means of simple classes of indexed grammars. It turns out
that the proper class of indexed grammars corresponding to EB is Aha's
class of "restricted indexed grammars" (RIG, see [1, last page]), although
in [15] a more attractive equivalent form is derived. An RIG is like an

ordinary indexed grammar, except that nonterminals produced by flag-consuming
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Productions cannot themselves introduce new flags ever. (Such nonterminals
were called "intermediates"). It is remarkable that the class of restricted
indexed grammars appears to be "natural” after all, from the point of view
of macro grammars.

We can show (cf. [15])

Theorem 4.7. The family of languages generated by Aho's restricted

indexed grammars is precisely equal to EB.

Note that Aho's result that S < RIG [2] is an immediate conse-

quence of our machine characterization of EB. Cor. 4.6. confirms the

conjecture in [2] about strict inclusion of S in RIG(=EB).
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5. Deterministic restrictions

In this section we show that there is a natural determinfstic re-
striction on the stack-handling capability of s-pd machines which yields
a machine characterization of the "original" (i.e. nonextended) nonnesting
or basic macro grammars. It continues the work of M. Fischer [16] to
give further useful characterizations of the family BASIC. The same
restriction for cs-pd (equivalently, nes-pd) machines gives a machine
model for the linear basic macro languages (or EDTOL languages). At the
end of this section we position all families of this paper in a diagram
and show the correctness of the incomparabilities and proper inclusions.

In order to explain the particular deterministic restriction for s-pd
machines it is convenient to view s-pd machines as generators (i.e.,
machines with output) rather than as acceptors (i.e., machines with input),
by simply changing the instruction read(a) into write(a). It should be
clear that this makes no difference with respect to the power of general
(nondeterministic) s-pd machines. We say that an s-pd machine is stack-

deterministic (as a generator) iff it is deterministic in the stack-reading

mode, i.e., whenever it moves up and down the stack using the pd-facility
or when it is on top of the stack and must choose between staying at the
top or moving down into the stack it acts completely deterministically.
Thus, actual nondeterminism is only allowed in the stack-writing mode.
From the acceptor point of view it means that we put restrictions on the
program (or state-transition function) of the machine such that during
inspection of the stack (with the added pushdown facility) at most one
possible piece of input can be recognized.

We shall abbreviate "stack-deterministic s-pd" by ds-pd. The same

restriction can be put on restricted versions of the s-pd generator (with
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a similiar notation). 1In particular, a dcs-pd generator first builds a
checking stack nondeterministically, then generates output while moving
in its stack deterministically.

We now show that stack-determinism provides a characterization of
the (linear) basic macro languages. Intuitively, deterministic handling
of the stack corresponds to "deterministic arguments" in the macro
grammar.

Lemma 5.1. B < DS-PD and LB £ DCS-PD.

Proof: In the proof of Lemma 4.1 the procedure EVAL describes the stack-
inspection of the s-pd and cs-pd machines. It should be clear that for
basic grammars EVAL can be made deterministic by changing the assignment
"wi= any element ..." into ":= the element ...". Thus, by changing
“read(ai)“ into "write(ai)” throughout the parsing program, a stack-deter-
ministic program for the s-pd or cs-pd generator is obtained which gene-

rates the language of the given basic grammar. []

Lemma 5.2. DS-PD € B and DNES-PD < LB.
Proof: Unfortunately no simple proof analogous to the nondeterministic
case is known. The basic grammar corresponding to a ds-pd generator,
however, will be somewhat similar to the EB grammar in the proof of Lemma
4.3.

Let a ds-pd generator be given in the usual way by a set of states Q,
a state transition function, output alphabet I, pushdown alphabet T,
etcetera. We assume that the machine accepts by final state and empty
stack. Let $ be a new symbol, used to indicate an empty pd. For each
G:Q and vy« I'UJ {$} we introduce a formal parameter x(q,y), denoting
the sequence of these parameters (in some order) by x. The nonterminals

of the basic macro grammar to be constructed are of the form [A;p,q;f]
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with arguments ;, where A is an element of the stack alphabet, p and
q are in Q and f 1is a partial function Qx (" U {$})~0Q.

