»»»»»

vakgroép informatica R.U, Utrecht-

%
% - - %
AN ESSAY ON TREES AND ITERATION
> o
) W.P. de Roever
A ‘b,, *
RUU-CS-78-6
October 1978
.
- Rijksuniversiteit Utrecht
Vakgroep informatica
N me 6 " ...,{"
- : Postbus80.012 . . o
* « . 3508 TA Utrecht T
Telefoon &0—531454
% - -)

p— ey .- -

~
..

.

At

L vakgroep informatica RU, Utrechr

AN ESSAY ON TREES AND ITERATION

W.P. de Roever ¥)

Technical Report RUU-CS-78-6

October 1978

Department of Computer Science
University of Utrecht
P.0.Box 80.012
3508 TA Utrecht, the Netherlands

*) The major part of this work was prepared when the author was affiliated

with the Computer Science Division, University of California, Berkeley, CA 94720.

This essay is based on lecture notes for CS 192: "Introduction to program
correctness", taught by the author at UC Berkeley in the Spring of 1978.

All comments and suggestions on these notes should be sent to

Dr. W.P. de Roever
Vakgroep Informatica
University of Utrecht
P.0.Box 80.012

3508 TA Utrecht

The Netherlands

10.

11,

Table of contents

Preface

Summary of the essay
Objectives of the essay
Technical tools

Suggestion for the outline of a course

AN ESSAY ON TREES AND ITERATION:

Iterative traversal of a binary tree without ‘auxiliary stack
Symbolic execution

Critique
An informal encounter with mathematical semantics

On correctness of backtracking (, and iterative tree-copying)
Example: 4-queen's problem recursive solution
And now for something altogether different? Iterative copying

of binary trees

Correctness of the recursive characterization of backtracking

for all solutions: a special case

The general case: correctness of a recursive problem

specification

The Deutsch--Schorr-Waite marking algorithm: first step

The Deutsch-Schorr-Waite marking algorithm: second step

Termination of M(a,0) - and, hence, of the Deutsch-Schorr-

Waite marking algorithm
An exercise in Scott induction -

References

ii.

13
13

15

21
22

29

30

34

40
43

47

55

60

1. PREFACE

The status of program correctness within the general theory of programming

is as yet undetermined.

~ Does program correctness constitute a bag of tricks used to convince
oneself and others that a program "does what it is supposed to do",
tricks which have been applied previously in mostly trivial cases?
Certainly, considering most of the present day publications on the

subject, this point of view has a right of existence.

- Or is program correctness part of mathematical semantics of programming
languages - a subject which by the abstraction and complexity of its
techniques is presently in danger of undergoing the fate of the proverbial
hot-air balloon (, well known in the theory of computation, ridden as it
is by fads and fashion,) disappearing out of sight of the main body of
programming until the proliferation of its abstractions cools its air
sufficiently to result in a quiet landing, not noticed by anybody except

a small number of specialists?

- Or is program correctness part of programming in that it supplies the
framework and concepts for reasoning about the execution of algorithms in
an imaginative way, to the extent that the intricacy of their execution

becomes transparent and communicable?

In this essay I shall try to emphasize the third point of view, focussing
on iterative tree search as the guiding example. More in particular by
discussing in depth a number of intricate algorithms concerning tree traversal,
back-tracking, and graph traversal.
First I provide models for understanding these algorithms intuitively. Then I
show how these intuitions can be made precise by introducing assertions.

Finally I prove these assertions.

This process is not trivial at all. Appropriate formalisms have to be found.
Once a formalism has been chosen, the assertions one intends to prove
usually have to be generalized because they often do not provide enough
information about the intermediate steps of execution of the algorithm to
yield sufficiently strong inductive hypotheses.
New assertions have to be found and incorporated, since the inductive nature
of program proofs requires that all inductive hypotheses "have to cooperate
in step/phase". Previously overlooked "obvious" properties of algorithms

start playing a crucial role in these generalizations.

Mutually dependent modules have to be characterized both in their individual
contributions and in their interrelationship; finding these modules is often
the main clue to understanding an algorithm.

Finally one wishes to push the developed concepts to their extremes, e.q.,
by investigating the possible merits of a "general back-tracking" algorithm
Oor by obtaining an understanding of lower bounds on the auxiliary space
needed for search. Sometimes one tries to tackle and maybe discover new

algorithms extending the developed techniques.

These notes have been written to shed at least an entertaining light on
the problems of program proving, within the wider context of getting
acquainted with a fascinating collection of algorithms, which is partly

still under development.

One note of warning: supplementary reading of Burstall's paper on struc-
tural induction, and an introductory paper on least fixed points such as

the one by Manna, Ness and Vuillemin, is advised.

2. SUMMARY OF THE ESSAY

Objectives of the essay

The objective of the essay is to demonstrate the relevance of program
proving to programming. To this end correctness of some nontrivial algorithms
will be proved. These algorithms are taken from the area of iterative
processing of tree-structures, or tree-structured computations.

(2) concurrent garbage collection.

This does not necessarily imply that the proofs themselves are considered
to be the main focus of attention. Rather, the process of formulation

and getting acquainted with an algorithm, and of developing concepts

in order to better understand the way an algorithm functions, are

considered to be the points of main importance.

Technical tools

The main technical tool in program correctness proofs is induction. The
use of induction is either explicit, or implicit. Explicit induction proceeds
either
(1) on the structure of the inputs presented
or
(2) on the recursion-depth of a program (in case it is recursive), or
on the number of times iteration is performed (in case it is iterative), or
on the length of computation.
In case (1) one speaks of structural induction of some sorts (Burstall). In

case (2) the induction principle takes two forms:

(2a) n-step-n+l1 induction scheme: if (a1) A(0) can be proved,

and (A2) if one assumes A(n) as hypothesis,
then A(n+1) can be proved,

then(A3) Vn.A(n) holds.

(2b) course-of-values induction scheme (also called truncation induction,

Morris): if (B1) A(0) can be proved,
and (B2) for every m, if for some OSm1 <m2... <mkSm
one assumes A(ml)A...AA(mk) as hypothesis,
then A(m+1) can be proved,

then (B3) Vm.A(m) holds.

These two forms are equivalent:
(2b) = (2a) : obvious.
(2a) = (2b) : considered to be evident from:
introduce A'(m) = A(0) A ... A A(m-1) A A(m);

then prove A(m+1) using scheme (2a) on A' (m+1),

Implicit induction is used to ascertain validity of proof methods using
invariants (Floyd, Hoare).

In ordinary sequential brogramming both implicit and explicit induction
are successful techniques. In concurrent programming (Gries-Owicki) the

invariant method has been most successful.

Suggestion for the outline of a course *)

1. The method of invariants as introduced by Floyd-Hoare, and the generali-

zation to intermittent assertions to embody termination (Burstall).

2. Explicit inductive methods will be demonstrated in tﬁé”discussion of a
family of algorithms concerned with iterative processing of tree-
structures in general, and with tree traversal, backtracking, traversal of
directed graphs, and list copying, in particular.

The members of this family have a simple idea in common, according to
which the stack of return-links is coded directly into the data-

structure traversed.

(a) This idea is first applied to ordinary traversal of a given tree
(Dwyer e.a.).

(b) Then it is generalized to backtracking. This can be understood as
follows:
In backtracking the search-space has a tree-structure. The search-
space is generated during the computation. In fact, the process of
searching for solutions itself can be defined most easily by tree-
structured computations. The backtracking problem is to perform these
computations in iterative fashion.
Obviously any technique for iterative traversal of a given tree in
memory can be generalized to iterative pbrocessing of these tree-
structured computations, i.e., to backtracking.

Also, we shall discuss what "correctness of backtracking” means.

*) See page i.

(c) The idea is applied to the traversal of directed graphs.
In order to traverse a directed graph one constructs spanning trees
for the graph, to eliminate infinite traversal of cycles. The
spanning trees are constructed during the process of traversal of
the graph, using the unifying idea referred to above (Deutsch-

Schorr-Waite).

(d) Finally these ideas have been generalized to copying list-structures

(Lee-de Roever-Gerhart).

(In the future one could envisage an encyclopedia of algorithms, in
which algorithms are referenced by and developed from the central ideas

which they embody/employ. It would be interesting to determine these

‘semantic bricks of programming and to find systematic ways of combining

them!)

Program tranéformations (Burstall & Darlington, Gerhart, Lee-de Roever-
Gerhart).

Postscript: Stanley Lee tackled the problem of proving correctness of
three recently published list-copying algorithms (Robson, Fisher, Clark).

As it turned out, the formalization of the notion of subproof, or step

in a proof, illustrated rather implicitly in these notes, had to be brought

out explicitly by introducing program transformations when dealing with

correctness of state-of-the~art algorithms. The reason for this phenomenon
is that the chain of reasoning leading up to such algorithms becomes too
long and complicated to rely on intuition as a source of inspiration (for
finding their correctness proofs). We found support in Susan Gerhart's
work, which introduced a sufficiently general notion of transformation

to provide the kind of steps and the framework required in proofs of

such complexity; this is the subject of the paper "On the evolution of
list-copying algorithms", POPL '79, which can be considered as a straight-

forward sequel to these notes.

Concurrent program proving.

Focus will be on the Gries-Owicki method and Dijkstra's view of it, in-
cluding a proof of the correctness of Dekker's implementation of sema-
phores, and, finally, a proof of a concurrent garbage collector. The
latter proof is interesting in that it concerns an algorithm for which
the degree of interleaving of the various concurrently codperating pro-
cesses is so intricate that proving its correctness turns out to be the

only way to obtain a correct formulation.

AN ESSAY ON TREES AND ITERATION

3. Iterative traversal of a binary tree without auxiliary stack

In this section we discuss iterative traversal of binary trees without

using an auxiliary stack. (This feature makes the algorithm useful in a

garbage collectioning environment.)

Consider the following pointer reversal game (due to Meertens):
Given a (binary) tree whose links to subtrees are indicated by arrows.
Traverse this tree, visiting nodes according to the following rules:
(i) The game begins at the root of the tree.
(ii) Any arrow from the current node to another can be traversed; there-
after it must be reversed.
(iii) The game ends at the root of the tree.

(iv) Each node of the tree must be visited at least once.

In pictures:

Note in the intermediate snapshots that the branching structure of the

original tree is changed. In the last snapshot the branching structure has

miraculously recuperated. Why?

Every arrow is traversed twice. Therefore it changes direction

twice. This results in the same direction for all arrows at the

end.

This simple cbservation is a central ingredient of the correctness of all

the algorithms discussed in this essay.

Our next goal is to formulate the traversal-reversal game in algebraic
notation so that it could be processed on a computer. To this end several
observations/modifications are needed, because we intend to describe the
algorithm, and therefore the intermediate stages of the drawing above,
in terms of binary trees. But, clearly, ternary nodes appear in the

snapshots above.

Observation 1. The algorithm has to end. In order to accomplish this,

introduce a "termination marker" tm - an atom — which, when inspected,
terminates the algorithm. This involves (a) a change of the atomic acts

of the game, (b) a change of rule (iii). The termination marker is connected

with the arrow structure as indicated below:

Observation 2. As remarked before, ternary nodes appear in the drawing

above. Yet we want to represent/describe these snapshots by means of
binary trees. The observation needed is that each of these snapshots

can be represented by a pair of binary trees, by splitting each snap-
shot at the arrow most recently traversed. (By definition, in the first
snapshot at the left upper corner of the drawing, the arrow most recently

traversed is the one added after Observation 1 above.) This is indicated

below:

Observation 3, The representation of snapshots as two binary trees makes

use of an ordered pair of binary trees, since always one of the two trees

is traversed/inspected first:

tn 5
tm o
. . g ;? .
= . =» ; = = .
< A 2 N
PR} ’ 3 . A
e /\ < 4
‘ L] u L] b’ ®
A tm Atm tm o
/ = = 'J/ = =
K s
’ A\ k’“) b a/kf ;J
b4 " N vy

(In this drawing, the tree which is traversed first has been drawn using

straight lines and the other by using dotted lines.)

Next, a notation is required, and a characterization of the set of trees

which must be traversed.

DEFINITION (binary trees).

Let A be an arbitrary set (of atoms). Then B is the smallest collection

(of binary trees) s.t.

