THE COMPOSITION OF FAST PRIORITY QUEUES

Jan van Leeuwen
Department of Computer Science
University of Utrecht
3508 TA vUtrecht, the Netherlands

Technical Report RUU-CS-78-5

May 1978

Department of Computer Science
University of Utrecht
3508 TA Utrecht, the Netherlands

all correspondence to:

Dr. Jan van Leeuwen

Department of Computer Science
University of Utrecht

P.O.Box 80.012

3508 TA Utrecht

the Netherlands

THE COMPOSITION OF FAST PRIORITY QUEUES*

Jan van Leeuwen

Abstract. Priority queues are datastructures which effectively support
INSERT, DELETE, MIN and UPDATE commands in some application environment. In
order to achieve fast response times, priority queues have often been
designed from balanced or binomial tree structures. We present additional
techniques for structuring priority queues which will be useful (or other-
wise entertaining) to programmers. First we characterize a class of common
algorithms which perform MIN - DELETE - INSERT cycles, where the new element
to be inserted is generated by some monotone function from the extracted min.
The class includes e.g. Huffman's construction of minimum redundancy codes.
We show that the algorithms can be implemented using a simple priority queue
structure whose response time is bounded by a constant for each of the
commands involved. Next, in a more general approach, we consider ways of
composing fast priority queues from simpler, more conventional sub-queues.

We obtain a priority queue, for instance, whose response time for INSERT
commands is always bounded by a constant. DELETE and MIN commands may take
O(log n) time, where n is the number of elements in the queue. The same
approach leads to another priority queue crganization {which is less efficient
in space), whose response time for MIN commands is always bounded by a
constant at the expense of a moderate increase in the time for INSERT commands
(essentially to loglog n). The constructions shed new light on the structure
of binomial queues, and illustrate various techniques and current ideas used

for efficient datastructuring.

1. Introduction

In recent years many new, efficient data-organizations have been devised
for the benefit of combinatorial algorithms which require extensive data
manipulation during execution (see Knuth [3] or Aho, Hopcroft and Ullman
{1]). In most instances, fast priority queues were obtained as a "corollary™”
to some data-structuring technique of potentially greater applicability. In
this paper we shall attempt to approach the inherent structure of priority
queues more directly, by analysing a scheme which is fundamental to virtually
all priority queues.

* These notes were prepared for a tutorial presentation in the Workshop on
"Fast Algorithms" at the GI Jahrestagung, Berlin, October 5, 1978.

Priority queues are datastructures which effectively support INSERT,
DELETE, MIN and UPDATE commands. The problem of designing efficient priority
queues has been familiar to programmers for many years. Currently, priority
queues are designed from some underlying balanced or binomial tree structure
to give an O(log n) worst case response time for the basic commands. A
typical, conventional priority queue can process INSERT, DELETE and UPDATE
commands in O(log n) time while MIN commands can be answered instantly, i.e.,
in time bounded by a constant. We shall attempt to lower the worst case time
bound for some commands to improve the (worst case) performance, perhaps at
the expensive of space.

Relaxing the constraint of minimum storage can affect the practicality of
our approach to some extent. Priority queues in systems applications tend to
be of limited size and some extra pointer-gpace per element may not be
disastrous (on the other hand, no sophisticated queue structure may be needed
either), but blowing up the memory requirement by some constant factor may
not be feasible for any of the algorithms which use potentially unbounded
priority queues. See Vuillemin {10] for a listing of various software tasks
for which "large® priority queues are required. Indeed, Vuillemin's binomial
queues [10] may be the most efficient priority queue structure from a
combined storage and time performance viewpoint. It will not be surprising
that in optimizing time we loose on the other end.

In section 2 we shall demonstrate that a general priority queue may not
always be the best tool in an application where INSERT, DELETE and MIN commands
are used. We characterize a class of fairly common algorithms which perform
MIN - DELETE - INSERT cycles, where preprocessing of initial data makes it
possible to proceed with a simple, "tuned" priority queue whose response
time remains bounded by a constant for each command issued during execution!
Applications include an alternative implementation of Huffman's algorithm
(van Leeuwen [7]) and a linear time procedure for generating a particular
data-compression code of Verhceff (van Leeuwen [81).

