i

E]

vakgroep informatica R,U, Utreche

LINEAR TIME GENERATION OF A NEW FIXED-LENGTH DATA-COMPRESSION CODE

~ Jan van Leeuwen

RUU-CS-78-3

February 1978

. Rijksuniversiteit Utrecht

Vakgroep informatica

Um:‘ms

t
Telefoon 030-53 1454




N
e

0

-

o

¥a01 [4-1~12

LINEAR TIME GENERATION OF A NEW FIXED-LENGTH DATA-COMPRESSION CODE

Jan van Leeuwen

Technical Report RUU-CS-78-3

February 1978

Department of Computer Science
University of Utrecht
P.0.Box 80.012
3508 TA Utrecht, the Netherlands



all cor\’:jca:iondcnce to:

Dr. Jan van Leeuwen
Department of Computer Science
University of Utrecht

P.O.Box 80,012

3508 TA' Utrecht

the Netherlands



LINEAR TIME GENERATION OF A NEW FIXED-LENGTH DATA-COMPRESSION CODE

Jan van Leeuwen
Department of Computer Science
University of Utrecht
3508 TA Utrecht, the Netherlands

Abstract. Recently J. Verhoeff suggested én interesting data-encoding and
compaction technique based on fixed-length codes. Given a permissible code-
length, the idea is to assign code-words to variable-length strings in such a
way that the average length per bit is maximized; We prove that the method

of Verhoeff for constructing a maximal prefix code is essentially unique,

and show that the construction can be implemented to run in linear time

and "real" space.

1. Introduction.

There is a steadily increasing use of data-encoding techniques in all
modern systems for information storage and retrieval, for purposes of both
security (ciphers) and data-compression (see e.g. Martin [31, [4]). A
typical data~file needs one byte per character, sometimes less if the system
has been designed so as to pack and unpack words itself. Wiederhold 7]
(Chapter 14) gives a rather complete account of existing data-compression
techniques which can bring major savings in tape~ or disk-space for both
numeric and character data.

It has been known for some time that a considerable compaction of data-
files may be achieved by recoding the character-set from standard bytes to
a minimum-redundancy Huffman-code, which takes advantage of empirical know-
ledge about the frequency-distribution of individual characters in the
data-file (see Knuth [2], Martin [4], or Wiederhold [7]). A different
technique was proposed recently by Verhoeff [6], who observed that in prac-
tice there will be a considerable advantage in keeping to a fixed-length
code. Given a permissible code-length (typically an integral fraction of a
computer's word-size), the idea is to assign code-words to variable-length
character-substrings in such a way that the average length per bit is
maximized. It should be noted that this approach is dual to Huffman's,
which assigns variable-length code-words to fixed-length character-substrings
under a similar optimizing criterion.

Let I= {al,...,ak} be an alphabet of k characters, and let P be a known
frequency distribution on I with f p(ai)= 1. A prefix-coding over I is some



tree T whose internal nodes have degree k and external nodes or leaves r

carry the designated 0-1 codeword for the string which describes the unique
path from the root to r (with a; at each internal node indicating that the

it branch should be followed). Let r be reached by the path a; ...a, . The
path length of r is defined as m(r)=s, and its weight as w(r)==1p(ai)s...p(ai ).
The weight of a leaf, or rather the corresponding character-substriné, is to °
be interpreted as the expected frequency of this string in the data-file.

The average weighted pathlength of a prefix-coding T with N leaves is defined

as

y(T)=;\1]-§w(r).1r(r) (1.1)

Given a permissible code-length b, Verhoeff's idea is to design a prefix-

coding T with n internal nodes for some (perhaps the largest) n with
b= [log(N+1) ] = [log(n(k-1)+2) ] (1.2)

in such a way that Xézl is maximum. It means that among all prefix-codings
T with n internal nodes we must find one for which in fact y(T) is maximum.
Any such tree is called a maximal n-tree.