(1) AcB
(2) if 11,12EZB then cons(ll,12)€ B,
where cons:Bx B°3t° (B-A) denotes a total, 1-1 function mapping pairs of

trees onto (non-atomic) trees.

DEFINITION (car, cdr, at).

car: (B-A) » B, cdr:(B-A) » B are functions which are (one-sided) inverses to
cons satisfying:

1€ A—b1==cons(car(l),cdr(l)),11= car(cons(ll,lz)),

12= cdr(cons(ll,lz)),

at:B- {true,false} is the characteristic predicate of AcB.

The reason for defining B as the smallest collection satisfying the properties
listed above is that we want to restrict ourselves to finite trees only,
since these are the only ones naturally represented in memory. (Repre-
senting directed graphs by means of infinite trees, where cycles are
unfolded infinitely deep, is undesirable, since changing a pointer in the

graph would result in an infinite number of changes in the infinite tree.)

(Note for the specialist: the definition of binary trees as given above is
still unsatisfactory. The abstract data type of binary trees should be

defined within a category-oriented framework as an initial object,)

Now the algorithm can be formulated. Intermediate stages are transformed as

follows:

—~at(l): <l,r>=<car(1l) ,cons(cdr(l),r)>

at(l): <l,r>=>i_f; 1= tm then r else <r,a(l)> fi

The last line requires some explanation.

The act of inspecting an atom is performed by the constant A (; think of

A as coloring an atom yellow, or of increasing a counter "inside" the atom
without side-effect upon the other atoms or nodes of the structure).

Also, upon ending, the inspected/traversed tree is given as answer.

Note that all the preceding observations can be generalized to trees of

arbitrary arity.

For purposes of proof, the algorithm is formulated in the following (pseudo-)

recursive version, where it is assumed that the implementation of recursion

does not require an auxiliary stack:
Q(1l,r)«if at(l) then

if 1=tm then r else Q(r,A(l)) fi

else Q(car(l),cons(cdr(l),r)) fi.

i0.

Note that, since the formalism introduced above does not incorporate any

notion of address, one of the essential characteristics of the algorithm

has not been explicitly described, namely that the stack of return-

addresses is coded inside the tree itself. In fact, an implementation of cons
which fetches a new address for each application, is legitimate. Yet the simple
formulation above is useful for the purpose of proof analysis and as an

exercise in abstraction. Lateron a more elaborate formalism will be intro-

duced which does capture the coding aspect.

What constitutes the correctness of algorithm Q7

Assuming that tm does not occur among the atoms of 1, "execution of
Q(1l,tm}) should lead to traversal of all of 1". How can this be formulated
in a more formal way?

Introducing the recursive procedure P(1):
P(l)+=if at(l) then A(1l) else cons(P(car(1)),P(cdr(1))) fi.

This recursive procedure is the only tool available to specify the effect
of Q independent of the text of Q itself,

Correctness of Q is expressed by
VIE€EB. (tm€ 1-Q(1,tm)=P(1)), ... (3.1)

here "-" denotes implication, and tm€ 1 that tm does not occur among the
atoms of 1 (; this can be expressed recursively, too).

We shall prove (3.1), after surmounting some initial difficulties, by
induction on the complexity of 1, i,e., by structural induction upon 1.

For binary trees, this principle can be formulated as follows:

Structural induction on binary trees

Let As(l) denote an assertion on binary trees.
In order to prove V1€ B.as(1),
one proves first (i) As(l) for 1€A, i.e., one proves As for all atoms,
and then one proves, for arbitrary 11,126:3, (ii)
As(cons(ll,l2)), given that As(ll) and As(12)
hold,

Since B is defined as the smallest collection containing atoms from A and

closed w.r.t. cons, these two clauses establish validitz of the method.

Regrettably, assertion (3,1) cannot be proved straightforwardly using

structural induction:

11,

Assume, tm§ li-»Q(li,tm) = P(li) , i=1,2,

and try to prove tmf cons(ll,lz) ->Q(cons(11,12),tm) = P(cons(ll,lz)).
Assume tm§ cons(ll,lz). Then tm§ li' i=1,2, Therefore

Q(li,tm)==P(li), i=1,2.

Q(cons(11,12),tm)==Q(11,cons(12,tm)) follows from Q's definition.

In order to say something about Q(ll,cons(l2,tm)), one should resort

to the assumptions. But these say only something about Q(ll,tm). Not
about Q(ll,r) for general r. I.e., we stumble across the obstacle that

(.) only comments upon the initial and final states of the computation,

and doesn't pronounce itself about the intermediate stages.

Hence we look for an assertion which also captures the intermediate stages

of the computation of Q(1,tm). This assertion is:
Vl,r€13.(l£tm->Q(l,r)=Q(r,P(l))), (3.2)

as reflected in the drawings!

12,

Define tm¢ 1 by the boolean procedure

tm ¢ leif at(l) then —(l=tm) else tm¢ car(1l) A tm€ cdr(1) fi,
which determines whether or not tm occurs amongst the atoms of 1.
PROOF of (3.2):

By structural induction upon 1.

If tmf€ 1 does not hold the assertion holds trivially, hence assume tm€ 1:

There are 2 cases:

(i) at(l): Then Q(1l,r) = (since = (1= tm) follows from tmg 1)

Q(r,A(1)) =Q(x,P(1)).

(1i) - at(l): Then there exist 11,12 s.t. 1= cons(ll,lz). Assume (3.2)
by hypothesis for 11,12:
Q(l,r)==Q(cons(11,12),r)=
Q(car(cons(ll,l2)),cons(cdr(cons(ll,lz)),r))=
Q(ll,cons(lz,r)) = (since tmf 1 implies for - at(l) that
112 tm we derive from the induction hypothesis:)
Q(cons(lz,r),P(ll))==Q(12,00ns(r,P(11)))=
(hyp.) Q(cons(r,P(ll)),P(lz))==Q(r,cons(P(11),P(12))=
Q(x,P(1)).

EXERCISE:

Define L, the collection of linear lists w.r.t. a base set A of atoms as the
smallest collection L s.t.: (i)AcLl , (ii) a€ A,1€ L then cons(a,l) €L,
where cons is a total function of type Ax L?%ﬁ?(L-—A), and let car,cdr be
defined as the usual one-sided inverses to cons.

Declare procedure conc(ll,lz), concatenating 1, to 12 by

1
conc(11,12)<=5£_at(11) then cons(ll,lz)
else cons(car(ll),conc(cdr(ll),r)) fi.

Then conc is associative, i.e.,
conc(conc(ll,lz),l3)= conc(ll,conc(12,13)).

Prove this property by structural induction upon 11.

13,

Symbolic execution

In the correctness proof given above we "executed" Q (in a certain fashion)
in the sense that we consulted their procedure bodies in order to determine
the next computation step, e.qg.,

Q(cons(ll,lz),r)=:Q(11,cons(12,r)).
These "executions" are different from the ones made on a machine in that
a machine operates on actual values. I.e., in that case 11'12'r denote
actual values, while in the former case - that of the proof - we used the
observation that for each 1 of the form cons(ll,lz),Q(cons(ll,lz),r)=
Q(ll,cons(lz,r)), i.e., we executed Q(cons(11,12),r) symbolically in that
we described a computation step which will be made on a machine for every 1
of the form cons(ll,lz) and which therefore holds for all nonatomic binary
trees 1. Moreover, the case that 1 denotes an atom is treated as a special
case,
As a result, our proofs apply to every computation sequence of Q(1,r) on
a machine.
This notion of executing a computation step symbolically belongs to the
foundation of program proving and is called symbolic execution. Although
he didn't coin the terminology, this technique is already used by McCarthy
is his "Towards a mathematical theory of computation" (1961), the article

founding program correctness as a subject worthy of academic pursuit.

Critique of the above proof

Let us first recapitulate the technique introduced above by investigating
the answer to the exercise of proving associativity of conc, in order to
underline that the contents of the Present section apply in general, and

do not apply only to the proof previously given.
PROQOF : conc(conc(ll,lz),l3)= conc(ll,conc(12,13)),li€ L, i=1,2,3.

By structural induction upon 11:
(i) at(ll): conc(l,conc(l2,13))= cons(l,conc(12,13))=

conc(cons(l,lz),l3)= conc(conc(l,l2),l3).

14,

(ii) ll= cons(a,l). Assume the result by hypothesis for 1,12,13.
conc(l,conc(12,13))= conc(cons(a,l),conc(12,13))=
cons(a,conc(l,conc(12,13)))= (hyp.)

cons(a,conc(conc(l,1),13))=

conc(cons(a,conc(l,lz)),13)=

conc(conc(cons(a,l),12),13)=

conc(conc(ll,l2),l3).

O

Concatenate for the moment on a collection of finite and infinite binary

trees B', i.e., we do not restrict ourselves to the smallest collection of
binary trees B closed w.r.t. the operation cons, but consider the largest
one, B'. Clearly BcB'.

The principle of structural induction as enounced above is only valid
when one restricts one's inputs to trees 1 contained in B.
However, if tmf 1 then Q(1,r) =Q(r,P(1)) still holds for infinite trees 1
and r, in that one can extend one's notion of equality by considering two
expressions also equal in value if both do not terminate (are not defined);
for 0(1,r) doesn't terminate (is not defined) in that case, and neither is
P(l), and therefore Q(r,P(1)), provided one adheres to the convention that
cons doesn't terminate (is not defined), in case one of its overands does
not terminate (is not defined).

Since the principle of structural induction (as formulated abbve) doesn't

extend to the whole of B', while
mﬁl%Quﬂﬁ=Mrmﬂj)&mshﬂdfm:LrE& ... (3.3)

we shall give another proof of this assertion using a different induction
principle, which does extend to B',

Similar observations recently emerged in (Lehmann & Smyth 1977) in their
remarks about structural induction.

The same reasoning holds mutatis mutandis for our proof of associativity

of conc.

15,

4. An informal encounter with mathematical semantics

In this section we make an important transition: from operational
semantics to mathematical semantics, or, from body-replacement semantics

to a different kind of semantics involving the notion of approximation.

First we introduce a formal value, denoted by 1 and pronounced as
(Scott's) "bottom", or "undefined", to express nontermination of the compu-

tation of a value of an expression, or its undefinedness.
Next we define, for any recursive declaration

f(xl,...,xn)-’T[f](xl,...,xn),

f(o) as Axl,...,x .1, i.e., the function which always delivers the result 1

+1
and f(n) as Axl,...,xn.r[f(n)](xl,...,xn).

(n)

Informally, f (xl,...,xn)# L just in case f(xl,...)xn) terminates with
recursion-depth <n, and that f(n)(xl,...,xn)= 1 iff computation of
f(xl,...,xn) requires recursion-depth 2n (assuming there occur no undefined
operations in T).

The crucial distinction between f and f(n) is that f is defined using body-

(n)

replacement semantics, while f is just a function defined by a very long
expression (whose length increases with increasing n) of definite length for
given n.

In formal approaches to the subject of mathematical semantics quite a fuss
is made about this distinction, and in particular the programming language
expression t[f] is transformed into an expression belonging to a formal,
rigorously defined, language. However, since for the simple programming
language constructs considered in this chapter the essential difference

only resides in recursion, we shall not do so; e.g., the conditional can
clearly be used as a case distinction in the definition of a mathematical

function.

Thirdly, for a given set D, we introduce a notion of partial orderc by
extending D with t to DU {1} and defining c by: xcy just in case either
X=1 or x=y,
It will be clear that the I/0 behaviour of a recursive procedure defines a
partial function. Now £ can be related as follows to such partial functions
over D:
Given any partial function f over D, consider the corresponding total
function f' over DU {1} which is defined by: if f(x) is defined then
f(x)=£f(x') €D, and £'(x) = L, otherwise. This correspondence is an isomorfism,

and henceforward we shall identify f and f'.

Y N

16,

For total functions overleJ{L} one defines f, c £, iff ¥x€pU {1},

f (x);.f (x). Viewed as a partial order between functions - that this is a
partlal order indeed should be proved - T is called "approximation relation"
in the lingo of semantiqs.