In section 3 we shall investigate a general scheme for composing fast
priority queues from simpler, more conventional subqueues. The scheme has
substantial similarities to the structure of Vuillemin's binomial queues,
but its more abstract appearance makes it easier to devise local optimi-
zations during the execution of commands. The particular optimization we
strive for concerns the elimination of much of the internal restructuring
triggered in e.g. binomial queues upon the insertion of a new element. We
obtain a priority queue whose response time for INSERT commands is reduced

to 'a constant, whereas the time for MIN commands remains at O(log n). A

simple addition to the scheme results in a modified priority queue structure
in which the response time for MIN commands goes down to a constant (as for
conventional queues), at the expense of only a moderate increase (to loglog n}
in the response time for INSERT commands. However, the response time for
INSERTs will generally be much smaller than that.

The results have been presented largely to show what one can do with
priority queue structure. We believe that the techniques will be inspiring
{or otherwise entertaining) to programmers who need to design a priority
queue in software. We have tried to develop the ideas of this paper in a way
which requires virtually no technical background. The paper can be considered
as being to large extent a tutorial on the structure and further tuning of
binomial queues, although we shall actually be using a modified version of
them which appears to perform more elegantly. In general, the constructions
and tools used illustrate several of the recent developments in the design

of efficient datastructures.

2. A useful, special priority queue structure
We shall describe a construction principle involving MIN - DELETE ~ INSERT

cycles, which can be recognized in a number of algorithms. It is commonly
implemented using a general priority queue. We have observed in the context
of some diverse applications (van Leeuwen [7. 8]) that for the particular
kind of algorithms where it occurs a much simpler datastructure can be used,
with response times bounded by a constant for all commands involved (perhaps
only so after preprocessing the initial data). We shall explain it here to
demonstrate that a priority queue doesn't always have to be a "complicated"
data-structure. Chances are that the same technique has been applied by some
clever programmer before, but we have found no record of an attempt to
characterize a general class of algorithms where the same implementation can
be applied with profit.

The type of construction we are about to describe seems to occur often 'in
algorithms which try to minimize "something". There is an initial pool of ‘data
from some space V, a function f from VP to v¥ (some fixed p and q) and a loop

of the following global form

repeat
[pick p of the currently smallest items]

for i from 1 to p do begin u; «=MIN (pool);
DELETE (ui,pool)

end;

[construct g new items]
(YI----:Yq)"f(uln---aup);

[insert the new items in the pool]
for i from 1 to q do INSERT (yi,pool)

until <no more>;

The cycle is repeated until the pool is exhausted (typically when p>q) or
until a predetermined number of iterations is exceeded. In between any of
the steps shown some processing of data may take place, provided that no x i
or y i is changed and no additional data transfers to or from the "pool"
take place in the meantime. We shall refer to the program-segment as the

"fundamental loop". It is represented again in Figure 1.

P
select and DELETE INSERT Yyr--- ,yq
p MINs 1.'|1,...,uP *
I———D compute (yl,._.,yq)ef(ul,...,npl —

Figure 1. The fundamental loop.

The data-pool (P) is left unstructured, but obviously a general priority
queue will do for the intended operations. We may be able to improve on it

when more is known about £. Let = i be the projection onto the ith coordinate.

Notation. For tuples u= ('l.:1 AAaE ,up) let u

min = mln{uill <ispl and

Gmax= max{uill < is<pl.

Definition. A function f is said to be H-monotone if and only if for all i,v
(a) u
{b)

<%.f(u), for all i and
ax i

=]

max< vmin» -nif(u) < nif(v) , for all i.

Note that we allow any feasible ordering < on V to be used in the definition.

It will all become less mysterious in the following examples.

Example 2.1. Huffman's algorithm (see Knuth [4}, p. 402) basically consists of
a fundamental loop with a function f defined by f (ul,uz) =u, +u,. This

function is H-monotone, using < for <.