Suppose that for a given stack s with top symbol A the generator,
starting in state r at the top of s with pd symbol Yy 1in the
“opposite" pd square (empty pd if vy=$%) and empty output tape, moves
into the stack and returns after a number of steps to the top of s in
state f(r,y) with output w(r,y) ez*, such that it cannot move again
into the stack. (Note that due to the stack-deterministic restriction
f(r,y) and w(r,y) are unique).

Then we want [A; p,q; f1(w) to generate v eZ* if and only if the
generator, when starting in state p at the top of s (with empty pd),
can return in the same situation (in some other state) and then pop A and
go into state g, producing output v (where we assume that s all the
time remains as lower part of the current stack).

This idea can be implemented with the following rules.

(1) (corresponding to rule 6 in the EB grammar of Lemma 4.3)

[A; p,q; f1(X)>x(p,$)w 1if the machine, in state f(p,$) with A on

top of the stack (and empty pd), pops A and goes into state gq

producing output w (according to the state-transition function).
(2) (corresponding to rules 4,5 of the grammar of Lemma 4.3)

(A3 pbas F1(X ) >x(p,$)WIB3p;:P,391(U) [A3p,,05F1(X) if (a) and (b)

hold:

(a) The machine, in state f(p,$) with A at the top of the stack

(and empty pd), pushes B and goes into state P producing
output w.
(b) u(r,y) and g{(r,y) are obtained by writing down the (symbolic)

output of the machine, starting in state r at the top symbol
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B of the stack with y in the opposite pd square (empty
pd if y=$§).
For instance, if the machine moves down (to A) in state " pushing

Y3 eI’ on the pd and producing output vy eZ*, then we write
u(r,y) =v]x(r]y])... and continue in state f(r1,y]). If the machine
now moves up (to B) and down again into state ro pushing Y, on the pd
and producing output Voo then we write u(r,y) =v]x(r],y])v2x(r2,y2)...
and continue in state f(rz,yz). If, finally, the machine moves up to B
in state g producing output Vi and it cannot move down again, then

we set u(r,y) =v1x(r],Y])v2x(r2,y2)...v and g(r,y) =r- Note that

n
each x(ri’Yi) occurs at most once in u(r,y) since otherwise the ma-
chine Toops. In case something "goes wrong", g(r,y) is left undefined
and u(r,y) is defined arbitrarily. It is left to the reader to con-
struct the initial rules, to fill in the details, and to prove the cor-
rectness of the construction formally. It shows that DS-PD < B.

A dnes-pd generator can be viewed as a ds-pd generator in which
all pops happen at the end of the computation (without output and, say,
in a certain final state qe). This gives a linear basic grammar with
rules:

(1) [A; p; f1(X)>x(p,$) if the machine, in state f(p,$) with A at

the top of the stack, goes into state 9o
(2) (A5 ps f1(X) > x(p,$)w[B; Py gl(u) if (a) and (b) hold as before.
This shows that DNES-PD < LB. ||

Both lemmas together give the machine characterization of the non-
nesting macro grammars.
Theorem 5.3.

(i) B=DS-PD.
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(ii) EDTOL =LB=DCS-PD =DNES-PD. O

The families of languages discussed in this paper can now be put
together in the following inclusion diagram (Fig. 8)*. The dimensions
in the diagram (without yD] and OI) can be interpreted as follows.

To the right: first add "push", then add "pop"; downwards: add "D";

from the reader away: add "pd".

. ¥y
' 0I

EB =S-PD

N
\\
\
nonome
m
w
I
m
-—
o
([
A

CS >

Y=~ A B=DS-PD

A4

>
7

DCS DNES DS

Fig. 8

We note that the family DCS is known from the literature. Since a
checking stack (or cs-pd) machine, viewed as a generator, can be viewed
as a transducer (with the checking stack contents as input), DCS is

casily seen to be the image of the regular languages under two-way deter-

*
Some of the lines are dotted only to improve perspective. All inclusions

shown are proper.
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ministic finite state transducers [27]. Note that a stack-deterministic

cs-pd generator is the same as a deterministic cs-pd transducer. DCS is

also equal to the class of languages accepted by "finite visit" cs-pd

machines (cf. [22]) and equal to the class of languages generated by

ETOL grammars "of finite index" (cf. [34]).