An important point is that we shall not consider all total functions over
DU {1} (or from any D1LL{L} to D, U {1} for that matter):

In our model 1 denotes uhe value of an infinitely proceeding computation,

or an undefined value s&%h as the result of dividing by 0. Since we want our
functions to model the f/O behaviour of procedures, when comparing f(1) with
f(x) for x€D, we eitheq;_" expect £(1) =1, or in case f£(L) €D that f(1) = £(x)
since in that case f should denote a constant function which does not
evaluate its argument, ébnsequently f should be monotone in its arguments.
Lateron we shall restriét ourselves to functions £ s.t. f(41) = 1, called
strict, because we intend to model call-by-value.

This notion cf approx1mat10n between functions ties neatly up with the
notion of f(n) introduced above, for f(n)_, (n+1):

informally,

in case f(xl,...,x) temminates with value v with recursion-depth <n both

(n) (n+1)

£ (Xlr.--,Xn)='v and f (x ,...,xn)=*v,

1
in case computation of f(xl,...,xn) requires recursion-depth n,
(n)

(X reeerX) =1, and
in case computation of f(x ,...,x) requires recursion-depth >n, both
f(n)(xl,...,x)=1 and f(ni 1,...,x)=1,
and hence ()(xl,...,x) E-f(n+1)(x1,...,xn) in all three cases.

Our reservation "on informal grounds" is not serious, since the result can
gt gt

be rigorously proved within a fullfledged mathematical framework - and this

we do not intend to pursue for the moment.

Observe that, since E denotes a partial order, the least upper bound
i%}gbxi of a monotonically nondecreasing sequence {xi} (i.e., a sequence
of values x, s.t. x,£x, ,, 1€EN) can be introduced.

i i= i+l
One distinguishes three cases:
either X, =x, ,=1 for all i, and hence lim x.=1,
i i+l i
or x,=x, .#1 for all i, and hence lim x,=x ,

i i+l i o
3 .t =1 f i < = = e = = ene € N, an
or n, s xi or i<n, and xn xn+1 xn+n PR o ’ d
lim x, =x .
i n i
Trivial as this notion may be at this level, it is useful in that it can

be extended to a monotonically nondecreasing sequence of functions {fn}:

17,

im £, i i i Peaey = 1i s .
f&ﬂk i is defined by (1lim fi)(x1 xn) lim fi(xl' ,xn) Note that

this definition implies an existence proof of ;ﬂéﬂkfi°

Therefore, if we restrict our attention to the I/0 behaviour of a recursive
procedure f (thus abstracting from any properties involving the intermediate
values of a computation of its value) we obtain f= lim f(n), again on
informal grounds:

either f(xl,...,xn) is a well-defined value v, and then there exists an

index N s.t. f(l)(xl,...,xn)= l, i<N, and f(l)(xl,...,xn)= v, 12N,

or f(xl,...,xn) is undefined, and then f(l)(xl,...,xn)= l, 1€N.

These results are combined as follows with the parameter mechanism we use:
We shall restrict ourselves below to call-by~value, since in programming
language design call-by-name is now of historical interest only. (For
call-by-name, though, a similar mathematical theory can be developed,
though.)

Let Dl,...,Dn denote sets of well-defined values, and Dle{ll}""’
DnlJ{ln} their extentions with partial orders El""'Eh°

Then one definesg;1 by extending D1x ees X Dn’ the cartesian product of
704y

Dyre-2sD_ to (D1U {J.l})x el X (DnLl{Ln}) and using the componentwise order

over the n-tuples thus obtained:
< eea X > = < cee > i — i = cee .
Kpreoor®y7y, B n Yy ¥ HEx Gy, i=1,..00
Hence functions (used in) describing the I/0 behaviour of recursive
procedures with parameters called by value satisfy:
if 3j.x.=1_,, then f(x reserX.y.e04%) =1, Such functions are called strict,
373 1 J n —_—

and will be the only kind considered here; e.g., cons(l,l) =cons(l,1)=1.

(This convention is not always followed in literature.)

Finally, when making the transition from operational to mathematical

reasoning, we have to pinpoint the mathematical analogue of a declaration

Pe1[P]

of a recursive procedure P,

With our newly introduced notions, t[f] can be conceived of as a trans-
formation of functions £ (, i.e., as Af.T[f], properly speaking).

As main result one has the famous property that the I/O behaviour lim P(n)

of P is the least fixed point of the equation £=t[f]. This result depends

crucially on the property of t that for any monotonically nondecreasing
sequence of functions {fi},
t[lim £,]= 1lim 1[£,],
i i

i.e. that 1 is continuous in f; transformations T which are derived from

18,

programming language expressions are always continuous.

In the proof below we shall also mention the fixed point property, i.e.
(n) (n)]

that lim P =t[lim P

Finally we tie this machinery up with a proof of (3.2).
From the remarks above it follows that, in order to prove 3.2, we should

prove:
V1, r€B'.tm€ 1-0(1,r)C Q(r,P(1)), ... (4.1)
and
V1i,r€B'.tmg 1-9(r,P(1))c Q(1,r), ... (4.2)

where Q and P denote now mathematical objects, i.e.,
least fixed points (, in this case), describing I1/0 behaviours.
It follows from the remarks above that in order to prove (4.1) we should

prove:
V1,r€B'.tm€ 15 (Lim ™) (1,r) £ (1in o™y (r,p(1)),
and this follows from proving
for all n: V1,r € B'.tmg l—>Q(n)(1,r)1_:_: 0™ (x,p(1)):

PROOF: Assume tm§ 1. By course-of-values induction:

n=0: Q(O)(L r) =1 and hence the inclusion L1E£... is trivially satisfied.

n=1:Q“HYr)—Qw)L.J,snmetmﬁL.”=i

n>1: Assume the result by hypothesis for k< n, and prove it for n:

at(l): Q() r)= Q(n)(r,A(l)) = (fixed point property on P)

Q()h'NlHEQ()(,HlH,snwetmﬁL

—at(l): say, 1= cons(1l ,12):
Q(n)(cons(l l) r)—-Q(n-l)(ll,cons(lz,r))ct(1nduct10n hypothesis)
Q(n)(cons(lz,r) P(l))“Q(n 2)(12,cons(r,P(ll)))g (induction

hypothesis)

Q(n)(cons(r P(l)) P(l))=if n=2 then L and the result follows,
if n> 2 then Q(n 3)(r cons(P(ll) P(l))) = (fixed point property
on P) Q(3)(r P(L))C Q (r,P(l)).

19,

Next we prove (4.2).
{It should be noted that (4.2) would not have held, if we hadn't made
the assumtion that cons(l,L) = cons(L,1) = 1.
This can be understood as follows:
Assume cons(1l,1) and cons(l,1l) not hecessarily 1, i.e., cons does not
necessarily evaluate itg arguments,

Let 1 denote an infinite tree:

car(l) ////A\\\ cdr (1)
(//\\\‘ //N\\cdr(cdr(l))

car(car (1)) car (cdr (1))

74\

P(1) = 1im p‘™) (3,

P(O)(l)= 1, P(l)(l)= cons(P(O)(car(l)),P(O)(cdr(l)))= cons(.i,1).

P(2)(l)= cons(cons(car(car(l)),1),cdr(1)), which may not be necessarily 1,
Hence Q(tm,P(1l)) not necessarily 1,

But Q(1,tm) = 1, as can be deduced from 9= 1im 0™ and the fact that 1
contains an infinte branch.

The property of cons(L,1) or cons(l,1) not being necessarily 1 is made
use of in special applications involving "lazy evaluations" (Morris &
Henderson, Friedman & Wise) originating in work of Jean Vuillemin; lazy
evaluation postpones evaluation of the arguments of cons dependent upon

certain conditions. }

Let us now assume that cons(l,1) = cons(L,1) = 1.
In order to prove (4,2) we shall prove:
for all n, V1,r € B'.tm¢g l—»Q(r,P(n)(l))E Q(1,x).
By our statement that any programming language expression induces a contin-

uous transformation (4.2) follows.

20,

PROOF: By n-step-n+1 induction,

n= 0: Q(r,P(o) (1)) =9(r,1) = 1E0(1,r).

nz1l: at(l): Q(r,P(n)(l))= Q(r,A(1)) =Q(1,r) since tm¢€ 1,
—at(l): Assume the result by hypothesis for k < n, and prove it for n:

1= cons(1 ,12):

Q(r,P(n)(cons(ll,l2)))= Q(r,cons(P(n_l)(11),P(n-1)(12))= (fixed point

prop. on Q)

(n=1) 1 yy,p-1)

(n-1

Q(cons(lz,r)P(n_l) (1,)) E (induction hypothesis)

Q(cons(r,P (12))1:_ (induction hypothesis)

Q(lz,cons(r,P (11)))= (fixed point property on Q)
Q(l1,cons(12,r))= (fixed point property on Q)
Q(cons(ll,lz),r).

O

Our proof of (4.1) can also be given using n-step-n+l induction instead of

course-of-values induction, by proving

[Vl,r(f B' .tmE l—)Q(n) (l’r)g Q(n) (r,P(l))]& [Q(n)E Q(n+1)].

This can be understood as follows:

The first application of the induction hypothesis in the proof of (4.,1) is
followed by ...;;Q(n)(cons(lz,r),P(ll))==Q(n—1)(12,cons(r,P(ll))), and now
we can appeal again to the induction hypothesis for n-1, instead of n-2,

Next we do the same for our second application of the induction hypothesis.

This observation derives its importance from the fact that a proof by
n-step-n+l induction can be straightforwardly transformed into one using
Scott-induction in a more formal framework. Scott-induction is a famous
induction rule which unifies the other induction rules in appropriate

formal frameworks; this rule will be discussed lateron.

~

21,

5. On correctness of backtracking (, and iterative tree-copying)

In this section we discuss correctness of that version of the back-
tracking technique, as described by, e.g., Floyd, in which all solutions
of a problem which can be represented as a finite tree search are
requested. (At the end of the section we discuss briefly that version
which stops after finding any solution of the problem, instead of all

solutions.)

In general, three properties are crucial if one is to speak of

'backtracking':

(1) The problem concerns finding one or more solutions of a problem
involving search in a space which can be represented as a tree.

(2) This tree has a notion of 'partial solutions' applicable to its nodes
such that
either such a solution is refuted because it does not approximate any
‘completed solution' (- approximate in the sense of 'is an initial
part of a' -)
or it can be improved to a more complete (partial) solution by going
one step deeper into the tree-representation, until a completed
(partial) solution at the tips of the tree is reached, which is either
accepted and processed, or refuted because it doesn't satisfy the
constraints of the particular problem.

(3) This tree-space is to be traversed iterativelz.

A direct consequence of these properties is that a correctness proof of

a backtracking algorithm involving the search for all solutions to a given

problem can be split into two separate parts:

(A} A 'high-level' proof of correctness of the recursively defined search-
space in that all solutions to that problem can be extracted from that
tree structured search-space.

(B) A 'lower-~-level' proof that the iterative algorithm traverses all of the

search-space indeed.

The particular algorithm to be shortly discussed incorporates the pointer-
reversal technique described previously, and hence part (B) of the correct-
ness proof resembles the one discussed previously.

However, the general point to be stressed is that any strategy for iterative
tree-traversal could be used; the pointer-reversal strategy just provides

an example of such a strategy.

22,

As a surprising bonus we shall see that our iterative solution describes

in its schematic form also a tree-copying algorithm.

Assume for simplicity that the problem can be represented as searching a
space which is structures as a binary tree; in case of the 8 queen's problem
an octary tree is involved, and in the general case, to be discussed
lateron, one has to resort to lists, which are again binary.

Then a recursive search of the binary-structured—tree-space can be described

in principle by a recursive procedure of the following form:

P(l)«if partial-solution-can—be-extendéd(1) then P(Sl(l))lJP(SZ(l))
else if partial-solution-is-dead-end (1) then]

else extract-solution(1l) fi, eee (5.1)

where
(i) partial-solution-can-be-extended is a total predicate, and if
partial-solution-can—be-extended(1) is true, then Sl(l) and Sz(l)
are defined,
(ii) "U" denotes set-theoretical union, @ the empty set, and P(1l), if
defined has a set as value,
(iii) if partial—solution—can—be-extended(1) is false, then
partial-solution-is-dead-end (1) is defined,
(iv) extract-solution(l) denotes the one-element set consisting of a
solution; its existence ig guaranteed by the fact that both
partial—solution—can—be—extended(l) and partial-solution-is-dead-end (1)

are false.