Example 2.2. Verhoeff's algorithm for generating a particular data-compression
code (see [9]) consists of a fundamental loop which employs the function

f{u) = (pl.u,. ..,pk.u), where Py to p, are certain numbers between 0 and 1.

This function is H-monotone also, now using 2 for <.

We claim that for fundamental loops involving an f which is H-monotone,
the data-pool can be structured so as to allow for more efficient command-
processing than a general priority queue can. The structure consists, in

fact, of a combination of ordinary queues as shown in Figure 2. We shall

enter the initial data in sorted order in QO' The implementation of the
fundamental loop for H-monotone f will be such that all queues remain

sorted, throughout the course of the procedure.

rry oy T 9

7 :
9

: -

Figure 2.

Queues are unsophisticated datastructures which efficiently support the
primitives of Figure 3. We assume that elements in a queue are stored simply
as a linked list, with a queue descriptor keeping track of head and tail.

2
Q4
MINQ returns index
i of queue with Qi

£

TN
‘__ENQ(x,i) adds item x to

the rear of queue with
index i

smallest front item

NA
e

DEQ(i) removes front element from

queue with index i, returning it as value

Figure 3.

Theorem 2.3. Let f be H-monotone. The fundamental loop can be implemented in
such a way that the response times are O(q) for each MIN, 0(1) for each

DELETE and O(1) for each INSERT as encountered during the execution of the
loop.

The plot has already been given away. The idea is to store the g elements

generated in a step in their "own" queue. More specifically, we can implement

the loop as follows. Watch the implementation of selecting a next set of

smallest elements.

repeat

[pick p of the currently smallest items]

for i from 1 to p do begin index<= MINQ;
u j_4%--DEQ(1:1¢:'bax)
end;

[construct q new items]
(Yly-...yq)O-f(ul....,up);

[insert the new items in the pooll
for i from 1 to g do ENQ(y,.i)

until <no more>;

In order for this implementation to be correct, we must show that the
smallest elements of the pool always appear up front in the gueues. Clearly,
the H-monotonicity of f will guarantee that they do! We shall prove a
slightly stronger assertion ("invariant"), which must hold each time after
completing another "round" through the loop:

(1) the elements DELETEd in the last round are all less than or equal to
each of the elements remaining in or just added to the queues,

(ii) the queues are sorted.

For convenience we shall denote nif(...) by fi(...l. We prove the
assexrtion by induction on t, the number of times we went through the loop.

For t=0 the assertion is trivial, because Q0 is initially sorted and
the remaining queues are empty. Consider the next round through the loop. The
smallest elements are "lined" up at the front of Q0 {because it is sorted and
the other queues are empty), and the implementation leads correctly to the
first tuple U, of smallest elements in the pool. At the end of the round we

have:

Note that (i) holds because (ﬁo)max< fi(ﬁo), by definition of H-monotonicity.
{This particular case of the definition is needed only for starting consistent-~

ly.) The queues are obviously sorted, because QO remained so and the other

Queues have just one element. Hence, the assertion is valid for t= 1.
Now suppose the inductive assertion is valid after the tth round
through. Suppose we have just picked and DELETEd a tuple U and updated the

queues to

7 £, (@

I i
:| fj(ﬁ)

f
q(ﬁ)

The area enclosed by dotted lines indicates where the i-elements were

taken from. Note that by inductive hypothesis, ﬁmax is less than or equal

to all elements to the right of the dotted contour. As all queues are sorted
(by hypothesis), the next tuple of smallest elements ¥ can be selected off
the front of the queues as implemented!

B 4§
A 2ol
fl(u)fl(V)

b——\F (V)

— iy
-

}

R it
.

fj (@) £, (¥)

3

fq(ﬁ)fq(i")

The figure indicates a typical contour for ¥ (deletion of the selected
elements could momentary empty a queue). Since ﬁmax is less than or equal
to all elements where ¥ was selected from, i.e. 4

max‘:vmin
fi(ﬁ)< fi(i). Clearly, all queues remain sorted! We have to be a bit more

+ Wwe have

careful in ascertaining the validity of (i) this time. If a queue was not
emptied entirely after deleting ¥, then a front element remained which must
be greater than or equal to amax' Hence, 411 elements in this queue (the
added element included) must be greater than or equal to Gmax' If a queue

got emptied upon deleting ¥, then we have no "element of reference" left
and we cannot conclude (i) by the ordering of the queue. Fortunately,

vmax< fi(ﬁ) by definition of H-monotonicity and we are saved. It proves the
induction hypothesis for t+l.

