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Abstract. For a few simple models Dobkin, Jones and Lipton proved that a
database may be compromised when statistical querying is permitted. In
particular, for a database of n items let S(n,p,q,r) be the minimum
number of averages of samples of a fixed size p needed to deduce at least
one new item, assuming that q items of the database are known already and
any two distinct samples may overlap for at most r items. Reiss showed
that S(n,p,q,r) ZEZEESItLL » but little is known about the quality of this
bound. For r=1 we improve Reiss' bound slightly to S(n,p.,q,1) 2 2p-q when
gz 2, obtaining the interesting conclusion that knowing 2 items of the
database has no advantage over knowing 1 item (which in itself does have
an advantage of 1 query over knowing no items). We show that bounds of the

form 2p-Q(Yq) are achievable.

1. Introduction

Consider a database of numeric items dl""'dn and let dl""’dq be
known. Assuming that the items dj should remain protected for j>q, a
serious threat to the security can occur when a user is permitted to ask
statistical information of fixed or variablé-sized samples of the data-
base. In a first study of the possible protection against user inference
Dobkin, Jones and Lipton [1] discussed the complexity of actually com-
promising a database, for a few types of querying which users typically
request. Subsequently, the work was substantially extended by Reiss [5]
and in Dobkin, Lipton and Reiss [2]. In this note we shall consider some
interesting questions concerning the security problem when a user can
request the average of any fixed-size sample of items.

Let S(n,p,q,r) be the minimum number of averages of samples of a
fixed size p needed to infer dq+1' assuming that dl""’dq are known and
any two distinct samples queried may not overlap for more than r items.

Reiss [5] proved
S(n,p,q,r)zz‘-é 1) (1.1)

but little is known about the quality of this bound. Reiss [5] presented



several results for g=0, and proved also that the bound of (1.1) is
actually achievable to within 1 query if we extend the permissible
querying to samples of any size 2 p.

Keeping the sample-size fixed at p, we shall study the complexity of

inferring 4 when samples are allowed to overlap by at most 1 element

q+1
(thus r=1). This admittedly restrictive case seems to be of interest, as
even here only a few results are known. In particular, it follows from

- Dobkin, Jones and Lipton [1] and from Reiss. [5] that
S(n,p,0,1)=2p-1 (1.2)
S(n,p,1,1)=2p-2 (1.3)

and also that S(n,p,q,1) 2 2p-g-1. Whereas (1.2) and (1.3) show that it is
strictly easier to compromise the database when one item is known compared
to when no item is known prior to querying at all, we shalliprove in
section 2 that there is no such advantage when 2 items are known. Thus,
knowing 2 items makes it no easier to compromise the database than knowing
1 item does. The argument can be extended for a few more "small" values of
q, and can be derived from the following slight improvement of Reiss'

bound.

Proposition A. S(n,p,q,1) 22p-g for g=2

From examples one might suspect that knowing any number of items g2 is
of no help, but this is not true. We shall prove (and specify it more

precisely in section 3) that

Proposition B. Under suitable conditions for p and q we can have
S(n,p,q,1) S 2p-2(¥q) .

The {-notation should be customary, and is taken from Knuth [4] (see also
Weide [6]).

2. Constructions for proposition A

Determining or precisely estimating S(n,p,q,1) does not just give
information for one case of overlap. Only slightly extending a similar

result of Dobkin, Jones and Lipton [1] we can show

Proposition 2.1. For any t21, S(n,pt,qt+t-1,t) <S(n,p,q,1)

Proof
We consider S(n,pt,qt+t-1,t), which is the number of averages with the
given constraints to infer 4 . Construct a "new" database € r€y0en by

gt+t
taking ej=d(j—1)t+1+"'+djt' It follows that precisely el,...,eq are known



3.

and dqt+t can easily be deduced once the database is compromised for eq+1'
Any S(n,p,q,1) - method for doing so easily translates to an S(n,pt,gt+t-1,t)
algorithm for finding dqt+t'
0
Consider S(n,p,q,r). Queries Ql""’Qs are averages but we may just as

well take them as sums: Q.=d,.+...+d. . If we can infer 4 ¢ then there
j 31 jp q+