The above conditions guarantee that no undefined elementary operations (such as,

e.g., division by zero in another context) cause undefinedness of computation,

For our purpose one may just as well consider (5.1) in this section as a

program scheme of the form

P(l) «if ext(l) then P(Sl(l))lJP(SZ(l)) else Sol(l) fi ... (5.2)

EXAMPLE: 4 queen's problem, recursive solution.

The 4 queen's problem requires a quaternary tree representation. Therefore
its 'high-level' recursive characterization has the following schematic

form:

P(l)«{l& ext(l) then P(Sl(l))(JP(S2(1))lJP(SB(l))lJP(S4(l))
else Sol(1l) Ei.

23,

The intended interpretation of ext,Sl,Sz,S3,S4, and Sol is given by:

4
P(col,s) «if col<4A free(col,s) then il_JlP(col+1,i.s)

else if col=4 A free(col,4) then {s} else g fi,

where
(i) col€{0,1,2,3,4}, s denotes a linear list with 1, 2, 3 or 4 as
atoms, and the value of P(col,s), if defined, is a set consisting
of linear lists,

(ii) free denotes a total predicate checking the particular constraints
as dictated by the 4 queen's problem, of which the specific property
of approximate solutions is discussed lateron,

(iii) "U" denotes set-theoretical union, "." denotes the concatenation
operation of an atom to a linear list, and {s} the unit set with

element s.

The call P(o,A) with A denoting the empty linear list, is intended to have
as value a set consisting of all solutions to the 4 queen's problem, i.e.,
linear lists satisfying free(4,s). Its execution tree is represented in
the figure on the next page,
Observe that the arrow-reversal game applies again to the tree-structural
search-space of the 4 queen's problem, as indicated in the lower half of
the picture.
However, one faces the following complication:
The game is not played upon a tree in situ in memory (as in the original
version of the game), but upon a tree which has to be developed while the
game is going on.
The solution to this complication is to realize that, in fact, there are
now more phases to this game:
either
(i) a partial solution is further developed in depth-first manner,
or (ii) an atom in the search tree has been found,
or the termination marked has been hit,
or the lefthand argument does not denote a partial solution or an
atcm, but a stack, from which the components have to be isolated.
That is: reversing a pointer is a rule which both applies to the phase in
which a partial solution is being developed - in the example by S, ,S

+S5,8

1772773
» and to the phase in which a previously constructed tree (stack) is taken

4

apart.
This idea is incorporated in the following iterative procedure, where for

the sake of simplicity we returned to the binary tree representation:

25,

B(l,r)e=i£_is—probl—repr(l) then
if ext(1l) Eﬁgg_B(Sl(l),cons(Sz(l),r)) else B(r,Sol(1)) fi
else
if l=endmarker then r gl§g_B(car(l),consv(cdr(l),r)) fi,

Y
cons (l,r)‘-iﬁ_is—set(l)A is-set(r) then lUr else cons(l,r) fi,

where 1 and r denote binary trees over atoms which are
either sets - with characteristic predicate is-set (1) -
or, disjunct with these, partial solutions (problem representations)
- with characteristic predicate is-probl-repr(l) -

or, disjunct with these and the sets, the endmarker.

Moreover, the predicates is-probl-repr(l), ext(l), l=endmarker, is-set(l),
and the constants Sl' SZ' cons, Sol, car, cdr, consV are defined in such
a way that none of these predicates or constants ever gets undefined for
its arguments: e.g., is-probl-repr(1l) is total, is-probl-repr(l) implies
that ext(l) is defined, is-probl-repr(1l) A ext(l) implies that Sl(l),Sz(l)
are defined, cons is total, is-probl-repr (1) A ext (1) implies that
Sol(l) is defined etc..
The appearance of a predicate s.a. is-probl-repr(1l) should cause no surprise:
as remarked previously, in this arrow-reversal game either a partial
solution should be further developed - this situation is characterized by
is-probl-repr(l) - , and, if so, the partial solution is processed further,
‘i.e., either extended - characterized by ext(l) - or extracted - character-
ized by =~ ext(l); or 1 denotes in fact a stack of temporarily stored partial
solutions (or sets) which should be extracted - characterized by

= (1=endmarker) A~ is-probl-repr(l); Oor A-jis-probl-repr (1) A 1=endmarker.

Semantically, procedure B, although compact, may be difficult to under-
stand; yet it embodies the very notion of backtracking for all solutions,
for the following assertion holds:

V11,12.-1is-set(cons(11,12))%
(is-probl-repr(l)A-qis-set(r)—*B(l,r)=B(r,P(l))), .en (5.3)

which implies in particular:

Vll,lz.-1is-set(cons(ll,l2))*
(is-probl-repr(l)-»B(l,endmarker)=P(l)).

Part of a symbolic computation of B(l,r) is specified below, where the

search space accessible from 1 has the following structure:

26,

1
L 1,
H1 L2
121 Ly2o
with 1, =S, (S, ...S. (1)...)
R e N

The description of each step in this sequence is accompanied by a
pictorial representation of the state at that moment. Since B has two
arguments, the second argument is pointed to by a dotted arrow. The search
tree is built up and accessed in depth-first left-preferent order, and
completed potential solutions are stored in that order, too, at the place
of the corresponding problem representation. A subtree with only completed
potential solutions at its tips is replaced by the set consisting of those

solutions, since the tree-structure of that subtree has become redundant:

A: First the structure accessible from 1 is developed in a left-preferent
manner, stacking the RHS problem descriptions (comparable with return

addresses) in the right argument, until a completed problem description

is met:
lo——-aun r = _ r = 1 r =
lld l2 l1 l2
1440 Yo
Q(1l,r) = Q(ll,cons(lz,r)) = Q(lll,cons(112,cons(12,r))) = ...

B: Then the first completed potential solution is stored as RHS argument,
and the stack (the original RHS argument) becomes the new LHS argument,

resulting in a last-in-first-out storage discipline:

27,

1 r
P = =
|
lL 12
& Bl
{801(111)} {SOlll}
B(cons(1, ,cons(1,_,r)),{sSol }=B(1 cons(cons(1l,,r),{Sol, 1)) =
12 2 — 11, 127 2" 11

Sol(111)=P(111)

=
{so1 {50111?/
k
{801121} l122
B(1121,cons(llzz,cons(cons(12,r),{Solll})))= P(1121)
B(cons(llzz,cons(cons(lz,r).{Solll})),{801121})
r
=D
/ g;lz
{80111}
‘ 'ol122
{801121}

B(cons(cons(cons(lz,r),{Solll}),{801121}),{801122})=
P(15))
P____epr =
\12

{SOlll} {801121,801122}

B(cons(cons(12,r),{50111}),{801121,501 h=

, 122
P(1)

28.

=2
’
K ::

p .

N
L S0l) !

{ s01
Sol 1,uol 122 2

1 12

B(cons(l2,r),{Sol ,Sol, . ,Sol, ..}

NI et Y
P(li)

~

~

"o
{80111,501121,501122} l2

B(12,cons(r,{80111,501121,501122}))=

= o€~~~ - - 0

{80111,501121,801122,5012}

{ % } {So1.}
50111,501121,801122 Sol2

B(cons(r,{Sol. . ,Sol .Sol 1, {so1_}) =B(r,{Sol..,Sol ,Sol ,Sol.
117701217505 500} 11501, 11770 121770290500

P(12) P(1)

Next assertion (.) is proved:

The proof splits into two parts: assuming Vll,lz.-1is—set(cons(11,12)),

(1) (is—probl-repr(l)A—1is—set(r)—>B(l,r)§B(r,P(l))), .ea (5.4)
and
(2) (is—probl—repr(l)A—qis—set(r)—>B(r,P(l))§ B(l1,r), ... (5.5)

PROOF of (1): By course of values induction on the recursiondepth of B, i.e.,
we prove (is-probl-repr(l)A-1is—set(r)-+B(n)(1,r)E B(n)(r,P(l))), for all n.
We prove only the case n> 2; assume is-probl-repr(r) Aqis-set(r).

Assume the result by hypothesis for k< n, and prove it for n:

(1) ext(l):
(n) _ o(n-1) . .
B (l,r) =B (Sll,cons(szl,r)) (hyp.,s1nce-1ls—set(cons(821,r)))
B(n-l) (n-2)

(cons(Szl,r),P(Sll))==B (Szl,consv(r,P(Sll))=

(Szl,cons(r,P(Sll)))E (hyp.)B(n-z)(cons(r,P(Sll)),P(Szl))=

r,P(S 1UP(S,1))E 8™ (v p1).

Pl

B(n—2)

B(n-3)(

29,

(ii) =—ext(1):

B(n) (n-1) (n-1)

(1,r) = B (r,Sol(i)) = B (r,p(1)e 8™ (r,p(1)). 0

The proof of (2) is by induction on the recursion depth of P(1) and is

left as an exercise.

Note that equivalence (5.3) does not involve any notion of approximating
complete solutions by partial solutions - the other distinctive feature of
backtracking. This will be incorporated shortly into our correctness proof,

by proving correctness of P(l).

And now for something altogether different?: Iterative copying of binary

trees!
(Due to Chris Wadsworth) :

Assume we have characterised trees ag being
either a leaf (which is an atom, say)
Oor a node,
which has a left-part, which is a tree,
and a right-part, which is a tree.

Then the natural, recursive way to copy a binary tree is given by:

copy(t) «if leaf(t) then (t)
else make—tree(COPY(left(t)),copy(right(t))).

Alternatively we can copy trees iteratively by the following procedure

which explicitly manipulates a stack (represented as a list):

f(l,r)eif_ is-tree(l)
then if leaf (1) then f(r,1)
gl§§_f(left(l),cons(right(l),r))
else if l=endmarker
then r
g£§g_f(car(l),consv(cdr(l),r)),
where consv(l,f)eiig is-tree(l) A is-tree(r) then make-tree(l,r)

else cons(1,r).

I.E. tree-copying in iterative fashion is done by essentially the same scheme

as B! As a result, our correctness proof of B implies that
(is-tree(t)-*f(t,endmarker)==copy(t)),

since the constants in the proof satisfy the same Properties.

30.

6. Correctness of the recursive characterization of backtracking for all

solutions: a special case

Until now no attention has been paid to that general aspect of back-
tracking algorithms which involves approximating more specified solutions
by means of less specified solutions. The fact that this property wasn't
needed previously, constitutes the attractiveness of the proof-strategy
followed in these sections: that a more complicated proof can be factored
out in independent subproofs. Since proofs are always difficult enough in

their own right, that is the situation we ideally strive for.

In this section we shall discuss correctness of the recursive characterization
of backtracking for all solutions of the 8-queens' problem. The general case
will be discussed lateron, and involves a straightforward abstraction of this
example.

The recursive characterization of our version of the 8-queens' problem is:

8
P(col,s)«if col< 8A free(col,s) then iglP(c01+1,i.s)

else if col=8A free(8,s) then {s} else # fi,

with col€ {0,...,8}, s denoting a linear list with 1,...,8 as atoms (possibly
empty), and the value of P(col,s), if defined, a set consisting of linear
lists; free(col,s) is a total predicate checking the particular constraints

of the 8-queens' problem.

The call P(O,A), with A denoting the empty linear list, is intended to
have as value a set consisting of all solutions to the 8-queens' problem.

Correctness of P therefore amounts to proving that

(Al): P(o,A) terminates,
(A2): Vs€ Searchspace. [(s€P(0,A) > free(8,s)] A [free(8,s) »s€ P(0,A)]
-~ /
A2 1 A2.2

Condition A2.2 is necessary, since without it the empty set @ as value for

P(0,A) would do.

The rest of this section is devoted to proving A2.1 and A2.2 in appropriate

forms, using informal inductive proofs.

To formalize A2, one must describe the searchspace.