We also note that all families on the upper level of fig. 8 and DCS

are full AFL's. The other 4 families are closed under U, *, * and deter-

ministic gsm mappings (obvious for the machines), but not under h

-1

The correctness of the inclusions and incomparabilities shown in Fig. 8

follows from the existence of languages in the following classes:

(1)

but

CS-B: the language {w::{a,b}*lthe number of b's in w 1is not prime} .
is in CS [21], but not in B (not even in the class of 10 macro langu-
ages); the latter follows by observing that the proof in [16; section
3.4] showing the existence of a language in 0I-I0 proves in fact

that if L< b  and h™'(L) €10 (where h(a)=A and h(b)=b), then
L 1is regular.

LB-S: {anbnzcnln >1}, see [30].

DNES-CS: {anzln >1}, see [21]; it is easy to see that this language
can be generated by a dnes generator which after having produced ak2
as output, has ak in its stack.

DS—yD]: the Tanguage L0 of section 3 is in DS as can easily be seen
after changing "read" into "write" in the program in Lemma 3.3.

0I-EB: see [12].

yD]—OI: see [14]. )

Note that it follows from the above that L ={a" fn>1} dis in DNES,

h_](L) is not in B. Thus, all families of languages in between these
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two are not closed under h'].

The reader may wonder about the position of the class CF of context-
free languages in fig. 8. Certainly none of the classes shown are con-
tained in CF, because {anbncnln >1} is clearly in all of them. It is
also easy to see that CF € CS-PD and CF € S. Recently the (difficult)
proof was given that CF is not included in EDTOL [7]. From this it can
be shown as follows that CF is not included in NES (this was known to
Greibach since the paper on CS [21] and has recently been proved by her
[23]; she uses the argument below together with a direct proof that CF
is not included in DCS (cf. [22])). Assume first that CF € CS. Then in
particular all parentheses languages [29] are in CS. Such languages do
not contain infinite regular subsets. This property ensures that they
are even in DCS (since each square of the checking stack can only be
visited a finite number of times, cf. [27]). Since DCS is closed under
homomorphism, it follows that CF < DCS € EDTOL, which contradicts the
result of [7]. Hence CF is not included in CS. From [21; Lemma 4.1] it

can now be concluded that CF is not included in NES.
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6. Conclusion

In this paper we presented a detailed study of several language
classes closely related to EB, the family of languages generated by
macrogrammars (with set-parameters) in which no macro calls within the
parameters are allowed. We have presented a feasible protocol for imple-
menting macro-expansions for such grammars, and proved that EB is the
family of languages recognized by s-pd machines. Related characterizations
for ELB and other families were obtained. One may view s-pd machines as
restricted nested stack automata [2] in the following way. The pushdown
store corresponds to a sequence of one-element stacks in the nested stack
automaton, which it inserts "between" the symbols in the main stack as it
moves down. The one-element stacks dissolve as the stack-pointer moves
up, just like symbols are popped off the pushdown in the s-pd machine.

As this protocol must be a strong curtailment of a nested stack automaton,
it is supporting evidence that there must be a rich structure between EB
and OI.

In this paper we have explained some of the similarities and differences
between features of stack-like machines on the one hand (push, pop, meveup,
movedown) and properties of macro grammars on the other hand (set-parameters,
linearity, nesting). It is often the case that a machine model for a family
of languages is the easiest characterization to use in connection with in-
tuitive reasoning, whereas the grammar model has its strength when dealing
with formal proofs. In our opinion this is precisely the case for the class
of languages discussed in this paper, and we hope that our results will prove
helpful for a better understanding of the properties of stack-like machines

and the corresponding macro grammars.
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