The response times claimed in the theorem are now easily verified. Using
the implementation above, MIN commands are implemented as MINQ's (requiring
0(q) by straightforward searching), DELETE commands as DEQ's (0{1) because
the queue you're deleting from is known) and INSERT commands as ENQ's
{taking O(1) each also).

O

The implementation of the fundamental loop for H-monotone functions is
simple, but it works in a subtle way. Using g+l queues may seem esocteric,
but it is easy to compress the entire structure in one array. Let us indicate

some typical applications where the approach is vindicated.

Example 2.1. (continued). The construction of a Huffman-tree of n weighted
items is usually implemented by means of a general priority queue structure
(see e.g. Knuth [5}). We could now proceed differently (van Leeuwen [7]).
Just sort the n given items by some dedicated routine, store the resulting
sequence in a queue and apply theorem 2.3. Observe that only one extra
queue is needed. After the sorting phase the construction can be completed

in O0(n) more steps!

Example 2.2. (continued). Recently Verhoeff [9] proposed a new type of fixed
length code for data-compression. The encoding algorithm makes use of a
"maximal tree" for mapping variable-length input portions to fixed-length
code words. The maximal tree with n nodes for a given probability distri-
bution of individual letters is obtained by iterating the fundamental loop
n-times, using an appropriate H-monotone function and starting from an
initial data-set consisting of just one element (1) only. It was shown

(van Leeuwen [8]) that this algorithm is essentially unique for obtaining
maximal n-trees. Applying theorem 2.3 it follows that "Verhoeff-codes" with
n code-words can be generated in only O(n) time, faster than Huffman-codes

of comparable size.

Although it doesn't appear to be of great practical relevance, one may
wonder how well the implementation actually performs when p and g are large
{or, perhaps, when just q is large). It is immediate from the program that
much time may get wasted on MIN selection, to a total of O0{(p.g} each round
through. We shall see that it can be reduced to O(p.log q) for each round,

O

root

2

Figure 4.

at the expense of a slight increase in the time needed to INSERT new items.
Just observe that we constantly perform MIN, DELETE and INSERT (or rather,

UPDATE) operations on the front positions of the queues! It means that we'd

better connect these positions into a dynamic priority queue R (see Figuré 4).

Theorem 2.4. Let £ be H-monotone. The fundamental loop can be implemented in
such a way that (after a start-up phase) the response times are 0(1) for
each MIN, O(log q} for each DELETE and “"usually" 0(1) for each INSERT as
encountered during exqcution.

Choose R to be a conventional priority queue. Let the fundamental loop be
implemented as in theorem 2.3. We can leave the description as it is, and
merely change the actions of the queuveing primitives MINQ, DEQ and ENQ
(which correspond to the MIN, DELETE and INSERT commands in the fundamental
locop).

The current value of MINQ can be immediately read off from the root-
record of R. It gives the smallest queue-element in constant time. A DEQ{i)

operation should remove the front element (a) of Qi from R and "drop" it

from the pool, and push the next element gg_Qi (b, if it exists) as a new
item into R. If b exists, then b> a and we might implement the transaction
as an UPDATE instead. In either way, the time required is O(log g) in worst
case. ENQ(x,i) will merely add x to the rear of Qi and finish, if Qi wasn't
empty. If Qi was empty, then x gets into the front position right away and
must be pushed into R like all other front-elements. The time required will

be 0(1) or O(log q), depending on whether the latter case occurs.,
0

Different response times may result if we choose a different, perhaps more

adaptive structure for R than just a conventicnal priority queue.

10.