Define Rl(col,s) by

8
Ry (col,s) «if col<8 then .U R, (col+l,i.s) else {s} fi.

31,

Then the searchspace is the value of Rl(O,A).
Therefore A2 is described by {t|t€ R, (0,A) A free(8,r)}=P(0,4),
which is a consequence of the more general property
(a2.3): {t|t€ R, (col,s) A free(8,r) } = P(col,s).
To prove (A2.3) introduce an intermedéate procedure R2(col,s):
Rz(col,s)<=i£_ col< 8 Ehgg_igle(col+l,i.s)
else if free(8,s) then {s} else @ fi,
satisfying R2(col,s)= {tltEﬁRl(col,s)A free(8,t)}, as proved below by
simultaneous induction on the recursion depths of R, and R2:

1
We prove Rén)(col,s)= {tltEﬁan)(col,s)A free(8,t)} for all n:
n=0: R2(O" (col,s)=1= {t|t€ R1 (0) (col,s) A free(8,t) }.

n>0: assume the result by hypothesis for n-1, then

{n-1)
2
if free(8,s) then {s} else @ fi

(n)

8
R, (col,s)=_£§ col < 8 then 191R (col+l,i.s) else

(hyp.) if col< 8 then igl{tltG:Rl(n—l)(col+1,i.s)A free(8,t)}

else if free(8,s) then {s} else g fi

{t|t€i~§ col < 8 then il=JlR1(n-1) (col+l,i.s)
else {s} fin free(8,t)}

(n)(col,s)A free(8,t)}. |

1
Thus the proof of A2.3 reduces to:

= {t|teR

(A2.4) P(col,s) = R2(col,s).

Now we need the 2nd characteristic of backtracking algorithms, in this case

concerning the total predicate free(col,s):
Vi,s. col< 8- (—free(col,s) » —free(col+l,i.s)), (6.1)

i.e., no more complete partial solution can be obtained from s, once
-~ free(col,s) holds. This property will be characterized, and proved, below

as: -,free(col,s)—>R2(col,sH; g.
The proof of A2.4 splits into two parts:

(A2.5): if R2(col,s) terminates with value Y, P(col,s) also terminates and

y=P(col,s); this is expressed by R2(col,s)§ P(col,s).

(A2.6) : The procedure R2 is total, i.e., terminates always with a well
defined value; then R2(col,s)==P(col,s), i.e., (A2.4) follows
from (A2.5).

PROOF of (A2.5):

Applying n-step-n+1 induction, we prove simultaneously for all n

32,

(n) (n)

5 (col,s)Ec P (n)

Vcol,s.[R 2

(col,s)]. A Veol,s. [~free(col,s) » R (col,s)E ¢@].

(i) n=0: obvious.

(ii) n> 0: assume the result by hypothesis for n-1 then we prove:

8 -
(iia) Vcol,s. if col< 8 then iglR;n 1)(col+1,i.s) else if free(8,s)
then {s} else ¢ £fi

— _

2

(n—l)(col+1,i.s) else

—

« if col=8A free(8,s) then {s} else § fi,

Y—_’//

8
E if col < 8A free(col,s) then 191P

i.e., Vcol,s.Ezg E,
and

(iib) Vcol,s.(— free(col,s) »E_C @).

2

Proof of (iia):

Of the 4 conditions which <col,s> may satisfy - col< 8A —free(col,s),
col < 8A free(col,s), col=8A — free(8,s), col=8A free(8,s) - only the first
one might give rise to different values for E2 and E, since the second one
yields by the inductive hypothesis that

8 (n-1)
E,=19R,

8 -
(col+l,i.s)E (hyp.) iL=J1P(n D

(col+l,i.s)=E,
the third one yields E,= e @P=E, and the fourth one Ezﬁ {slc{s}=E.

By () one has:

Assume col < 8A —free(col,s): then

8
E2 = iglRén) (col+l,i.s) g {by hyp., since - free(col,s) implies
8
— free(col+l,i.s)} ig1¢=¢£¢=E- o
Proof of (iib): Assume free(col,s). For col < 8 one has by that

— free(col+l,i.s),i=1,...,8, and hence

E. = 8 R(n_l)(col+1 i.s)t (hyp.) LBJ B=g
2 i=172 reeEl s fi=1 :

For col= 8, E2=¢§¢. 0

Proof of (A2.6)

Order {0,1,...,8} by 0>1>2>3>4>5>6>7> 8.

Nontermination of R2 originates from the following situations (for

procedures with parameters called-by-value) :

33.

(i) Infinite recursive regression: i.e., an infinitely going on compution

due to an infinite number of inner recursive calls, This cannot occur
since the transformation of (intermediate) values between a call and

a constituent inner recursive call of the procedure body are
<col,s>- <col+l,i.s>, i=1,...,8, i.e. Sl""'SB’

and this decreases the first component of the state w.r.t. the order >
as defined above. Hence, since this order is finite, no infinite chain
of values x1> x2> cee xn> xn+1> ++. exists of these intermediate values
since the least element of > is reached in finite time. Once this
happens, no inner recursive call occurs any more, since, if so, this
would result in decreasing the least element of > w.r.t. >: contra-

diction! But this means that the recursive procedure terminates.

(ii) At some finite recursion depth some elementary operation gets undefined:

this cannot occur either, since

either the predicates involved are total,

or the selection made by these predicates precludes undefinedness of
the elementary operations; €.g., if col< 8 then Si(col,s) is defined,

for i=1,...,8.

Remark: Note that in the correctness proof above, predicates and operations

are split into two groups:

(i) col> 8, col=8, Si' defining the search-space, and playing already
a critical réle in proving correctness of the iterative description
of the recursive search,

(ii) free(col,s), satisfying the approximation property 6.1, and playing
a réle only in correctness of the recursive search itself.

Moreover (i) involves predicates and operations which give the search-

space a finite-tree structure, as follows from A2.6, above, and (ii) is

used to prune this tree-structured search-space. Thus, returning to the

binary version of P, schematically P has the following form:

P(l) e=if ext(l) A free(l) then P(Sl(l))[JP(Sz(l))
else if free(l) then {1} else ¢ fi.

34.

7. The general case: correctness of a recursive problem specification

In the general case of backtracking for all solutions to a given problem,
the number of sons to a fathernode may vary from father to father.
Therefore we introduce the following recursive characterization of the
search-space:
Ry (x) = if ext(x) then R, (S(x)) UUnion (S(x)) else {x} fi, }
Unionl(x)e-ighbrother(x) EQEE'Rl(B(x))lIUnionl(B(x)) else @ fi,

where S is a mnemonic for Son, and B for Brother.

The following picture might apply if ext(x) holds

oX
Ry

S0 Y5 BS) e — 5 B Sy ... B (s(x))
Union :

| i
\c-»-~> e > o - > .,_.,>

Notice that R1 develops the search-space in-depth, and Union1 in-breadth.
We shall assume that ext(x) and brother (x) are total predicates which, if
evaluating to true, guarantee that S(x) and B(x), respectively, are well-

defined.
The approximation property of free(x) that
ext(s)A-qfree(x)-*-1free(Bk(S(x)))
for appropriate k, is expressed using the procedure

Sons (x) <= if ext(x) then {S(x)}UBrothers(S(x)) else x fi,

Brothers(x)c-iﬁ_brother(x) then {B(x)}tJBrothers(B(x)) else @ fi,

and amounts to: -
ext(x) A— free(x) A y € Sons (x) = — free(y).
Consequently one has
{y/v€ R (x) A free(y)}= R,y (x), ...

with R2 declared by

R2(xﬂ«=§£_ext(x) then R2(S(x))tJUZ(S(x))

else if free(x) then {x} else ¢ fi,

Uz(x)<ki£_brother(x) then R2(B(x))lJ02(B(x)) else @ fi.

35.

Assertion requires proving
for all n: Rz(n) (x) ={y/y€ Rl(n) (x) A free(y) } &

Uén) (x) = {y/y€ Union1 (x) A free(y) };

this is done (simultaneously) using n-step-n+1 induction.

However, prior to doing so, a number of questions regarding or formalism
should be answered.
If Sons(x) does not terminate, its (formal) value is (represented by)
lFIN(Nodes)' where FIN(Nodes) denotes the collection of finite sets of
possible nodes and atoms, and lFIN(Nodes) is the formal value, expressing
nontermination, added to FIN(Nodes).

Hence we should glve an appropriate truth-value to e.g., YE:lFIN(Nodes)'

We want the operator ...€... to be monotone in both its arguments.

The reason for this is that should imply

) (n)

(x) = {y/y€ UR, " (x) A free(y) } &

(n)
1

(n
u R2
(n)

uu (x) = {y/y €uUnion (x) A free(y)}.

2
I.e., ...€... should be continuous in its arguments. However, since the
only nontrivial chain of different elements o. ¢ o Co,...c0, in

1 "2%73 F k
{lFIN(Nodes)}lJFIN(Nodes) are those with k=2, a,=1, ainFIN(Nodes),
continuity of ...€... in its arguments follows from monotonicity, i.e.,
from (xlg Xy B a2) - (x1 € oL x,€ a2) .
Hence we should give yE:lFIN(Nodes) such a truth value, that, e.q.,

yE€ 'LFIN(Nodes)E Y€P and y€ J'FIN(Nodes)g Y€ {y}. This implies that

(y€1L }E false,

= h
FIN(Nodes) l{true,false} where l{true,false l{true,false}';EEES'

denotes the formal element added to {true,false}, and similarly that

———

(1€...) = J'{true,false}'

Consequently we should consider a 3-valued logic, and, in particular, define

{true,false}’ t°°-
Again, one wishes A, =, and 4 to be monotone in their arguments, for similar

the operators A, -, - for 1

reasons as stated above for €, and illustrated further on.

This implies that one has the following truth-tables for A, -, —:

A true false 1 - true false 1 —1| txrue false |
true | true false 1 true true false 1L false true 1

false | false false false false | true true true

1 1 false 1 1 true 1 1

36.

Finally the set formation operator {.../ condition(...)} should be extended

by {.../ l{E.rue,false}} = lFIN(Nodes) » in order to guarantee monotonicity
in its second argument,

and the union operator ...U... by 1t =...U

u... 1 =
FIN(Nodes) FIN(Nodes)
J'FIN(Nodes) ,

Now we are in a position to deduct properly from :

(n) _ (n)
R, (x) = {y/vE€ R,

uRz(n) (x) =u{y/y€ Rl(n)

(x) A free(y)} for all n =

(x) A free(y)}, since R;n) (x)g Rénﬂ) (x)

for all n guarantees existence of least upperbounds,
= by monotonicity (continuity) of {.../...},

(n) (n)

UR, T (x) = {y/u(y€ R, (x) A free(y))}

= by monotonicity (continuity) of A,

ur!™ (x) = {y/(u(y€ Rl(n)

) (x))) A free(y)}

= Dby monotonicity (continuity) of €,

uR:(zn) (x) = {y/y € (uRl(n)

(x)) A free(y)}
= by the least fixed point characterization of recursive procedures

R, (x) = {y/y€ R, (x) A free(y) }.

Next we prove

Rz(x)g R3(x), (7.1)
with R, defined by

R3(x) «if ext(x) A free(x) then R3 (S(x)) U U3(S(x))
else if free(x) then {x} else @ fi,

U3(x)<=£ brother (x) then R3(B(x)) UU3(B(x)) else § fi

Note that one cannot prove R2(x) = R3(x) since R2(x) might specify an infinite
search-space, and hence R2(x) =1, while free might prune this infinite
search-space to a finite one, and hence R3(x) € FIN(Nodes) .

Equality only holds when R2(x) terminates. And termination of R2(x) depends

on well-foundedness of the relational union SUB of S and B in X, i.e.,
that there exists no infinite sequence {xi} with xi#J. s.t. xi+1 = S(xi) or

Xi+1 = B(xi) , starting in x (xO =x).

37.

Assertion follows from:

(n)
R,

(n) (n)
U2 (x)c U3 (x),

(x)c r\™

for all n, E Ry

(x),

)

(=free(x) A y€ Sons(x) » R (v @),

(—free(x) Ay€ Sons(x)=»U, ' (y)c 8),

(n
2
(n)
2
which follows easily by (simultaneous) n-step-n+l induction. The proof is

analogous to that of A2.5 above.

Observe again that proving requires proving a lot more, about R2

itself, and about U2 and U3.
Thus one establishes correctness of the recursive search for all solutions,

as expressed by R3 and U3.

