‘Qﬁ.;"

JVAN> VAN LEEUWEN
RUU-CS-78-1
E Jan’uu?y 1978 .
- Rijksuniversiteit Utrecht

Budapestiaan 8
Litrecht 2508
.Telstoon 030-63 1454

<

A USEFUL LEMMA FOR CONTEXT-FREE PROGRAMMED GRAMMARS

JAN VAN LEEUWEN

Technical Report RUU-CS-78-1

January 1978

Department of Computer Science
University of Utrecht
P.O.Box 80.012
3508 TA Utrecht, the Netherlands

vakgroep informatica R,U, Utrecht

proposed running head:

CONTEXT~-FREE PROGRAMMED GRAMMARS

all correspondence to:

Dr. Jan van Leeuwen

Dept. of Computer Science
University of Utrecht
Budapestlaan 6, P.O.Box 80.012
3508 TA Utrecht

the Netherlands

A USEFUL LEMMA FOR CONTEXT-FREE PROGRAMMED GRAMMARS

Jan van Leeuwen
Department of Computer Science
University of Utrecht
3508 TA Utrecht, the Netherlands

Abstract. We show that all quasi-realtime one-way multi-counter languages
can be generated by a context-free e€-free programmed grammar (even under
the free interpretation). The result can be used to obtain a new and
almost trivial proof of the fundamental theorem that arbitrary context-
free programmed grammars can generate all recursively enumerable lan-
guages. The proof of our result also yields the following, interesting
characterization: the quasi-realtime one-way multi-counter languages are
precisely the e-limited homomorphic images of (free) context-free pro-
grammed production languages. It follows that the (free) derivation
languages of context-free or even context-free programmed grammars,
which were known to be context-sensitive, are in fact contained in the

family of context-free e-free programmed languages.

1. INTRODUCTION

In the past ten years numerous generalizations of the context-free
grammar-formalism have been proposed (see e.g. Salomaa [10]), but only
a few have survived. Context-free programmed grammars (Rosenkrantz [9])
have proved their value in formal language theory for some time, as the
application of context-free productions according to some "program"
appeared to be both natural and sufficient in many instances where the
more powerful context-sensitive or phrase structure grammars were used
before. The idea of using grammars as programs was developed further by
van Leeuwen |11], who showed that even "weak" control-structures are
suflicient to gain the full power of context-free programmed grammars.

Whereas context-free e-free programmed languages are strictly
contained in the context-sensitive languages (Rosenkrantz [9], p. 116)
and in NP (van Leeuwen |12]), the fundamental theorem for programmed
grammars asserts that arbitrary context-free programmed grammars can
generate precisely all recursively enumerable languages. The theorem was
originally shown by Rosenkrantz ([9], p. 119) for context-free pro-
grammed grammars operating under the leftmost mode of derivation, but

later proofs of Salomaa ([10], thm 5.1) and van Leeuwen [11] removed

this condition. All proofs have in common that they are long and tedious,
requiring the explicit programming of a fair number of "arithmetical
subroutines". We shall attempt to simplify this considerably.

The main result of this paper is

Lemma A. The family of quasi-realtime one-way multi-counter languages
is (strictly) included in the family of context-free e-free programmed

langquages.

We note that in the lemma and from now on we shall always assume the
free mode during derivations. Observe how the lemma, which is in itself
essentially quite easy to prove, yields an almost trivial proof of the
fundamental theorem for programmed grammars, which should be convincing
even without knowing the precise definition of these grammars (see

section 2).

Theorem. The family of (arbitrary) context-free programmed languages is
precisely the family of all recursively enumerable languages.
Proof
It follows as usual that context-free programmed languages are re.
Let L. be an arbitrary re language, LE;Z* for some alphabet . It is
wellknown that I. can be accepted by a one-way multi-counter machine M
(sece Minsky [8], Fischer |2], or Hopcroft & Ullman [5]). Choose ¢€ Z.
Make M intoc a realtime machine M' by having M read a "¢" each time it
would do an e-move. The language L' recognized by M' can be generated by
some context-free e¢-free programmed grammar G, according to Lemma A.
Erasing the terminal ¢ in the righthand-side of all productions in G yields
a context—-free programmed grammar for I,.