3. A general structuring scheme for priority queues.

Let S be a set of n elements from an arbitrary, ordered domain. We shall
outline a general scheme for building priority queues for S from “simpler"
priority queues for subsets of S. It derives from the structure of binomial
queues (Vuillemin [10]), but seems to be fundamental in a much wider context.
Proper "tuning" gives priority queues with better worst case response times
for the basic commands than were achieved before. At the same time it will
enable us to introduce binomial queues themselves, and to expose some
difficulties in applying the same structural improvements developed below
to this particular priority queue structure. Throughout this section we shall
de-emphasize the space-requirements of our structures, and freely introduce
pointers and linked lists when needed. The total space used will remain
within a constant factor from the optimum.
k® If we structure SO to Sk
as conventional priority gueues, then we can finish it off to a priority queue

Let S be partitioned into subsets SO'SI""'S

for S by entering the min's into a separate structure P as in Figure 5. There
will be fewer than n min's, so we can afford P to be a "sophisticated"
priority queue. For the time being, we leave P as a black box and merely list
what is required of it.

an unspecified priority queue

J/rconventional priority queues

Figure 5.

A set Si will typically contain 2i elements. (It follows that some of the
subsets are empty, depending on the binary representation of n.) We shall
not structure Si as a binomial queue, but rather as a perfect binary tree
i is a full

tree of tournaments among its elements with the winner (i.e. its smallest

with 2i leaves or i-tree. Thus, the priority queue structure for S

element) at the top. Actually, we allow S; to be made up of 0, 1 or 2 i-trees!
The observant reader will sense a connection with a redundant representation
of integers n using the digits 0, 1 and 2. It is instructive to explore such
a representation before we continue. (Such representations date back to e.qg.
Avizienis [2], but the applicability for data-structuring purposes seems to
have been observed first in class-notes by Clancy and Knuth in 1977.)

11,

Beginning from 0 for 0 and 1 for 1, we shall be applying cne of two

operations on a varying integer n:

+1 ("add one")
step 1. fix the rightmost 2 in the representation of n,
step 2. add 1 to the last digit of n (changing 0 to 1 or 1 to 2,

whatever the case may be).

-1 ("subtract one")
step 1. if the last digit is non-zero, subtract 1 from the last
digit of n EEQ.EEEE'
step 2. if the last digit is zero, borrow a "one" from the last
non-~zero digit (changing 2 to 1 or 1 to 0, whatever the case

may be) and put 1's in all positions to the right,

There are ways of also restricting the work for -1 to a bounded number of
digit-positions, but it does not seem to be feasible here. Fixing a 2 means
to push it to the left:

+».02... = ,..10...
e 1200, = 20...

It is the only risky step, because we have to make sure that at no moment

in time we are requested to fix a 2 whose neighbour is a 2 also

Ay A

Proposition 3.1. The digits 0, 1 and 2 are sufficient to support the

routines for +1 and -1.

We only need to argue that no representation can wind up having a 22
substring. The reader can easily verify this by observing that 2's can only

occur in one of the following possible ways

A) teeenanaal21¥

b}21%90...
O

Back to priority queues, we shall introduce a digit-value d(Si) for
each set indicating how many i-trees it contains (0, 1 or 2). At all times
the string

d(Sk) A d(SI) d(So)

will be a redundant representation of n, obtained through a history of
adding and subtracting "one" (i.e. one element}. We shall now demonstrate

12,

how the routines for +1 and -1 are made into efficient priority queue
routines for INSERT and DELETE.
By a doubly linked list we shall keep track of the position of non-zero

Si's and in another, singly linked push-down list we record the Si‘s with

d(Si)=2. By inspecting the top-pointers FIRSTHON and FIRSTTWO we can imme-

" and the "rightmost S, with

diately access the "rightmost non-zero S i

i
d(si)=2“' respectively.