Verhoeff [6] gave a simple algorithm for generating maximal n-trees, based
on repeatedly splitting a heaviest leaf of some intermediate tree. In section
2 we shall give a somewhat different proof of the validity of Verhoeff's
algorithm, and derive the stronger result that any maximal n-tree must be
obtained through the process of splitting a heaviest leaf in some maximal
(n-1) -tree. Thus, Verhoeff's algorithm is the only inductive one possible
for generating maximal n-trees. In section 3 we show that the algorithm can
be implemented in time N and no more space than needed to represent the
actual coding tree. Considering that Huffman-trees for N elements require
N log N time (see e.g. van Leeuwen [5]), we are able to conclude on
quantitative grounds that Verhoeff's codings are strictly easier to generate
than Huffman's. We note that the effectiveness of both tends to the Shannon

lowerbound for the source entropy when N-»co,

2. The generation of maximal n-trees.

In his paper Verhoeff has given the following construction for a sequence

of maximal n-trees vl,V2,...:

(i) vy is the unique 1-tree




i+l i

If r,(=ri+1) was the heaviest leaf, then we are done. Suppose r is not a
heaviest leaf of Ci+1' but s is. As splitting r only yields leaves of
smaller weight than r, the induction hypothesis learns that we may as well

assume that s= ri:

-

Consider Ci+1' and suppose that we would construct a tree Ci instead by

splitting s:

—

It could very well happen that r is a heéviest leaf of the tree this time.
Splitting it gives Ci—l back, and we have shown that in this case the con-
struction can be reorganized so as to be of the desired form. We shall
demonstrate that we can likewise reorganise the construction even when r is
not the heaviest leaf at this stage.

If r is not a heaviest leaf of Ci yet, then splitting a heaviest leaf in it

gives a tree Ci—l with

e
€i-17C2" {A }

(meaning Ci-2 with the subtree at r deleted). Following the choices of

heaviest leaves as in the original chain for a while gives a chain of trees

Ci=Cy_y- {Ar }

C3 with



(ii) for nz1, Vn+1

is obtained from Vn by "splitting" a heaviest leaf q,-
It may very well happen in (ii) that "the" heaviest leaf must be chosen
from among several leaves of equal, largest weight. In the construction of
the particular sequence V1,V2,... we shall always take q, to be the leftmost
qualifying leaf in the highest level of the tree containing heaviest leaves.
We shall prove that other algorithms for the inductive generation of maximal
n-trees can differ from Verhoeff's only in their choice of an actual heaviest

leaf at each stage.

Theorem 2.1. Vn (or any tree obtained by the same algorithm) is a maximal
n-tree, and each maximal (n+l1)-tree is obtained from a maximal n-tree by

splitting one of its heaviest leaves.

The assertion for Vn is certainly true for n=1. A maximal 2-tree C0 must
be obtained from the (unique) 1-tree V1 by splitting some leaf r. One may

@asily verify that necessarily
¥(Cy) =y (V) +w(r)
as a result. If r wasn't a heaviest leaf of V1, then splitting such a
heaviest leaf instead would lead to a tree Cé with y(Cé)>-y(Co). This would
contradict the maximality of co.
Let the induction hypothesis be true @p to n. The inductive assertion for
Vn+1 follows easily, as the hypotheses imply (through an argument as in 2.2)
that in fact each (n+l)-tree obtained by splitting a heaviest leaf of some
maximal n-tree (viz. Vn) is maximal. In order to complete the induction step,
let us consider an arbitrary maximal (n+2)-tree CO'
There must be an (n+l)-tree C1 such that Co is obtained from C1 by splitting

some leaf r,. Clearly
Y(Co) =y(C)) +w(x))

and as before it is easy to argue that r, must be a heaviest leaf of Cl.