O

The proof of Lemma A will yield another interesting result, which can
be used to obtain a complete "grammatical” characterization of all

delay-bounded onc-way multi-counter languages.

Lemma B. The family of quasi-realtime one-way multi-counter languages is
precisely the family of c~limited homomorphic images of production

languaqges of context-free programmed grammars.

The Lemma and its generalization for arbitrary delay-bounded one-way
multi-counter machines will be shown in section 3. One application of
Lemma B immediately shows that derivation languages of context-free
programmed grammars are (in fact, deterministically) log-space recog-

nizable (see also Igarashi [6]). More interesting for us here is the

following conclusion.

Theorem. The derivation languages of context-free programmed grammars
are contained in the family of context-free e-free programmed languages.
Proof

Combine Lemma A and Lemma B.

O

Earlier, the best result known for these derivation languages merely
stated inclusion in the family of context-sensitive languages (as one
can observe from Salomaa [19], note 6.2). One may rephrase the result as
saying that "context-free e-~free programmed grammars are sufficiently
powerful to generate their own derivation languages", a result known to
be false for ordinary context-free grammars. In particular we can now
claim a much tighter bound on the extra grammar-strength needed to
generate the Szilard (or: derivation) languages of arbitrary context-free
grammars (see Salomaa [10], p. 185 bottom): context-free e-free pro-
grammed grammars will do.

Section 2 will contain relevant definitions and the proof of Lemma A.
Section 3 will continue the constructions to prove Lemma B and a

further generalization.

2. CONSTRUCTION FOR LEMMA A

For all preliminaries from automata and formal language theory which
are not explicitly introduced here we refer to standard texts like
Hopcroft & Ullman [S] and Salomaa [10]. We use ¢ to denote the empty
string over any alphabet.

Context-free programmed grammars (or cfpg's, Rosenkrantz [9]) can be
described as context-free grammars in which all productions carry a
unique label and each production includes a clause for the selection of
a next production after the former was "applied". Formally, a cfpg is a
tuple G = <v, &, L, P, 8> with vV, £ and S as usual, L a set of rule-
labels, and P a finite set of productions of the form

(r) A »w S(a) F(B)
with r € L (unique for this rule), A€EV-X, w€ v¥, aCL (the success-
tield), and B< L (the failure-field). Observe that o,B could be empty.
1f w# ¢ for each production, then we call G a context-free e-free pro-
grammed grammar (or cfpg_e).

Let pairs (x,r) in derivations with cfpg's indicate that "production
r must be applied to intermediate string x". We write (x,r)= (y,s) if one
of two cases holds.

(i) A occurs in x (which means that r applies "successfully"), y is
obtained from x by replacing some arbitrary occurrence of A by w, aﬁd
s€a.

(ii) A does not occur in x (which means that r "fails"), y=x, and
s€ B.

We write (x,r)= (y,#) in the special event that the "next" production (s)
must be chosen from an empty S- or F-field. Obviously, a derivatiom cannot

proceed after reaching a pair (y,@). Let :»be the reflexive, transitive

closure of =»,

befinition. L is a context-free programmed language (or context-free
e~free programmed language) if and only if a cfpg (or cfpg—c) G exists
such that

1,—16}::{WGZ*“S,rO)z(uurf) for some r which labels a rule for

S and some rf€ {gluL}.

Let the families of context-free programmed and context-free e-free
programmed languages be denoted as CFPL and CFPL_E, respectively. From

Rosenkrantz [9] and van Leeuwen [11] we conclude

.y . -€
Proposition 2.1 CFPL is an AFL (which is strictly contained in the

family of context-sensitive languages).

We assume the reader to be familiar with the notion of multi-tape
machines, so our next description can be brief. A counter-tape is a
pushdown-tape with a working alphabet of just a single letter. The
scanned tape-symbol will be "a" as long as the counter is not empty, and
"e€" if i1t is. In the latter case popping is prohibited, and the machine
will have special instructions for handling counters when they're empty.
The "6-function" of a multi-counter machine will prescribe for each
source-configuration a finite number of admissible transitions, each
transition including a move-directive for the input head and a pPop,
leave, or push instruction for each counter. a computation begins with
the machine in a specified initial state, its input head on the leftmost
square of the input-tape, and its counters containing "e". An input is
acceptable if the machine can reach a designated final state, with the
input head running off the righthand end of the input-tape.