1
must be coefficients al,...,as such that

g
= in. i i d,;e..,d >
dq+1 jglanj+-<11n combination of 1 4, (2.1)

Defining Gij= 1(0) if di is (is not) in Qj’ one can easily rearrange (2.1)
to obtain

n s
dq+1=1§1(j§161jaj)di+'<lln' combin. of dl""'dq> (2.2)

s
It follows that jgléijaj= 0 for j>g+l, and as in Dobkin, Jones and Lipton

[1] or Reiss [5] we conclude that this can only be when

for i> g+l, each di occurs at least once in a query with

positive a and at least once in a query with negative a (2.3)

From now on it should be clear what we mean by a "positive" and a "negative"
query.

If we consider sets of queries (with p elements each) which merely
satisfy the overlap restriction and (2.3), then the minimum number of
queries possible in any set of this sort is certainly a lower-bound for
S(n,p,q,r). For r=1 we can make a rather precise picture of the combinatorial

structure of such sets:

i?+1
x1 é '+ A: the positive queries containing dq+1
M’
P
dq+1
X, é - B: the negative queries containing dq+1
Y, - C: the negative queries not containing dq+1
I i, N J



Y, + D: the positive queries not containing dq+1

NN
P

with the following conditions satisfied

(i) each line (query) intersects any other line in at most one point
(ii) each element di (with i>qg+l) on a positive line must occur on a
negative line also, and vice versa

(iidi) x1+x2> 0

Thus, we have a structure not unlike a block-design (see e.g. Hall [3])
which deserves further study within the scope of combinatories. From (1.2)
we know that such designs exist for any pair of p,q-values. Let R(p,q) be

the minimum number of lines in any such design.

Lemma, R(p,q) 22p-q for q2 2 (and p> q+1)
Proof

We should require p> g+l as the analysis would be meaningless otherwise.
The argument is for a considerable part merely a refinement of Reiss' proof
[5] (which in turn was a refinement of the proof in Dobkin, Jones and Lipton

[1]). We distinguish two cases

(a) y1>0 and y2>0.

Consider any two C and D lines

Q oy ———— — = e W

o Ll[i L3 + (2.5)
H

! T Lo
i
|

with an overlap of Lls 1 and containing L2 and L3 items di with i< g. Note
that dq+1 does not occur on either line. Each point T must occur also on
some positive line (necessarily different from Q'), and each point u must
occur also on some negapive line (likewise necessarily different from Q).

The number of points T is p—Ll—Lz, of points y it is p—Ll—L . Thus

3
R(p,q) 22+ (p-L,-L,) + (p-L,~L;) 2 2p- (L,*L3) 22p~q

(b) y1=0 or y2=0.

By symmetry we may assume that y2==0. It follows that x, > 0! For, let

us assume otherwise. Any point di with 1> g+l on a line inzB (as p> g+l
such points exist) must also occur on a line in A, because it is the only
possibility to be on a positive line. The A and B line would intersect in
2 points (d and dq+1), which is a contradiction. The combinatorial

structure has become  at least easier to display:



iq+1
X Al +
e\ )
P (2.6)
A—A—‘_ﬁ
Yy c -

with x>0 and y> 0, the elements in A' all distinct (as otherwise the
overlap restriction would be violated) and C not containing dq 1" Clearly,

the design conditions remain in effect. We distinguish two further cases:

Case I. x2p

A' contains at least x(p~1)-q elements di with i> g+l which all have to

occur in C at least once in order to be on a negative line. Thus
1 x-4
x(p-1) ~g=svy. = 2 (l-—)x-
(p-1) ~g=<y.p . vz ( p) p
and for the total number of lines we obtain
L, a o4 g '
+x2 (2=~ —)x-=2>22p-1-=2>2p-1- >2p-2 2.7
Y b P P P P aq+2 P ( )

Case II. x<p-1,

Observe first that A' and C must contain the same d with i> qg+1, by
(2.3). Because a C-line can contain at most one point from each A-line
(thus having at most x A~points in all), each C-line must contain at least
P-x2 1 points di with i<q. Consider any C-line Q', containing some qg' =1
points di with i<qg. Let there be an A-line Q" containing some gq" points di

with 1<g (q"20) such that one of the following conditions holds:

(1) Q" and Q' intersect in a di with i <q
(i1) Q" and Q' intersect in a di with i>qg+l, but q"+q'<q

(iii) Q" and Q' do not intersect.