The general case: correctness of the iterative search procedure

First we define a general backtracking procedure BT(1l,r):
BT(l,r) «if is-probl-repr (1) then
if ext(1l) A free(l) then BT(S(1),CONC(S(1l),r))
else BT(r,if free(l) then {1} else ¢ fi) fi

else if l=endmarker then r

else BT(car(l),consv(cdr(l),r)) i,

CONC(l,r)¢=i£_brother(l) then cons(B(1l) ,CONC(B(1l),r)) else r fi,

v
cons (l,r)<«=if is-set(l) A is-set(r) then 1Ur else cons(l,r) fi.

Here 1 and r denote binary trees over atoms which are either sets - charac-
terized by the predicate is-set(l) - or, disjunct with these, problem
representations - characterized by the predicate is-probl-repr(l) - or,

disjunct with these and the sets, the endmarker.

We must prove that R, and BT satisfy

3
is«probl—repr(l)-*BT(l,endmarker)==R3(1);
this follows from

is~probl—repr(l)—*BT(l,r)==BT(r,R3(l)), .. (7.2)

By way of example we give an outline of the E-part of this proof, which
bears some analogy with the proofs about Q and B given previously. In this

case we must simultaneously prove and below:

(is-probl-repr (1) A is-set(t) - BT(CONC(1,r),t) = BT(r,tU U3(l) Yoo (7.3)

< qurth

38.

PROOF of 7.2 and 7.3: outline:

Assume is-probl-repr(l).

I.a. ext (1) A free(l) holds:
B™ (1,r) = 81V (s(1),conc(s (1), 1)) € (hyp.)
BT(n—l)

(CONC(S(1),x) ,R3(S(l)) £ (hyp.)

(n)

pr (™) (r,Ry(S(1) Uug (s e 8™ (2, (1) .

b. —ext (1) v—free(l) holds.

BT(n)(l,r)= BT(Q)(r,if_free(l) then {1} else @ fi)e BT(n)(r,RB(l)).

Assume is-set(t), too.

II.a. brother (1) :

Br™ (comc(1,r) ,t) = BT ™ (cons (B(1) ,CONC (B(1) ,x)) ,t) =

BT(n-l)(3(1),conS(CONC(B(l)'r)'t));(hyp')

BT(n—l) {cons (CONS(B(1),r),t) ,R3 (B(1))) =

B ") (conc (B(1) ;1) ,R, (B(1)) U) € (hyp.)

(r,Ry(B(1)) UtUU,(B(1))) = (associativity of U)
(z,t UR,(B(1)) VU (B(1)) C

(n) ’

BT (r,tUR3(l))-

pr(n=2)
pr (1)

b. - brecther (1) :

sr™ (conc(1,1),t) = Br'™ (r,t) =BT ™ (r,tU) =

pr () (r, e VU (D). 0

I would not have found the above proofs without having studied the simpler

versions for Q and B, and recognizing the similarities.

39,

Résumé

First I defined the search-space recursively, using R1.
Then I proved correctness of an intermediate recursive problem specification

R2 using a predicate free having certain approximation properties.

Thirdly I proved correctness of the final recursive problem specification R3,
which pruned the recursively defined search-space using free.

Also it has been argued that termination of the general version of the back
tracking problem is a consequence of a well defined search-space, which
guarantees termination; hence one should prove termination for particular

abplications.

Fourthly, I described equivalence between R. and the iterative problem

3
solution BT - the backtracking algorithm proper.

These four steps constitute proving correctness of BT(1l,endmarker). Notice
how many additional properties, generalizations, auxiliary procedures were
needed, and observe how little the perspective is on any chance of

automating such a proof.

40,

8, THE DEUTSCH-SCHORR-WAITE marking algorithm: first step

The Deutsch-Schorr-Waite marking algorithm for rooted, binary, digraphs
- that binary is no restriction, really, should be clear to the reader who
understood the general version of the backtracking algorithm - is obtained

after two steps.

In this section the first step is described: the version for binary trees.
The secret behind this algorithm is to build in a notion of direction into
the arrow reversal game. I.e., one distinguishes between a leftdown, and a

back-up phase, as indicated in the drawing below:

Traversal in leftdown phase is indicated by --»--, and traversal in back-up
phase by ...p... .

Why this differentiation into two phases? Well, new nodes are encountered
in leftdown phase, while already encountered nodes are revisited in back-up
phase.

Hence upon extending the algorithm to digraphs, one must avert the danger of

infinite traversal of a cycle by checking in leftdown phase upon nodes

encountered previously at the beginning of a cycle. This can be done by intro-
ducing a marking bit in each interior node, setting this bit when the node

is encountered for the first time, and checking upon the value of this bit

in leftdown phase (, since all nodes encountered in back-up phase have been

visited already anyhow).

41,

(The sceptical reader may observe that, although the strategy outlined
above certainly results in traversal of the digraph, this fact on itself
doesn't prove the necessity of introducing the two phases described above.
And indeed, adaptation of algorithm Q to digraphs does not result in
infinite traversal of cycles; lateron we shall indicate why this adaptation
of algorithm Q is ineffective in that one cannot indicate when Q has to

terminate.)

Traversal in leftdown phase ends upon encountering an atom, upon which
traversal in back-up phase is initiated.
Traversal in back-up phase changes into leftdown phase upon encountering a
(not yet visited) righthand subtree of the original tree, as indicated
above, and remains in back-up phase, otherwise.
Consequently the two phases do not alternate. So, upon reaching a node, how
is one to decide whether to remain in the same phase, or to change into

another phase?

In an external node (atom/leaf) there is no problem:
IR T

But an internal node is visited thrice:

1st time: --3--0--Tp---
2nd time: .-.>..0--->---
3rd time: --+>-.:0-.>-..

The solution is to introduce (again) a marking but in each interior node:
Meeting an interior node for the first time in leftdown phase sets this

bit to, say, 1:

(; 1
lst time: —--3> B -

Meeting this node next in back-up phase, i.e., with marking bit set to 1,

changes the marking bit into O:

2nd time: .. >V = . -)Y__>_

Meeting this node for the third time, i.e., in back-up phase with bit set
to 0, indicates that the back-up phase has'to continue, after which the bit
has outlived its purpose of phase-marking, and can be safely used as

marking bit, setting it (uniformly) to either O or 1:

3rd time: ..>V» >v>

42,

This is indicated in the following figure:

This idea is reflected in the following marking algorithm for binary trees
(with one bit in each interior node since no danger of cycle-traversal is

present, as yet):

Left(l,r)«if at(l) then Back(l,r)
else Left(car(l),cons(cdr(l),x,1)) fi,

Back(1l,r) «if r=NIL then 1 else
if bitfield(r) =1 then Left(car(r),cons(cdr(r),1,0))
else Back(cons(cdr(r),1,1),car(r))) fi,

where NIL serves as endmarker, and bitfield(r) isolates the marking bit of r.

Let M(1l)«if at(l) then 1 else cons (M(car (1)) ,M(cdx(1)),1) £i
denote the obvious recursive version of the marking algorithm.
Then the following assertion holds both for finite and infinite trees 1

(- cons calls its arguments by value) :
Left(l,r) = Back(M(1),r).

These algorithms have been investigated independently by Burstall, and by
de Roever, and their correctnessproof is similar to that of algorithm Q

(cfr. pages 18 and 20).

An alternative way of arriving at Left and Back is by specifying Left and

Back by the assertion given above, and deducing ("synthesizing") the text of

Left and Back from this specification.

43,

THE DEUTSCH-SCHORR-WAITE MARKING ALGORITHM: second step

In the above algorithm new nodes of the tree are encountered for the first
time in leftdown phase, and are then submitted to a test of the form at(l).
Therefore, in case of traversal of a cycle of a binary digraph, that test
is the spot in the algorithm where newly encountered nodes have to be
distinguished from already visited ones in order to prevent infinite
repetition in traversal of that cycle.

This distinction is made by introducing a second marking bit which enables
marking a node upon encountering it for the first time, and by replacing the

test at(l) by a test at(l) v already visited(l).

Next the underlying formalism is changed, for the following reason:
We intend to traverse a binary digraph in situ: I.e., by making the changes
suggested above at precisely those locations which are encountered while
traversing that digraph.
This is not reflected by the at,car,cdr,cons-based formalism used above:
E.g., a perfectly valid implementation for cons is one in which every new
application of cons(l,r) results in fetching an address of a new node from
some free list, and encoding 1 and r inside the car- and cdr-fields of
that new node.
In the present section, upon encountering an interior node with address a
we intend to overwrite the contents of that node at o destructively, i.e.,
execution of our algorithm results in a side-effect upon the memory.

In an, e.g., PASCAL-based notation this would result in the introduction
of records, and pointers 1 and r to those records; the algorithm would
have two such pointers as parameters, and execution would be expressed as a
side-effect upon the "memory" (set) consisting of these records. This is
left to the reader.
We intend to prove correctness of the algorithm, and hence have to quantify
the side-effect upon the memory explicitly by introducing the memory as
parameter to the procedures. Such is the objective of the formalism intro-

duced below (cf. Topor) :

Let At and Loc denote two disjoint sets, and at denote a total predicate

over these sets satisfying at(a) = true iff o€ At.

A memory for representing binary directed graphs with two marking bits is

a total function a:Loc-*{0,1}2X(LoclJAt)2.

Changes of such a memory are described as follows:

44,

Let a ,a2€ {0,1}, and a a_,a

1
a € Loc defined by

,a4€ (LocUAt), then olo-a ,a4] is for

3 1772773

ABEILoc.ig.a=B then <a, ,a_,a_,a,> else o(R) fi.

1772"73"74
For a€ Loc, elements of the quadruple o(a) are accessed by the (total)
functions
already visited,f: Loc x Mem- {0,1} and
hd, tl: Loc x Mem- Loc U At, with Mem denoting the collection of memories as

defined above, and already visited,f,hd,tl defined by:

If a € Loc,0 € Mem, and o(a) = <a a, >, then

1792733734

already visited(a,o0) = al,f(a,o) = a2,hd(a,c) = a3,tl(a,o) =a,.
In view of the above, the Deutsch-Schorr-wWaite marking algorithm of binary
directed graphs, expressed by LEFT(a,B8,0) and BACK(a,B,0) below, should now

be obvious:

LEFT (a,B,0) <= if at(a) V already visited(o,0) =1 then BACK(a,B,0)
else

LEFT(hd(a,0) ,a,0la~>1,1,tl(a,0) ,B]) f£i,

BACK(a,R,0) <=if B=NIL then <a,o0> else
if £(B,0) =1 then
LEFT (hd (B,0) ,B,c[B-m(B,0),0,t1(B8,0),al)
else

BACK(B,hd (B,0) 'c’[B-> 1,1,t1(B,0) ra]) f_i-

Let
M(a,0) <= if at(a) v already visited(a,0) =1 then o else

M(tl(a,0),M(hd(a,0) ,0[la=1,f(a,0),hd(a,0),tl(a,0)])) fi,

denote the obvious recursive version of the marking procedure.

Then correctness of the Deutsch-Schorr-Waite marking algorithm for binary

directed graphs is expressed by
LEFT(a,NIL,0) = <o ,M(a,0)>, ...
a special case of

LEFT((’-IBIU) = BACK(alBlM(ar B)) .

45,

Insert: why algorithm 9 cannot be adapted to traversal of binary digraphs:

one does not know when to terminate.

Consider
Q(o,B,0) «=if =mat(a) then Q(hd(a,0),a,0la:tl(a,o),B8])

else if —tm(a) then Q(B8,A(a),0) else ? fi

We did not specify what Q does when it hits the termination marker; this

has the following reason:

. tme
Consider EEE TN =
o3: at al:

ad:

Q(al,tm,0) leads to the following sequence of intermediate results:
<al,tm,0>=<a2,al,0lal:ad4,tml=<a3,a2,0lal:a4,tm][a2:a5,al]l>=
<al,a3,0lal:04,tm]{a2:05,a11[a3:at,a2]>=
<ad,al,olal:tm,a3]{o2:...][a3:...]>= ... =
<al,ad,olat:tm,a31[a2:...]1[a3:...])[ad:A(at) ,A(at)]>=

<tm,al,olat:a3,ad]> ... clearly Q is not yet finished with its backtracking:
it still has to track back to a3, and then to a2 in order to visit ad.

T.e., Q should bot terminate when hitting tm, but go on backtracking., Even-
tually a moment will occur in the computation after Q has hit tm repeatedly,
when the full graph is restored and everywhere visited. ... But Q will not
know this, since it cannot predict how often tm has to be passed prior to

stopping.