In one-way machines the input~head can only move in left-to-right
direction. If input is required for a transition, the machine will
consume the "o" in the current input-square and move its head right. If
no input is required, the machine will consume an "e" and leave the
position of its head unaltered. Typically, after the input-head has
moved, several e-moves may follow before the contents of the next

square (if any) is actually scanned.

Let D : N ” N be an arbitrary function.

Definition. A one-way machine is said to be D(n)-delay bounded if and
only if for all acceptable inputs of length n it has an (accepting)
computation in which no more than D(n) consecutive e-moves occur before

or after any input-consuming move.

A o-delay bounded machine is traditionally called realtime, and any
machine which is c-delay bounded (for some constant c¢) is called quasi-
realtime. The terminology obviously applies to one~way multi-counter
machines. The structure of quasi-realtime languages in general was
investigated e.g. in Book & Greibach [1].

We can now prove
Lemma A. The quasi-realtime one-way multi-counter languages are (strictly)

€

included in CFPL .

Proof

Let M be an arbitrary quasi-realtime one-way multi-counter machine,
and assume that M is in fact c-delay bounded (some ¢). We may assume

without loss of generality that M can make no e-moves in its initial state

{thus, it always begins a computation with an input-consuming move) !
A crucial observation is that there is a constant d such that
(*) for each acceptable input 01...0n of length n, machine M must
. .th
admit an accepting computation in which after consuming the i

input-symbol (1<i<n) none of its counters can grow larger than i.d

before the next input-consuming move or halting.

One can take d= c+l, but any larger value for d will do for the construc-
-€ , .

tion below also. We shall design a cfpg G which can perform a direct

simulation of the computations of M, maintaining intermediate strings

of the form

llinputll -— le fol o .

counter # 1 ~»

counter # k —

The monstrous symbols contain k+1 track-squares, one holding

an "actual"” input-symbol o and the remaining k capable of holding up to

d a's (thus any one of ¢, a,..., ad). The contents of the jth such
track-square should be understood to contribute to the contents of the

jth counter in some computation of M, on an input as appearing in the top-
track squares from left to right. Notice that each counter-track can
"store" up to i.d a's when i "inputs" have been generated, but we know
from (%) that such a capacity is sufficient to simulate at least one
accepting computation for each acceptable input.

The idea is to "program" the application of productions

Ip: o; Ajrenns ak; cont| H -- . H S(...) F(@),

which indicate that M is to continue with the processing of "some" next
input-symbol o after it has proceeded to state p and while scanning

Agreeey oy oON the counters (as a result of the computation on the preceding

inputs). Each time such a "next" input has been generated, the grammar
must "pause" and call a macro ADJUST(...) to update the counters as
required by the recent input-consuming move and up to ¢ subsequent
e-moves before it can "continue" with another [p; o; Cpreens Qi cont]~

rule (with p and a,...0, consistent with the new state of the computation

1 k

and a:bitrary o). We describe the macro ADJUST first, using informal
terms only as the reader can easily supply the tedious details of the
actual productions needed.

The macro ADJUST is called as

ADJUST(a reeuy ak; 81,... B Pt oq)
[new state if adjustment can be
completed.
timer for e-moves, ranging from
o to c.
is a code for the required adjustment of
the 1 counter.

tt
is the scanned contents (a or €) of the j ' counter.

» which the grammar generates when it chooses to simulate M by using

(q, 81,..., Bk)E S(oy vy Ayreeey ak), knowing the current state and
input for the move but guessing the scanned contents al,..., ak 9£ the

current counters. It follows that the macro must lead through the

tollowing chain of checks and actions, easily achieved with a cfpg_F

block:

(1) for j from 1 to k,
if a,=¢€ then
) th
- verify that the j counter is empty, by checking
. .th
that there is no symbol whose j counter-track
d
square has contents €{a, ..., a |}
if o, a then
J . th s
- verify that the j counter is not empty, by
checking that there is at least one symbol whose

tl d
j ' counter-track square has contents €{a, ..., a }.