)

bt

Sk |

AN AN NPT RSTNON

f

~em -~ ~ VFIRSTTWO
To add an element x to S we proceed as follows, completely in analogy to
ﬂ+1 ll=
INSERT(x) :
IN 1. i< FIRSTTWO; Ef_i=ﬂ then goto IN5
IN 2. combine the i-trees
A A
from Si into one (i+1)-tree

min(a,b)

and move it into Si+1

IN 3. update the non-zero and two-lists accordingly
IN 4. delete max(a,b) from P

IN 5. add x, as a O-tree, to S0
IN 6. update the non-zero and two-lists accordingly

IN 7. insert x into P
The steps are all self-explanatory, and are easily performed for the subset
structuring.

Lemma 3.2. The implementation of INSERT(x) leaves the data-structure con-

sistent and requires only 0(1) time modulo one delete and one insert on P.

Thus, new elements always enter the set from the right (through So). When

we call for deletion of an element x, it may have migrated to the left into

i3,

some bigger Si. We can easily tell by chasing pointers from the record for
x upwards, until we hit a root. (See Figure 6)

/ \

S ol
K :

R N T TV Y '---’\-WM-\.«JJFIRSTNON

e~ PIRSTTWO

Figure 6

We must be careful in deleting x. One could consider the following general
routine: while traversing the path from %X to the root, break the i-tree
into constituent j-trees (one for each j from O to i-1). We shall elaborate
on it later, but for the moment we just note that effectively the "O-tree"
(i.e., the leaf) containing x is dropped as desired (see Figure 7).

Figure 7

What to do with each of the dangling j~trees? They shouldn't stay in Si'
, for j from 0 to i-1.
's here which already

The obvious step would be to put the j-tree into Sj

This would be very dangerous, bhecause there may be S

3

have 2 j-trees. Also, adjacent 1's would become adjacent 2's and there is no
way we can handle that even numerically in the representation. It does work

correctly only if we are breaking the rightmost non-zero tree! If x doesn't

14.

belong to the rightmost non-zero set, then we shouldn't break its tree but
proceed by a trick instead. Just "borrow" some arbitrary element y from the
rightmost non-zero set (see Figure 6) and use it to replace x in ity i-tree,
then break the tree where y was taken from as described (while eliminating
y from it). We shall describe the routine BREAK(i,x) for breaking an i-tree

later.

DELETE (x) :
DE 1. ieindex of the set containing x
DE 2. if i= FIRSTNON then goto DE9
DE 3. delete the winner of x's tree from P
4,

DE y*=some element of S

FIRSTNON
DE 5. delete the winner of y's tree in § from P

FIRSTNON
DE 6. put y in the leaf-position occupied by x, and chase it up
the tournament tree
DE 7. insert the new winner of the i-tree into P
DE B. i«=FIRSTNON; xey

Several optimizations of this routine can be considered, but none will
influence the time-complexity by more than a constant factor (... which is
important in practice, but not for the present treatment). Fér instance,
one may wonder what a good choice for y could be in step DE 4: the winner
of SFIRﬁTNDN or a looser to the winner? (In the former case DE 5 would be
a direct action.) To estimate the time needed for deletes, observe that

the path-length of the largest i-tree present cannot exceed log n.

Lemma 3.3. The implementation of DELETE(x) leaves the structure consistent
and takes time O(log n), modulo at most two deletes and one insert on P

and the cost for a BREAK operation.

We shall argue that the cost for each BREAK operation is bounded by
O{log n) also, which one may have observed already in Figure 7. There is
a bit more to it, which makes it conceptually to a rather involved operation.
When BREAK(i,x) is called we must split a given i-tree into parts and
put each part into the appropriate Sj‘ We start the splitting at the leaf
containing x and work our way up, at each node saving the subtree which
wasn't cut to pieces. (In the beginning we consider the O-tree containing x
as "cut to pieces".) The saved subtree will be a perfect tournament, no

matter what:

15.

In the end we need not delete the overall winner of the tree from P, it
was already taken care of in DE 5. (In fact, it wasn't necessary to do so
unless the winner was x, but it doesn't harm in view of the next step.)
However, a nasty task remains, the insertion of the winner of each j-tree
obtained into P.