We have a situation pretty much as in (a)

" q+1 ——la
2 L, Y
ok _1L' .5‘3- -
v
and we get
Y+HX22+ (p-2—L2) + (p—l-—L3) =2p-1~ (L2+L3) 22p~q (2.8)

for (i) and (ii), and

y+x22+ (p-1-L2) + (p-1-L3) = 2p - (L2+L3) 22p-q (2.9)

for (iii).



This leaves very few possibilities open. The only situation left to
consider is where each C-line intersects each A-line in a point di with
i>g+l, and the total number of (necessarily distinct) points di with
i<q on any C-line Q' and A-line Q" sums to q. It means that for any pair
Q", Q' the set of points di with i<qg contained in Q" is precisely the
complement of the similar set contained in Q' in the collection {dl""’dq}'
If there was another A-line Q" , then it would contain the same points di
with i<£q as does Q". As A-lines can only intersect at dq+1 we have two

possibilities remaining:

(iv) A-lines contain no points di with i <g, but each C-line contains
all g of them.
It follows that y=1 (as g2 2 the intersection contraint would be
violated otherwise), and there are precisely p-q elements di with i> g+l.
Considering an arbitrary A-line we see that 2(p-1) - (p—q) =g-121 elements

cannot possibly occur on a negative line, contradicting (2.3).

(v) there is one A-line Q" (x=1), and it contains g" 21 elements di
with i<q.

By the same argument as above we conclude that each C-line must contain
the same set of g-q" elements di with i<q. Because of the overlap
constraint on the one hand (g-q" < 1) and the assumption that each C-line
contains at least one such element (gq-g"=1), we obtain q" =g-1. Thus,
the C-lines contain precisely one (identical) di with i <qg. Observe that
this time 2 (p-1) ~ (p-1-(g-1)) =g-121 elements di with i>g+1 in C find

no compensation in A, contradicting (2.3).

We conclude that also in case II (x&p-1) the desires inequality holds.

O

Clearly S(n,p,q,1) 2R(p,q), and proposition A follows from the lemma.

An interesting conclusion is obtained for g=2.

Corollary. S(n,p,2,1)= S(n,p,1,1) = 2p-2

Proof

By (1.3) and proposition A we have

2p-2<8(n,p,2,1) £S(n,p,1,1) = 2p-2
|

This shows the interesting phenomenon discussed in section 1 that
knowing 2 elements of the database does not make it easier to compromise the
data than knowing just 1 element (for the case that averages of fixed-size

samples can be asked).



3. Constructions for proposition B.

The proof that S(n,p,q,1) 2 2p~q (q2 2, P> g+l) holds no clue as to
whether the lower-bound can be achieved or not. Reiss [5] (sect 6) noted
for his bound that it is not likely achieved everywhere, and the precise
value of S(n,p,q,1) will vary depending on some purely number-theoretic
connections for p and q. Trying for small values of d, one might tend to a
feeling that the 2p-2 upperbound is hard to beat. We present a general
argument that one can beat it, and show that bounds of the form
2p-—Q(/§) can be achieved for a wide range of P.q values. We shall be
using some considerations from the study of (v,k,A)-designs as presented
in e.g. Hall [3].

Let D be a "master" (v,k,1)-design, for parameters v and k which we
shall fix in terms of p and q later. The blocks Bl""’Bb of D will appear
to be of great value in designing a set of averages which overlap in at
most one sample-element. The number of blocks (b) in D is completely

determined by v and k (see Hall [3], p. 101):

_ v(v=-1) : o
b= ETE:TT N (3.1)

Let Dy/D,,... be copies of D. |

The following lemma shows a strategy for compromising a database of
sufficiently many elements in the S(n,p,q,1)-sense. Marginal further
savings are possible in the distribution of distinct elements over

queries, but these will not affect the range of the result in any major way.