End of insert

Ny

46.

As we shall see lateron, a considerably more interesting observation

concerning the termination of M can be made, which holds, a forteriori, for

LEFT(a,NIL,0) .

Proof of the above assertion splits as usual into two cases:
J: By induction on the recursiondepth of M. Omitted.
C: By (simultaneous n-step-n+l) induction on the recursiondepths of LEFT

and BACK.

We prove the latter. To this end two auxiliary lemma's, and an important

observation are needed.

LEMMA : M(a,O[B:I,al,az,a:s]) [B:l,bl Ib2Ib3] = M(alc[s:llbl lb21b3])

with ai,bi of the correct types ... (a)
Proof: By straightforward induction on recursiondepth M.

LEMMA: hd(y,M(§,p)) Ehd(Y,p)
t1(y,M(8,p))E t1l(y,p) (B)
Fly,M(8,p)) G £(v,p)
already visited(y,M(8,ply:1,...1))C 1

Proof: By straightforward induction on recursiondepth M.

OBSERVATION: The latter lemma will be used in conjunction with the call-by-
value parameter mechanism. Let P denote a procedure with parameters called-

by-value. Then P(...,hd(Y,M(G,p)),...,M(G,p),...)==P(...,hd(y,p),...,M(G,p)),
and similarly for tl,f,already visited ... (C)

Insert

Observation (C) can be more succinctly formulated by:

Suppose we are considering functions on flat lattices, to flat lattices, only.
And let g(a,f(x,y))C g(a,y).

1f h(xl,x2) is strict in its argﬁhents, and

we know that h(a,f(x,y)) =h(g(a,f(x,y)),£(x,y))

then also h(a,f(x,y)) =h(g(a,y),£f(x,y).

end of insert

This has the following reason:

In case M($,p) does not terminate, P(...,hd(y,M(8,p)),...,M(8,p)) =1
anyhow, and otherwise, hd(y,M(S8,p)) =hd(y,p), and hence,
(P...,hd(y,M(8,p)),...,M(8,p),...) = P(...,hd(v,p),...,M(8,p),...).

9.

47,

An axiomatic theory on which this observation can be based is developed in
my thesis (Recursive procedures: semantics & prooftheory, Mathematisch

Centrum 1975) and is closely linked with predicate transformers.

PROOF: [T part:

(i) =—at(a) Amalready visited(o,o0) = 1:
LEFTn+1(a,B,0)==LEFTn(hd(a,0),a,o[a:l,l,tl(a,o),s])g'(hypothesis)
BACKn(...)E.BACKn+1(hd(a,0),a,M(hd(a(o),0[a:1,1,tl(a,0),8]))= (B)
LEFT“(tl(a,o),a,M(hd(a,c),o[a:1,1,t1<a,o),B])[a:1,o,s,hd(a,o)])g;(hyp.)
BACKn(...)g;BACKn+1(tl(u,o),a,M(tl(a,O),M(hd(a,c),c[a:l,l,tl(u,c),s])

[¢:1,0,8,hd(a,0)]) = (B)
BACKn(a,B,M(tl(a,o),M(hd(a,o),o[a:l,l,tl(a,c),B])[a:l,O,...])

[a:lrolhd(alo)ltl(alo)]); _j

{By (2): M(tl(a,0),M(hd(a,0),0la:1,1,t1(a,0),8]) [a:1,0,hd(a,0),t1(a,0)])
(by (A), again) M(tl(a,g),M(hd(a,o),o[azl,o,hd(a,o),tl(a,o)]))==M(a,o)}
BACKn+1(a,B,M(a,0))-

(ii) at(a) v already visited(o,0) =1:

LEFTn+1(a,B,0)==BACKn+1(a,B,U)==BACKn+1(a,B,M(a,0)) 0

TERMINATION OF M(a,0) - and, hence, of the DEUTSCH-SCHORR-WAITE marking
algorithm.

The binary digraphs which we are manipulating are not arbitrary at all:
they are finite! Moreover, since ¢ has been introduced as a partial mapping,
0 has to satisfy certain consistency criteria in that, in case <a,0>
represents a binary digraph and —at(a), one has o € domain(c), and hence
already visited(a,o) is well-defined so that the test at(a) v already

visited(ao,0) =1 is also well-defined and either true or false. In case the

latter is £§l§g, since o€ domain(c), also hd(a,0) and tl(a,o0) are well-
defined, and both hd(a,c) and tl(a,0) are either atoms or belong to domain(og).
In case they belong both to domain(o), therefore, <hd(a,0) ,cla:1,...]> and
<tl(a,0),0la:1,...]> represent again binary digraphs to which the same
reasoning applies, until, after repeated execution of the hd- and/or
tl-operations, one arrives at locations avs.t. at(av)\/already visited(av,ov)= 1
does hold.

The formulation of this property requires a more sophisticated induction
principle than the principles previously used to characterize binary trees

and linear lists (cfr. pages 8, 9, 12), primarily because one has

48,

to assert both that o€ dom(o) ~ this is a mathematical, and in general not
programmable statement since it amounts in its full generality to solving
the halting problem - and the essential observation of FINITENESS mentioned

above - which we shall formulate in terms of well-foundedness (for the case

of markable binary digraphs).

To clarify the situation, let us return to the axiomatic characterization
of binary trees discussed previously. We did prove that P(x) L x where

P(x)«=if at(x) then x else cons(P(car(x)),P(cdr(x))) fi

using n-step-n+l induction.
But termination of P(x) had to be asserted, since P(x)E x and nontermination
of P(x) were comparable - just use infinite trees as model.
What did this assertion amount to? That, given a binary tree, one could
apply car or cdr only a finite number of times "before hitting an atom" -
i.e. computation of P(x) can never be infinite -, and moreover, for the
successively generated values x, car(x) and cdr(x) are always defined, until
one hits an atom. Now infinite computation is ruled out by asserting that
Ax.if mat(x) then car(x) or cdr(x) else L fi is well-founded, where or
denotes nondeterministic choice, i.e., there does not exist an infinite
sequence <xi>,: s.t. x,

i=0 i+l
Undefinedness of car and cdr is ruled out by asserting that —at(x) implies

= car(xi) or xi“_1 = cdr(xi) , and xj =1 for some jE€N.

that car and cdr are defined in x.

The analogy with this situation for binary digraphs is that occurrence of
locations o s.t. (—at(a) A)a € dom(o) must be forbidden. This can be
formulated in terms of well-foundedness by extending well-foundedness of
Aa,0.if already visited(a,c) =0 then <hd(a,0),cla:l,...]> or <tl(a,o0),0la:l,...]>
else ... (-~ comparable with well-foundedness of car (x) or cdr(x) -) by also
requiring well-foundedness of Aa,0.if mat(a) A o€ dom(o) then <a,0> else ...
since this extension enforces ill-foundedness on all <qa,c> s.t.—at(a) A
o g dom(o).

Notation: If relation R is well-founded in X, this will be abbreviated by
x€ 1(R). Also already visited will be abbreviated to av, and

domain(c) to dom(o) - as already done above.

Let I be defined by
I=2%a,0. if a € dom(o) A— at(a) then <0,0> else
PEF if av(a,0) = 0 then <hd(a,0),olu:1,£(q,0) +hd (,0) ,t1(a,0) 1> or

<tl(a,0),0la:1,f(a,0) ,hd(a,0) ,tl(a,0)]> else L fi.

Then our induction principle for binary digraphs with two (at least one)

marking bit is:

49,

J: a € dom(g) = <a,0> € 1 (I)

We assume that if o denotes an atom, I(a,0) =1 since av(a,0) =1 in that case.
Notice also that well-foundedness is defined in such a way as to exclude
sequences <xi>i:o in which 1 occurs:

well-foundedness of I in <q,o0> implies the absence of an infinite sequence

X, >.»o s.t. x.#1, and I(x,) =x, for i €EN.
i i=0 i i i

+1'

Amongst others, J asserts no infinite looping of cycles (on account of
marking of, and testing on, the av-bit), but does model repeated traversal
of shared subgraphs, if such sharing occurs.
{The emphasis is here on modelling: the occurrences of ola:1,...] in I, i.e.
in <hd(a,0),0la:1,...]> or <tl(a,0),0la:l,...]> concern separate copies of
the same memory. I.e., since no "side-effect" of one copy on another one is
expressable, shared data, which occur necessarily in as many separate copies
of the memory (as the degree of sharing) are traversed in each of these
copies in which they exist.}
Now in case of M(a,0) the situation is different:
Repeated traversal of shared substructures is excluded by the recursive
marking procedure M(a,c) (declared by

M(a,0) «if at(a) vav(a,o) =1 then o else
M(tl(a,0),M(hd(a,0),0la:1,£(a,0),hd(a,0),tl(a,q)])) £i),

since the call-by-value parameter mechanism enforces that, recursively,
first <hd(a,o),c[a:1,...]> is traversed and marked as already visited, and
secondly <tl(a,o),ov> is traversed with ov only differing from ola:1,...]
in that previously visited nodes have been marked already, and are therefore
excluded from traversal (, as is not the case with J).
{Thus, the order of the computations in the recursive case (originating in
M(a,0)) and the iterative case'(originating in LEFT(o,NIL,0)) are the same,
but the repetition of exXecution of I starting in <a,0>, imposed by well-
foundedness of I in <&,0>, leads in general not at all to the same
computations as those originating from M(a,0), and even, if theyv are the
same (because there is no sharing) the respective orderings may be totally
different.}
Consequently, infinite computation of M(a,0) implies ill-foundedness of I
in <a,0>: The possibility of infinite traversal without (possibility for)
repeated traversal of shared subgraphs - as is the case with M(a,0) -

implies trivially the possibility of infinite traversal with (possibility

50.

for) finite, repeated, traversal of shared substructures,

Hence J implies the following by contraposition of the above Observation:

THEOREM: o € dom (o) = <a,0> € domain M

Intuitively, one is faced with the following situation:
What does it mean that M(a,c) has no well-defined value?
It means that the computation sequence for M(a,o)
either (1) leads to an infinite number of inner recursive calls of M,
or (2) after a finite number (possibly none) of inner recursive calls
of M an elementary statement of M is undefined (in the inter-

mediate state presented as input to this elementary statement).

What does case(1) imply?:
It implies that there exists an infinite sequence <xi>i:0' with
Xo = <o.,0>, xi#.L, s.t. the state-transformations mapping xi to X
describe state-transformations in between successive inner calls of M.
What are the state-transformations in between successive inner calls
of M?

They are described by

Ao,o. if av(o,0) =0 then

<hd(a,0),0la:1,...]> or '<tl(a,0) ,M(hd(a,0) ,0la:1,...]1)> else 1

— since there are two possibilities for inner recursive calls of M
we need to express the (nondeterministic) choice between these two

possibilities:
<hd(a,0),0la:1,...] or <tl(a,o),M(hd(a,0),0la:1,...1)>.

What does case(2) imply? _
After a finite numbeg (possible none) of inner recursive calls of M
one faces the situation that for some xi, the next-to-be-computed-
elementary statement of M is undefined in xi. Let xi= <ai,oi>. Then
inspection of M's procedure body reveals that this situation can only
arise in case aiidom(oi) A—,at(ai) , 1.e., ai is a location in which oi

is not defined.

Reduction of case(2) to case(1l):
As remarked above, case(2) can be reduced to case(l) by introducing the
following relation as an extra possibility for transformation between

successive xis:

51,

Ao,0. if a€ dom(o) Amat(a) then <a,0> else

LY]

since, once a € dom(o) Amat(a) is satisfied in <a,0>, it remains satis-

fied under this transformation ... ad infinitum.

Thus M(a,0) does not terminate iff there exists an infinite sequence

<xi>i<>__go,xo= <0,,0>,5.t. for iEN,xi# .L,xini_'_1 with R defined by

Aa,0. if a€ dom(o) Amat(a) then <a,o0> else
if av(a,0) =0 then

<hd(a,0) ,0la:1,...]> or <tl(a,0),M(hd(a,0),0la:l,...]> else L fi.

(These observations relate to the paper by Hitchcock & Park; personally I
think they are a more convincing example for application of their theory

then these authors supply themselves.)

Next we prove that the existence of such an infinite sequence for R which
originates in <a,0> implies the existence of such an infinite sequence for I.