We conclude

Lemma 3.3'. The implementation of DELETE(x) leaves the structure consistent
and requires only O(log n) time, modulo at most two deletes and the collec-

tive insertion of up to O{(log n) elements into P.

It follows that we need only design a convenient priority gueue structure
for P to allow for MIN selection and DELETE and INSERT commands for the
entire set. Note that UPDATE commands are supported by the structure

easily, at a cost of only O{log n) and perhaps an update in P.

Theorem 3.4. There is a general, dynamic priority queue structure which
requires O(log n) for each MIN command, 0(1) for each INSERT command and
again O(log n) for each DELETE or UPDATE command.

Let P be the unordered set of winners from the lower i-trees. There are
at most O(log n) of them. MIN selection follows by a linear scan over P.
Deletion and insertion require O(1) per element for P. Lemmas 3.2 and 3.3°
easily give the conclusion for INSERT, DELETE and UPDATE commands as

stated.
(]

Perhaps the only interesting feature of theorem 3.4 is the 0(1) worst
case response time for INSERTs, which hasn't been achieved for priority
queues within the O(log n) range for commands before. We must "pay" for it
by an 0{(log n) response time for MINs, which may be acceptable if MINs
aren't tested very often but less desirable when they are. Let's see what

trade-off we can make.

6.

Choosing a different priority queue organization for P isn't alltogether
trivial, because it should support collective insertions in an efficient
manner. It is a succint argument for taking P to be 2 mergeable heap! (see
Aho, Hopcroft and Ullman [1], p. 147).

Theorem 3.5. There is a general, dynamic priority queue structure which
requires 0(1) for each MIN command, O{loglog n) for each INSERT and O(log n)
for each DELETE or UPDATE command.
Egsof

Organize P as a mergeable heap on O(log n) elements, for instance using
a 2-3 tree. MINs are now available in constant time, and deletion and
insertion only cost O(logleg n) per element for P. The collective insertion
of up to 0(log n) elements is easily dealt with also. Just build a 2-3 tree
based priority queue out of the elements in 0(log n) steps, and merge it
into P,

O

The latter result is interesting when compared to, for instance, the
study of van Emde Boas et al. [6] concerning priority queues for subsets

of a fixed universe.

4. Application to binomial queues.

There has clearly been a reason for using the perfect binary tree instead
of any other structure to represent each component of an Si' apart from the
fact that it works. It was perhaps the simplest structure familiar to all
readers which could be used to explain the tricky data manipulation routines.
The space required remains within acceptable limits also: at each internal
node we merely need one pointer to the record of the "winner" at this node
and a father link. A feature of binomial queues is that it embeds the
linkage structure in the element-records and puts loosdrs in an organized
manner "under" winners. The idea is easily grasped when considering the
combination of two small trees into a bigger one, like we did in the INSERT

routine:

a b
instead of combining Z//\\\ ///A\\\ into

and allocating a fresh record for an internal node, we attach the

looser a directly to the winner b

1472

No duplication of elements is needed and an element is always there "where
it wins". However, we now need additional pointers at each node to facilitate
manipulation of the structures just the same, and it is largely a matter of
context to determine if the structuring using perfect binary trees isn't
more expedient after all. We shall demonstrate that the routines explained
in section 3 can be worked out for the binomial tree representation as well,
but there will be unsuspected difficulties which make it all less alegant
than before.

The pattern for combining trees of Zi elements into a bigger one inspires

to the following, known family of trees {Bi}iZ(T

Definition
(i} B0= 0 (a single node)

(i) B, = /v

The Bi's are what we call "binomial trees". They have some nice structural

properties of which we only mention one. Each Bi-tree can be decomposed as

.

AN

It holds the key to a simple, linked representation which will be essential

for the data-manipulation routines (notably for BREAK) later. See Figure 8.
#/‘O

SONLIST (// (... and recursively)

Figure 8

18.

Apart from the father link only two more link-fields are needed in each
record. (A method of Mark Brown [3] requires only two pointer fields
total, but it would only complicate matters here.)