Likewise analysing C1 and continuing, we claim that a chain of (n+2-i)-trees
Ci can be obtained (for i from 1 to n+l) such that for 0< i< n+2 Ci is

obtained from Ci+1 by splitting a heaviest leaf ri+1. As a result, clearly

y(Co)=y(Ci+1)+w(r ) + ...+w(r1)

i+l
We shall verify the claim by induction in i.
For i=1 we just saw that the claim was valid. Consider some tree C from

i+l
which Ci is obtained by splitting some leaf r:



and we can continue to do so until j=1 or in the original chain we would
have to split a heaviest leaf which is not as heavy as r.

In the lattgr case we would have to split r first, leading from

3==Cj_1- { } to the ordinary tree Cj_1 at this stage, before the
remaining part of the original construction could be accomplished. Clearly,
this reorganization of steps brings us to CO by a sequence of steps as
desired for the inductive proof of our claim.

In the former case (j=1) we would end up with a tree C! after always

1
splitting heaviest leaves of a weight larger than r's:

ci=co-{Ar }

If t is a heaviest leaf of Ci (taking t=r if r is heaviest), then splitting

t gives a tree Cé with

y(cjy) = Y(Cy) +w(t) - w(r)v

(and C(')==C0 if t=r). It follows that r must be a hgaviest leaf at this stage
finally, or the maximality of C0 gets contradicted. Again the desired
reorganization of the construction is achieved.

Having verified the claim we can proceed inductively to a 1-tree Cn+1,
from which C0 is derived by repeating a procedure of splitting heaviest
leaves. As Cn+1 must be identical to V1 (by uniqueness at this level) and
therefore be maximal, our induction hypothesis shows that all trees Cj for j
from n+l to 1 must be maximal. In particular we have shown that C0 is obtained
by splitting a heaviest leaf of some maximal (n+1)-tree, namely: cl'
This completes the induction step.

O

The proof shows that Verhoeff's algorithm is unique up to the choice of a
heaviest leaf at each stage and the permutation of occurrences of "indepen-
dent" splittings. We conclude that Vn is "essentially" unique among the

maximal n-trees if we consider its weighted structure only:

Theorem 2.2, For each maximal n-tree C there exists a 1-1 correspondence f
from nodes of C to nodes of Vn such that for all nodes x in C:
(1) if x is internal, then f(x) is internal in Vn
(ii) if x is a leaf, then f(x) is a leaf of Vn
(iii) w(x) =w(f(x))
The result follows directly from the "uniqueness" of Verhoeff's
algorithm, but we shall formally prove it by induction in n.

For n=1 the result is trivial, as there can be only one tree (i.e. C=V1).



In order to prove the induction step, let us consider some maximal
(n+1)-tree CO. By 2.1. there is a maximal n-tree C1 such that CO is
obtained from C1 by splitting a heaviest leaf ry. By the induction hypothesis
there is a 1-1 correspondence f1 from C1 to Vn with the necessary qualifi-
cations satisfied. We claim that we may as well assume that fl(r1)==qn.

For proving the claim, suppose there was a leaf s#r1 of C with fl(s)==qn

instead. Necessarily s is a heaviest leaf of C also. Let fl(r1)='t.

¢y A

We could interchange the fl—values without harm: fl(r1)==qn and f1(5)= t,

and have a correspondence with the desired property.

Considering the construction of c0 from C1 and of Vn+

n+1

it easily follows that the desired'correspondence fO from C0 to Vn+i is

obtained by taking

the ith son of qQ, if x is the ith son of r,
£y(x) =
fi(X) otherwise

O

What choice of a heaviest leaf should be made at each stage is considered
to be irrelevant for our present purposes, but there may be practical
reasons for wanting some very particular strategy. We leave this as an

issue for further study.

3. Linear time generation of maximal n-trees.

We shall now develop an actual implementation of Verhoeff's algorithm,
without paying much attention to the particular selection-strategy for
heaviest leaves at each stage. Thus, the sequence of maximal trees we
generate here will not be the very same as V1,V2,... but was chosen so as

to achieve greatest efficiency in our present algorithmic approach.