(i1i) for j from 1 to k,
if Bj = pop then

- range through all possible productions of the form

o o
T B!

track # j-- aS ——>» |5z8-1]| &--track #j
Tk Tx

(for some enumeration of the choices of the fixed,
remaining squares and 1g&sgd), until you hit the
first successful application.
Note that one must get to such a production, because
a "pop" can only be given when the corresponding
counter was non-empty.

if Bj==lggxg_then

- do nothing, and just transfer control.
if 8= push then

- range through all possible productions of the form

track ff j---p a a ¢--track # j

(for some enumeration of the choices of the fixed,
remaining squares and this time 0Ogsgd-1), until
you hit the first successful application.
Note that it may now happen that we find no such
hit at all, precisely when the 1”1 track contains
the maximun counter-value it can presently store
(which is i.d). However, we know from (*) that for
all acceptable inputs there must be an accepting
computation of M which will lead us through here
successfully.
(111) it any of the required checks or actions in (i) and (ii) cannot be
completed successfully, then control must be interrupted and transferred

to some production like

{sink] H-—H S(sink) F{(sink)

effectively causing the grammar to get "hung up" on an intermediate string

of ¢ |-symbols (and perhaps H) which from here on cannot ever become

"terminal"”.
(iv} if the checks and actions called on in (i) and (ii) all run to a
successiul ending, then we can prepare for the simulation of a next move

of M {if any) and transfer control to any one of the following productions

or blocks:

ADJUST(al,..., a

K’ 81,--., Bk; t+1l; r)
‘fg;:/;ny al,..., ak and for all r, 81,..., Bk such

that (r, 81,..., Bk)€ §{q, ¢, Upreeer @), provided

that t+l ¢ c

k
(which adjusts for another g-move)

la;: o; Ogreees 0 cont] or [q; o; Qgrever @; stop]

‘ﬂégf;;y ¢ and any Agrevey ak

(which prepares for an input-consuming move on g,
with the option "stop" explicitly added if no more

input-consuming moves are anticipated hereafter)

}.iALT /
which is to be included here only when q is a final
state of M
(HALT is another macro which we explain later but
which essentially "reads out" the contents of the

top-track of the current intermediate string and

stops the derivation)

With the macro ADJUST at hand we can give the complete specification

ot G:

(i) the production |start]

S——H S(...) F()

with the success-field containing

IqO; 0; €,..., €; cont] or [qo; 0; €,..., £€; stop]

(0 ranging over all possible input-symbols)

10.

(ii) the productions [p; 0; Ogreeer @i stop]
g
£
H — . S(...) F(sink)
3

with the success-field containing all calls of the
form
ADJUST(al,..., a

Bll---l B o; q)

k' k'

for which

(q: Bll'°'l Bk)EG(p. G, (11,---’ (lk)

Thus, we drop the H once a choice for the last "real" input for M
is generated (as it would otherwise stand in the way to obtain
the top-track as a terminal string, provided it is accepted by M).
Observe that the failure-field is "sink", and any attempt to
"stop again" after an ADJUST will kill the derivation on a non-

terminal product.

(iii) the productions [p; o; Wgreeer g cont]
o
€

H — . H S(...) F(sink)
€

with the success-field (as above) containing all
calls of the form

ADJUST(al,..., o Bl""' g o; gq)

k' k'

for which
(q; P’lr-o-l Bk)EG(p, g, 0.1,..., (Xk)
Observe that the failure-field is again "sink", so any attempt

"

to "continue” after an ADJUST while we had prepared to “stop" by

dropping the H will kill the derivation on a non-terminal string.