Suppose we crganize elements into binomial trees from the start. It means

that each Si will contain 0, 1 or 2 Ei—trees, at any one time during execu-

tion. Let us see how the routines of section 3 can be adapted.
The INSERT(x) routine can be left completely as it was, except that in

stage IN2 (obviously) we must combine the Bi—trees of the rightmost "2"

i&.._.o

intoc one B -tree

i+1
/W
z-__; cer ~—30

(assuming that b is winner), a task which takes only constant time.

Great difficulties arise in DELETE(x), which seems to uncover a not-so-
perfect feature of the binomial tree representation. Suppose we must delete
X, occurring in the "interior" of some binomial tree. Note that the ele-
ments along any path towards the root must form a decreasing sequence, and
that replacement of these elements by a decreasing sequence of smaller items
leaves a consistent tree. We could fill the empty spot of % by shifting
down its ancestors one node, a task which takes O(log n) only in one pass up

(see Figure 9). It follows that we only need to consider what must happen

///oxd (empty)
& "d‘\
= g

*s

x3 .3
\"2 3
v x
xx{fx

Figure 9

19,

if we delete an x which happens to be the root of a Bi—tree. Fortunately
the representation of a tree (see Figure B) makes it very easy to BREAK a
Bi*tree into its component Bj—trees if we cut its root off, This solves
only part of the problem. As in section 3 we must try to avoid breaking a
tree which isn't in the rightmost non-zero position, because it can lead to

congestion in the "lower" positions. Borrowing an element y from the first

non-zero tree like we did is hardly feasible this time, because it seems to

be impossible to insert it in x's tree without wasting an inordinate amount

extra comparisons. (We may be lucky to find an element y less than x,

because it could be inserted for x and perculate upwards.) Sufficient
structure is lacking for easily exchanging elements between subsets.

There seems to be no other way out than to use brute force: spend O(log n)
time resolving all 2's to straighten the forest back into ordinary "binary"
format, BREAK the Bi-tree and add the pieces according to a normal binary
addition scheme to the lower order positions. The required "straightening"”
of the forest is not in harmony with and destroys much of the economy of the
redundant representation. It may require many deletions from P in the course
of one DELETE, which makes the worst case acceptable only if we let P be an
unstructured set (theorem 3.4). It should be noted that the worst case will
occur only rarely.

We conclude that bincmial queues can be modified to guarantee an O(1})
response time for INSERT commands, but DELETE commands will have to perform
some additional O(log n) steps of clean-up work each time. Hence there may

be some reason for using ordinary perfect binary trees after all?

20.

5. References

[1] Aho, A.v., J. Hopcroft and J.D. Ullman, The design and analysis of

computer algorithms, Addison-Wesley, Reading, Mass., 1974,

(2] avizienis, A., Signed digit number representations for fast parallel
arithmetic, IEEE Transact. on Electronic Computers 3 (1961) 389-399,

[3] Brown, M.R., The analysis of a practical and nearly optimal priority
queue, Techn. Rep. STAN-CS-77-600, Dept. of Computer Science,
Stanford University, 1977.

[4] knuth, D.E., The art of computer programming, vol. 1: fundamental

algorithms, Addison-Wesley, Reading, Mass,., 1968,
[5) Xnuth, D.E., The art of computer programming, vol. 3: sorting and

searching, Addison-Wesley, Reading, Mass., 1973.
[6] van Emde Boas, P., R. Kaas and E. Zijlstra, Design and implementation
of an efficient priority queue, Math. Systems Theory 10 (1977) 99-127.
[7] van Leeuwen, J., On the construction of Huffman-trees, in: S. Michaelson
& R. Milner {(eds.), Automata, languages and programming {Proceedings
3rd Colleq.), Edinburgh University Press, 1976, pp. 382-410.

[8] van Leeuwen, J., Linear time generation of a new fixed length data-
compression code, Techn. Rep. RUU~CS-78-3, Dept. of Computer Science,
University of Utrecht, 1978.

{9] verhoeff, J., A new data-compression technique, Annals of Systems
Research (1978) (to appear).

[10] vuillemin, J., A data structure for manipulating priority queues,
Comm, ACM 21 (1978) 309-315.