A straightforward implementation of Verhoeff's algorithm would make use
of a general priority queue (see Knuth [2] or Aho, Hopcroft and Ullman [1]),
which administers the current leaves by weight in such a way that there is
always a currently heaviest item "on top". When new elements (obtained from
splitting the most recently deleted top-element) are inserted, it typically
takes O(log m) steps per element for an efficient priority queue containing
m elements at the time to "rearrange" itself. As we must do n-1 splits on an
initial l-tree to obtain a maximal n-tree and thus perform k(n-1) or about
N insertions in the priority queue in total, the straightforward implemen-
tation would run in time proportional to about N log N. In order to improve
on this, we shall present a different implementation based on the crucial
observation that in this particular algorithm one can permanently decompose
the required priority queue into k ordinary queues Ql""’Qk' We note that
a similar decomposition was shown for Huffman's algorithm acting on an
initially ordered sequence (see van Leeuwen [5D.

The algorithm we develop shall be generating a maximal n-tree according
to Verhoeff's algorithm, for some arbitrary n. In order to represent the
resulting tree we must adopt an appropriate record-structure for nodes. To
keep it rather language-independent we shall assume that each node~-record is

a row in the following structure of k+2 arrays, with k.n positions each:

weight son, snnk father
1 p(al) nil © 1 nil root N
k p(ak) root
k+1 Ca nil
k.n
nil nil nil nil
A 4

We initialize the structure by entering "records" for the leaves of the

unique l-tree in positions 1 through k. Obviously, k.n rows are precisely
sufficient to store all internal and external node-records of the final n-tree.
Rows ("record-slots") are allocated one at a time when needed, in direct
sequential order. We shall use a function routine NEW which always returns

the index of the next available row when called.

Let us assume without loss of generality that p(a1)2 ...Zpuak).



Our algorithm shall be using k queues Ql""’Qk which we leave unspecified
as a detailed datastructure and merely manipulate as an abstract datatype.

(Implementations are straightforward, but would only confuse the issue here.)

Standard operations are:

2

2,
MAXQ returns 0
index i of the = ©
queue with hea-
viest front- 2 -1
element. Qk

ENQ(j:Qi) adds pointer j
DEQ(Q,) removes front- to the rear of queue.

elem. from the queue

indicated.

Each queue contains zero or more pointers to leaf-records in the array-
structure. Initially each queue Qi‘contains a single pointer i, pointing
to the record of the ith leéf in the initial l1-tree. We shall see that, as
the algorithm proceeds, the pointers in each queue "automatically" appear

in an order jl'j2"" such that
weight(jl) 2 weight(jz) 2 ...

We shall say that the queues have pointers listed in weight-decreasing
order. Assuming that this property is maintained (which we shall have to

prove), the algorithm cycles through the following transactions until a

maximal n-tree is obtained:

the ith son obtained from

splitting a heaviest leaf

is added to rear of Qi'
for each i

H

)
the heaviest leaf is split

‘
\
t
\
)
’

v

MAXQ gives location DEQ removes pointer

of currently heaviest _ -~ to heaviest leaf from~
leaf . _ i its Queue

-
—-— e -~



Assuming the required initializations have occurred, the algorithm may be

formulated as follows:

Algorithm 3.1,

{initializations done}
count:=1;
{we have a maximal 1-tree}
{now cycle through Verhoeff's method n-1 more times}
L, :repeat
M:=MAXQ;
i:=DEQ(QM)7
Lz:{claim: i is pointer to some heaviest leaf}
{split it, and enqueue resulting leaves onto proper Q}
t:=1;
repeat
{allocate record for t™ son}
j:=NEW;
sont(i):=j;
weight(j):=p(at)*weight(i);
father(j) :=1
ENQ(3,Q,);
t:=t+1
until €>k;
count:=count+1;
{at this stage we have a maximal count-tree}

until count= n;

Provided the claim at L2 is right, the algorithm will finish with the

representation of a maximal n-tree in store.

Lemma 3.2. Each queue Qi (1<i<k) has pointers listed in weight-decreasing
order, at any time during the execution of algorithm 3.1.