Putting it all together one can see that G faithfully simulates all and

only those computations of M in which the counters remain bounded as

expressed in (x). Each time G has completed the simulation of a move (in

the last stage of an ADJUST) and finds M in an accepting state, the inter-

mediate string must be of the form

11,

e e .. (a)

or

H (b)

with the top-track containing an acceptable string. Referring to the
options of control-transfer proposed in the last phase of any ADJUST, we

now see that it gives G the following correct options:

(i) G can continue to simulate a move of M
(which attempts to "try again” on e-moves in case a, but

anticipates an extension to some other acceptable string in

case b)

(ii) G can "halt” and call the macro HALT for producing the terminal

product o "'On

1

(it should do it in case a, but detect case b as improper)
a

The macro HALT simply converts all | . -symbols into ¢ (cycling through

.

an cnumeration of all possible symbols, and passing to the next one once

you "fail" to find any more copies of some), and ends with a production

[finish] H-—-H S(#) F(#)

It is straightforward to see that G can generate all and only those
. . . -€ .
strings Ol"'“n which can be accepted by M, i.e, G is a cfpg generating

precisely the language accepted by M.

3

The given arqument could be simplified even further, using that each
quasi-realtime one-way multi-counter machine can be reduced to an cquiva-
Tent machine of this type which actually operates in realtime (a suggestion
due to Paul Vitanyi). As it stands, the proof shows that ofpg's can
"realize" quasi-realtime machines directly without the need for much
technical complication, and it has the advantage that we can see clearly
what to do if we attempt to simulate more general delay-bounded machines.

There are various ramifications of the technique used in the proof. For
instance, it is not hard to show by a related argument that the familz g£

unary context-free g-free programmed languages is precisely the family of

unary multi-head finite automaton languages (which are the unary NLOG

languages!). With this theorem, the traditional result that the context-
free c~free programmed languages are strictly contained in CS becomes
very easy to prove also: just apply the tape-hierarchy theorem for unary
languages (Hartmanis & Berman [4]). We note that unary languages and
diagonalization were previously used to simplify the proof of strict
inclusion by Jeanrond [7], although he didn't have a complete characteri-

zation of the unary class.

13,

3. CONSTRUCTION FOR LEMMA B

We need some more, technical concepts. The general idea of derivation-
languages for grammars should be familiar (see e.g. Salomaa [10], note 6.2).
The derivation language of a context-free programmed grammar G consists of
all strings which can be read as the sequence of (labels of) applied pro-

ductions in the derivation of some terminal string.

Definition. The derivation language of a cfpg_C or cfpg G is the set

D(G) = {rl...rt 1 r, labels a rule for S, and there is some w€ &¥
rq...r
such that (S,r1)==é====§9(w,r) for some

r€ {grurL}

Note that for the derivation lanquage it is immaterial whether G contains
t-rules or not.

We also need another kind of derivation language, in which we collect
the control-words which lead derivations to a designated label (regardless

of being able to complete the derivations to a terminal string).

Definition. The production language of a cfpg_E or cfpg G with respect to
label r is the set

D(G,r) = {rl...rt r labels a rule for S and (S,rl)igéééigg(x,r)

for some x}

Again it is immaterial for production languages whether G contains
€~rules or not. Note in the definition that x need not be terminal, and the
derivation language of G may indeed be completely distinct from any of its
associated production languages.

Before we can state a relationship between the derivation- and production-
languages of context-free programmed grammars, we need one more auxiliary

concept (sce e.q. Ginsburg [3], p. 33).

Definition. For an arbitrary language L, the homomorphism h is said to be

f.—limited on I, if and only if there is a constant d such that for all w€ L

w= Xyz & hi(y) = ¢ = |y|§ d

Proposition 3.1 Each ¢fpg G can be effectively modified to an equivalent
cfpg G' (which is r-free whenever G was) such that D(G) is an e-limited
homomorphic image of some D(G',r).

groof

Let the non-terminal alphabet of G be {A],..., Ad}. Let $ be a label

not occurring in G, and add a production

[$1 Af—a, s ¥

We shall modify G further to obtain a G' such that D(G) is an e-limited

14.

homomorovhic image of D(G',$).

The idea is to add productions to G which let you exit for $ when it
is detected that a terminal string has been produced. To achieve it, we
replace each production

ir] Ai—»wj S{a) F(B)
in G by
fr] Ai—owj S(a) F(CHECK(r,B))

where CHECK is the following macro, specified for symbolic parameters r and f:

[r/1] A, —a4, S(B) F(r/2)
[r/7a-1]} Ad_l-—-»Ad_1 S(B) F(r/d)
[x/d] By Ay S(8) F(%)

It is easily verified that G' "realizes" the same flow of control as G, as
long as non-terminals remain in the intermediate string.