Lemma. If [Eia]sé[géhj + then one can compromise a database with q known
elements for dq+1 by asking for the average of at most 2p-k-1 size-p
samples which overlap in at most one point.

Proof

By assumption there is an integer a2 1 such that

.P____.‘25a39:}£ (3.2)
b v

Design the following queries, shown in a diagram which patterns samples
as indicated in (2.4). Elements a, and cij denote distinct and "general"
elements, elements bi and Dij are to be chosen from among the q known

dl""'dq' The element dq+1 w%ll be denoted merely as d.




p-2
W
a1 c11 cee c1t bk
a2 021 e c2t bk
p-k . I . : B (with s=p-k, t=p-2)
%-k csl .o cst bk ’ (3.3)
k
f‘\/\—"—\
11 e st D,-blocks | b
c .o c
12 s2 D2-blocks b
+ p-2f| . . . c
N~ with each full set of b D, -
blocks composed of elements
iy .o Cot Dij (j=1,...,v) which are in-

stances of the D-points.

If there are sufficiently many "known" elements (we'll check it in a
moment), then a design as indicated does exist and satisfies all criteria

for size and permissible overlap. Element 4 follows by noting that
d= (sum of A) - (sum of B) + (sum of C) (3.4)

in which the "unknowns" cancel and only "known" elements remain. The
database is compromised for 4 in 1+ (p-k) + (p-2) = 2p-k-1 Queries, as was
to be shown.

All we need to verify is that sufficiently many "known" elements" are
at hand to choose distinct bl""'bk and Dij from among them. (Note that
points bl'b2"" could be allowed to occur among the Dij' but we shall not
explore this.) By (3.2) we know that at most a sets of Di—blocks are
needed to fill the right part of the C-table in (3.3). Assuming the worst,
let's see how many "known" elements we need to build the queries: ‘

(k=1) + 1 + a.v=av+ k. Using (3.2) we see that
av+ks%?.v+k=q

and the construction works.

O

The lemma has reduced the question of determining a "small" set of
queries to compromise the database to the question of finding a (v,k,1)-

design D such that



[B22] < | Lk | (3.5)

Given p and q, can we find a design D with the righ.t parameters for
satisfying (3.5). As p> g+l, we must find designs with b "large" com-
pared to v. The reason why this strategy does not work in general clearly
is the fact that in block-designs the value of b cannot be "arbitrarily

large" in terms of v, see (3.1). If we write
p=B.b+vy+2 (0<y<b) ' (3.6)
for some integers B and Yy, then (3.5) is satisfied precisely when
qz (B+1) v+k | (3.7)

If we give g its smallest possible value, then the usual constraint that

p2g+2 leads to the following reformulation of (3.5):
Bb+y+22 (B+1) v+k +2
= B(b-v) + (y-v) 2k (3.8)

By Fisher's inequality we know that b> v (Hall [3], 10.2.3). As (3.8)
can impossibly be satisfied for b= Vv, we conclude that necessarily b> v.
Fix y to the more tighter range VEyY<b, and let 82 I-E}_i‘-’-l As (3.8) is

satisfied under these assumptions we obtain

2p—qSS(n,p,(B+1)v+k,1)SZp-k (3.9)
q

Now observe that for B= [E]i—,-.l : gq=v+0(k). To get a tight bound, we must
be able to choose a design D in which v remains strongly bounded in terms
of k (while b>v). From (3.1) one can easily derive that v is at best

quadratic in k.

Proposition B. For an infinite range of p,q values we have 2p-g<S(n,p,q,1)
< 2p- Q(Yq).
Proof

Let k be a prime-power, and let D be the design of lines in the 2-dimen-
sional affine space over GF(k). D has b=k(k+1) and v= k2 (thus b> v), and

2
g=06(v7).
0

An interesting problem is to prove or disprove that for fixed g= 2:

lim{s(n,p,q,1) - 2p} = 2,
p-)oo
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