Use induction on the numbers of steps performed by algorithm 3.1. The
assertion certainly holds when L1 is reached for the first time, because at
that time each Qi contains just one item. Go around the loop once, splitting
some leaf of weight p(ai). The ith queue is emptied, but receives a new leaf
of weight p(ai)*rp(ai),less than p(ai). The tth queue (for t# i) keeps its
item of weight p(at), but a new item of weight p(at)vkp(ai) is added to its
rear. As p(at) * p(ai) Sp(at) ¢+ We see that the tt queue remains ordered (and

the ith queue trivially was).



10.

To prove the induction step, suppose that we have reached L, for the

uth time (some 2<u<n) and

1

(i) the queues are still ordered by decreasing weight (and remaining
items are less than or equal to all elements ever removed),
(ii) we have just split a heaviest front-element of weight v (which must
have been a heaviest leaf therefore), which was listed in some queue Qi'
Thus, in particular, the rear-element of each queue Qt must have weight
p(at)* v at this stage.

Now suppose that a next heaviest front-element is located at Q., having

J
some weight w. If i=3j, then our assumption on the ordering of the queunes

shows that necessarily w<v. If i# j, then we observe that in the previous
round v was decided to be heaviest and necessarily w<v also. If the front-

element is removed from Q. and split, then a new item of weight p(at)*'w

is added to the rear of eich queue Qt' When t=3j the new item is conceivably
added to a queue that just got emptied, otherwise it is listed &fter an item
of weight p(at) * w. As p(at) *w<w in the former case and p(at) *wSp(at) * v
in the latter, we conclude that in either case the queues remain ordered by
decreasing weights (and all remaining items are less than' or equal to the
last one removed, i.e. w).

O

The lemma shows that the listing of pointers in weight-decreasing order is
a loop-invariant for each queue throughout the entire execution of algorithm
3.1. It means that the choice of a heaviest leaf can always be made by
looking at front-elements only, and we have verified the claim at L. as

2
correct.

Theorem 3.3. Algorithm 3.1 correctly generates a maximal n-tree (for any n),
and runs in time O(N).

Correctness follows from 3.2. The time-bound is derived by noticing that
MAXQ works in time O(k), that leaf-splitting and enqueueing new records
takes O(k) also, and that the outer repeat-loop is executed precisely n-1
times. We conclude that the algorithm runs through O(k.n) = O(N) steps for
the construction of a maximal n-tree.

O

Algorithm 3.1 doesn't use any more additional space than needed for
representing the final tree, if we ignore the additional O(N) memory-locations

needed for implementing the queues. An interesting problem might be how one



11.

should let MAXQ locate a heaviest front-element if there is a choice

between several (more than one). It seems unlikely that algorithm 3.1 can

be modified without loss of efficiency to implement just any splitting
strategy for heaviest leaves, although it does have considerable flexibility.



[1]

[2]

(31

(4]

(5]

(el

(71

12,

References

Aho, A.V., J.E. Hopcroft and J.D. Ullman, The design and analysis of

computer algorithms, Addison-Wesley, Reading, Mass. (1974).

Knuth, D.E., The art of computer p{gg;amming, vol 3: sorting and searching,

Addison-Wesley, Reading, Mass. (1973).
Martin, J., Systems analysis for data-transmission, Prentice-Hall Inc.,

Englewood Cliffs, N.J. (1972).

Martin, J., Computer data-base organization, Prentice-Hall Inc.,

Englewood Cliffs, NJ. (1975).

van Leeuwen, J., On the construction of Huffman~trees, in S. Michaelson &
R. Milner (eds.): Automata, Languages and Programming (Proc. 3rd
Colloquium, Edinburgh, July 20-23, 1976), Edinburgh Univ. Press
(1976) 382-410.

Verhoeff, J., A new data-compression technique, Annals of Systems Research
(1978) (to appear).

Wiederhold, G., Database design, McGraw Hill Inc., New York, NY (1977).