Words in D(G',$) and D(G) correspond, under the stipulation that in the
former each failing G-production is followed by up to d rule-applications
in the CHECK-macro before control transfers normally to the "next" G-
production (or to the $-rule to exit). The homomorphism h erasing [../i]
labels (lgig¢d) must be ¢-limited on D(G',$) and obviously maps it onto D(G).

O

Inspired by lemma A, we can now prove lemma B and obtain an interesting

characterization of the quasi-realtime one-way multi-counter languages in

terms of context-free programmed grammars.

Lemma B. The family of quasi-realtime one-way multi-counter languages
coincides with the family of e-limited homomorphic images of production
languages of context-free programmed grammars.

Proof

(a) To show that each quasi-realtime one-way multi-counter language can
be obtained as the r-limited homomorphic image of a context-free programmed
production langquage we must go back to the cfpg G constructed in the proof
of lemma A. Recall that we took an arbitrary quasi-realtime one-way multi-
counter machine M, and designed G as an almost perfect simulator of M's
(accepting) computations.

G reaches a call to macro HALT (which it may or may not choose to follow)
if and only if it just completed the required adjustments for another move
and finds M in an accepting state. Inspecting the structure of G one may
easily verify that it can reach this stage only by going through a chain of

productions in a sequence of the following form

15.

ADJUST
[ql; Opineni cont |

? ADJUST

§ ADJUST

i 0 i...; cont] or |[q

[qn—l n n-1

I RPRY stop]
é ADJUST

"HALT"

with 01...On appearing in the top-track of the intermediate string and the

simulation reaching an accepting state. It follows that o is an

1...0n
accepted input, and each accepted input for M can be so obtained.

Thus, M's language may be obtained from D(G,HALT) by applying a homo-
morphism hwhich rewrites each [.; 0; ...] to 0(0€ X) but erases any symbol
not of this form. Observe that the number of steps used to adjust the
counters through the ADJUST-macro in the simulation of a single, admissible
move is bounded by some constant e. Now recall that M was c-delay bounded
for some ¢, and see that G never does more than ¢ further calls on ADJUST
(to handle c-moves) before it simulates another input-consuming move or
calls HALT. 1t follows that in words of D(G,HALT) any portion for adjust-
ments after each [.; o; ...] symbol must be bounded by some constant like
{(c+l).e, and h is indeed e-limited on D(G,HALT).

(b) To show the reverse inclusion we simplify the problem slightly, by
using that the family of quasi-rcaltime one-way multi-counter languages is
itself closed under c¢-limited homomorphisms. Thus, it is sufficient to prove
that each production language of a context-free programmed grammar G can
be accepted by some quasi-realtime one-way multi-counter machine M. (It
will appear that M can even be deterministic here.) The construction is
related to an arqument developed in Igarashi |6].

The idea is that in simulating the production-sequences of G it is

immaterial to know what terminal strings they lead to and, using the context-

free nature of the replacements, we may just as well "fold” the intermediate
strings and keep track of their Parikh-vectors only.

Let the non-terminal alphabet of G be {Al""’ Ad}, and $ be a designated
label in G. We shall design a machine M to perform a step-by-step simulation
of G's derivations, according to control-words in D(G,$). M will use 4
counters #A,,...,#A_ and have the labels of G for states. The action of M

1 d

on an arbitrary input r, ...r is prokably described easiest by means of the

1 t
following pseudo-ALGOL program:
comment "initialize"
#s< KsS+1;
p“input;
verify that p is rule for S (reject otherwise);
put M in state p;
while M has not run off the right end of the tape do
decode p as [p] A~*w S(a) F(B)
if #A=9 then
comment "failing application"
set M to a state in B (reject of @)
else

comment "successful application"

A< #a-1;

#a, < + # ;

A, ”Al A (w);

. 1

« i .

#Ad Ay * #A (w) ;

set M to a state in a (reject if @)
£is
p“ input

end
od;

if M has now reached state $ then accept else reject;

Clearly M can perform the test and update its counters (if needed) for
cach input p in bounded time, and the machine is quasi-realtime. As it
updates its counters consistent with the Parikh-vector (#A (x),...,#A (x))
of the intermcdiate strings x, the machine accepts preciseiy the contgol—
words which send G to $ as required.

O

The construction for lemma B is not specifically restricted to gquasi-
realtime machines only. With a suitable concept of "D(n)-limited homo-
morphisms” (the obvious generalization of e-limited homomorphisms), one can
generalize the result and prove in very much the same way that the family
of c¢.D(n)-delay bounded one-way multi-counter languages (for arbitrary c's)
is precisely the family of c'.D(n)-limited homomorphic images of context-
free ;irogrammed production languages. Whereas this result may not be very
appealing in its full generality, it does indicate the close connection
between the computations of one-way multi-counter machines and derivations
with context-free programmed grammars. This may be another argument
explaining why context-free programmed grammars have proved to be a power -
ful vehicle for language generation.

Combining lemmas A and B gives some further interesting results for the
general study of derivation-languages. First, derivation languages of
context-free programmed grammars are quasi-realtime one-way (deterministic)
multi-counter languages (by 3.1 and lemma B), and therefore contained in
DLOG. This result was also indicated in Igarashi [6]. A second observation

appears to be of more importance.

Proposition 3.2 The derivation languages of context-free programmed grammars
are (strictly) contained in the family of context-~free g-free programmed
languages.

Proof

By 3.1, lemma B, and lemma A (applied in this order).

This result is a substantial improvement of the previously known
theorem (see Salomaa [10], p. 185) that merely asserts inclusion in the
context-sensitive languages. Informally, it implies that the derivation-
languages of all traditional generalizations of context-free grammars
which admit a "stepwise" simulation by means of some context-free pro-
grammed grammar are contained in CFPG_E also. In particular, it applies
Lo the (free) derivation languages or Szilard languages of ordinary

context—{ree grammars.

4. REFERENCES

[1] Book, R.V., and S. Greibach, Quasi-realtime languages, Math. Syst.
Th. 4 (1970) 97-111.
[2] Fischer, P.C., Turing machines with restricted memory access, Inf. &

Control 9 (1966) 364-379.

[3] Ginsbarg, S., Formal languages: algebraic and automata-theoretic pro-

perties, Fund. St. in Computer Sci. #2, North-Holland / Amer.
Elsevier, Amsterdam (1975).

[4} Hartmanis, J., and L. Berman, A note on tape-bounds for SLA language
processing, Conf. record 16th Ann. Symp. Foundations of Computer
Science, Berkeley, Oct. 13-15 (1975), pp. 65-70.

[5] Hopcroft, J.E., and J.D. Ullman, Formal languages and their relation

to automata, Addison-Wesley, Reading, Mass. (1969).

[6] Igarashi, Y., The tape-complexity of some classes of Szilard Languages,
SIAM J. Computing 6 (1977) 460-466.

[7] Jeanrond, H-J., Some remarks on programmed grammars, Diplomarbeit,
Fachbereich f. Angewandte Mathematik u. Informatik, Universitit
des Saarlandes, Saarbricken (1975).

[8] Minsky, Computation: finite and infinite machines, Prentice-Hall,

Englewood Cliffs, NJ (1967).

[9] Rosenkrantz, D.J., Programmed grammars and classes of formal languages,

JACM 16 (1969) 107-131.

[10] Salomaa, A., Formal languages, Acad. Press, New York, NY (1973).

[11] van Leeuwen, J., Rule-labeled programs: a study of a generalization of
context-free grammars and some classes of formal languages, Ph. D.
Thesis, Dept. of Mathematics, University of Utrecht, Utrecht (1972).

[12] van Leeawen, J., Extremal properties of non-~deterministic time-

complexity classes, in: E. Gelenbe & D. Potier (ed.), International

Computing Symposium 1975, North-Holland / American Elsevier,
Amsterdam (1975), pp. 61-64.