Hence, well-foundedness of I in <a,0> implies well-foundedness of R in <a,0>,

i.e., termination of M in <o.,0>,

We shall prove the following:

Let <<a,,0,>> » satisfy <o, 0.>R <a, o, .,>,<0,,0,>#1.
i’7i77i=0 Yy <0304 i+l 7i417 T #

Then we can replace the memories ci in this sequence by other memories

. S.t. <a. > I <a, T. >, <o, >F L, 0. = ;
Ty %30Ty i1 i Ty L 0- "o
from oj by "deleting the side-effect on the memory oi due to executing

M(hd(a.lo.)IU.[a.:llo-.])".
1 1 1 1

Ti will be obtained

I.e., assuming inductively that well-defined pairs <a0,TO>,...,<an,Tn>
have been obtained s.t. 00= TO,

< >T <q >,i= e eeyn—- - i
a7y ai+1'Ti+1 =1, +n-1, then a well-defined pair

< > < > . i i i i
an+1'Tn+1 s.t. an,‘rn I <an+1'Tn+1> is obtained using the following

inductively defined construction process:

(1) Either: 1If ?<a0,00>

o< >s.t. dom(c) Ama
a s0 >s ani (n) - t(an), and hence

<q g
n+l'"n

' T

+

0> (= <a0100>)

> = <q g >
1 n'"n’

[]
then E<a0

*<q ,T >s.t. a_ ¢ dom(t) Amat(a), and chose
n n n n n

T

and choose <an,Tn> itself for <an

+1' "n+1

52.

(2) Or: If 0>

%1%

<a_,0 >s.t. av(a ,0) =0 and
n n n n

@ 4704 <hd(an,on),0n[an:1,...]>

then ? <a0,ro> (= <ao,00>)

* <o ,T >s.t. av(a_,T) =0, and chose
' n n n n

* <hd(a ,t),t [o :1,...1> for <a . T
n"n’'n'n

>
n+l" n+1

(3) Or: THE INTERESTING CASE:

3 < >
if ? ao,oo

,,,,,,,——”é <a_,0 >s.t. av(a ,0)=0 and
‘ n n n n

hd(a_,o) g :
o EL(o) d Cne10n4y” = <Ll 0) Mbd (a0)0z [a o1, .j])>
N ~— >

then ? <u0,r > (= <a ,00>) o

0 0

® <o ,T_>s.t. av(a ,T) =0 and
' n n n’' n

o< :l,... >=« T >
tl(()‘n"rn)'-l-n Gty %n+1 " Tne1

notice that the side effect

due to o

has been deleted.

Only the third case is note-worthy:
At the LHS of the picture we have suggested the side-effect on o [a :1,...]
due to execution of M(hd(an,o), c [a :1,...]) instead of just hav1ng to
deal with o [a :1,...].

n n
This side-effect is absent in our definition of T .

n+1
Intuitively these side-effects do not matter, since existence of the path

<<a.,0.>>.fo implies that a, is never already visited, i.e. av(ai,c) =0,

along that path. Thus we mlght just as well delete the marking of other

parts of the memory by M(hd(ai,oi),oi[ai: ++.-1), since this did not result

in marking a. a, e
= Tarxing i+1"7i+2f

Next we formalize this process, and prove that for Ti so-obtained,

<a,,T7.>I <q,. T indeed.
i’ti i+1° 5417

53.

Insert

In the proof presented on the following pages we prove, assuming existence
of one infinite sequence, the existence of another infinite sequence. Hence
it is not clear how to express this proof using n-step-n+l1 induction only.
This connection between proofs using n-step-n+! induction and infinite
sequences is elucidated in my paper "on backtracking and greatest fixed-
points" (ICALP '77, Turku, Arto Salomaa (ed.), Springer Lecture Notes in
Computer Science); hence the proof can be considered as one using n-step-n+1

induction, only.

end of insert

Let p(<a,0>,<a,T>) be defined by

VY€ Loc. [(y€ dom(o)«+vy€Edom(T)) A
(av(y,0) = 0= av(y,t) =0) A
£(y,0) = £(y,7) Ahd(y,0) = hd(y,T) A t1(y,0) = t1(y,7)].

Then we have:

p(<a,0>,<a,t>) =p(<a’',0'>,<a',1'>) |,

Where a',0' is such that
a) if af dom(o) Amat(a) then <a',g'>= <a,0>,
b) if a4 € dom(o) then
either (i) <a',0'>=<hd(a,0),0la:1,£f(a,0),hd(a,0),tl(a,0)]>
or (ii) <a',0'>= <tl(a,0) ,M(hd(a,0),0la:1,f(a,0),hd(a,0),tl(a,c)])>
in case M(hd(a,0) ,0la:1,.,.]) is well-defined,*)
and 1' is obtained from T as follows:
in case(a) above, 1'= T,

and in both subcases of (b) above, T'= tla:1,f(a,0),hd(a,0),tl(a,0)]

*) This can be safely assumed, since, otherwise, one would have chosen
a'=hd(a,0), i.e. case(b(i)) in order to prolong the sequence of ai's

towards infinity.

54,

PROOF :
Case a): Since <a,0>=<a',0'> and T=1', trivially p(<a',o'>,<a",7'>) =
p(<a,o0>,<0,1>).

Case b) (1): y€ dom(o') ®y€ dom(1"'):

dom(t[a:1,...]) = {since o € dom(o) one has a€ dom(t) by p(<a,0>,<qa,1>)}

dom(t) = {by p(<a,0>,<a,t>)} dom(o) = dom(c').

av(y,o') =0-av(y,t') =0.

Assume av(y,oc') =0:
(i) y=a leads to contradiction since av(a,0') = 1. Hence v # a:
(ii) y#o: then av(y,t') =1 leads to contradiction since
l=av(y,t') =av(y,T) = (by p(<a,0>,<a,t>) and contraposition)
av(y,o) =av(y,c')y =0 *+.

Hence av(y,t') = 0.

£(y,0') = f(v,1) Ahd(y,c') =hd(y,T') A tl(y,o') = tl(y,t'): Obvious.

Case b) (ii): In addition to properties (B) and (C) on page + one needs

the following auxiliary lemma:
(<8,p>€ dom(M) = Vy € Loc,T € Mem. [M(§,p) = <§,t>=dom(8) = dom(t)]),

the proof of which is an exercise in induction on recursion depth.

Assume M(hd(ua,0),0{a:1,...]) is well-defined (cfr. the note on the bottom of
page 46):

y€dom(c') ©y€dom(t")

Since M(hd(a,0),0la:1,...]) is well-defined, one has by the auxiliary lemma:

Y€ dom(o') ®y€ dom(ola:1,...]) and dom(o[a:1,...]1) =dom(o) =

(by p(<a,0>,<a,7>)) dom(t) =dom(t"')

av(y,o') =0-av(y,1') =0

Assume av(y,c') = 0.

(i) Y=o leads to contradiction since av(a,0') = (by properties B and C on
page) 1. +. Hence Y# a:

(ii) y# a: Then av(y,t') =1 leads to contradiction:
I=av(y,t") =av(y,1) = (by p(<a,0>,<a,t>) and contraposition)

av(y,o) = av(y,o') = 0 +. Hence av(y,t') =0

10.

55,

An exercise in Scott induction

1. In the proofs using n-step-n+! induction discussed above, one notices
that these proofs are uniform in n:

For in these proofs one only observes the case distinction between n=0 and
n#0; one is not interested whether n=7,13,217.

E.g., let the recursive procedure P be defined by
P(xl,...,xn)¢=T[P](X1,---,Xn):

and suppose one proved "something about" P using n-step-n+l induction.

(0)

In case n=0, P = Axl,...,xn.i, and hence one has to prove "something

about" the nowhere-defined function Q.

In case n#0, "something about" P(n)

P(n+1)= T[P(n)].

has to imply “something about”

Now Scott induction requires the introduction of partial function variables

X in order to express the case n#0 uniformly in n, i.e., without mentioning

n at all:

One has to prove that an assertion about a free variable X implies the same

assertion about t[X] (, where substitution of X inside T is defined in such
a way that no free-bound clashes of occurrences of X inside T can arise).
The other case, n=0, is covered by proving that this assertion also holds

for the nowhere defined partial function Q.

Obviously, once one has proved assertion A for 2, and also that if A holds
for (any value of the free variable) X, this implies A for t[x], induction
on i yields that A holds for 17[Q], i2 0, where TO[Q] = Q, Tl+1[Q]DEFT[Tl[Q]].
DEF

. . i
Since P=lim 17 [Q], one therefore needs the property that A commutes with the
L i , ,
limit of <t [Q]>i:O in order to obtain that A holds for P; this is by
definition the case if A is continuous in X. 8Bince continuity of A in X can
often be guaranteed by simple syntactic restrictions on A, observing these

syntactic restrictions justifies:

Scott's induction rule: (1) ¢ FA(Q)

(2) ¢,A(x) FA(x[x])

¢ FA(ux[t[x1];

here X denotes a free variable;
¢ a list of assumptions in which X does not occur free;

substitution inside t is suitably defined as to evade clashes between bound

56.

occurrences of a variable inside t, and substituted free occurrences of

that variable;

ux[1[x]] denotes the least fixed point of the transformation X t[X],
occurrences of X inside ux[t[x]] are bound, and t[X] is continuous in X (in
order to that ux[t[x]]= 1lim Ti[Q]); specifying the form of ¢, A would entail
formalizing a language: since we do not intend to do so, we refer for
examples to previous proofs.

This rule can be extended to mutually recursive procedures as:

Simultaneous Scott induction:

(1) @ FA(Ql,....Qn)

(2) ¢,A(x1,...,xn) FA(rl[xl,...,xn],...,rn[xl,...,xn])

p .. .o e cee s ;
¢ FA(UIXI- Xn[Tll lTn]I runxl Xn[11, :Tn])

here the stipulations mentioned above should be generalized;

Qi and xi are of the same, appropriate, type;

wXooooX [r 0% ,...,x1,...,1 [X ve--+X_1] denotes the ih component of the
iv1 n 171 n n 1 n

least fixed point of the transformation

<X1,...,Xn>F*<T1[X1,...,Xn],...,Tn[Xl,...,Xn]>, i:1l...n.

In case Pl""’Pn are mutually recursive, and declared by

PleTl[Pll---an]

P <« P,...,P
n Tn[1’] n] ’

uixl...xn[rl,...,rn] expresses the I/0 behaviour of Pj'

The simultaneous version of Scott “induction can be justified by defining
0 _ k+1 _ k k
Ti[ﬂl,...,ﬂn]-ni,ri [91,...,9n]-ri[rl[nl,...,nn],...,rn[nl,...,nn]],

and observing that P, = lim t..
1 k=

2. Our intention is to formulate the termination proof of M using Scott's
induction rule.

This leads to the difficulty that the notion of well-foundedness cannot in
general be appropriately defined within the framework of continuous partial
functions; in fact, well-foundedness requires in general the introduction

of certain non-continuous, monotone, transformations, cfr. [Hitchcock & Park]

The non-continuous aspect of these transformations arises from the fact that

57.

a relation S, of which one intends to express well-foundedness, may be
unbounded in its nondeterminism, i.e., for certain X, {yl<x,h>€IS} is
infinite.

However, if this is not the case, i.e., S ig finitely bounded in its non-

determinism, then one can prove that well-foundedness of S can be expressed
using continuous functions.

It can be proved, cfr. [de Bakker], that if such is the case, one may Jjust
as well express well-foundedness of S by requiring termination of a certain
"boolean procedure" whose declaration depends upon the definition of S.
Specifically, the paper by de Bakker describes a general technique which
implies, e.g., that M terminates in <a,0> iff the boolean procedure pR,
defined below, evaluates to true in <a,o0>.

Observe that the relations I and R defined previously are bounded in their

non-determinism as only a choice between two possibilities is introduced.

Example:

p. is defined by:

I
pI(a,o)<=_i_g_ o € dom(0) Amat(a) then pI(a,o)
else if at(a) v av(a,0) =1 then true

else p (hd(a,0),0la:1,...]) A prltl(a,0),0la:1,...]) £i,
Similarly, 128 is defined by:

pR{a,o) «if o€ dom(o) Amat(a) then pR(a,c)
else if at(a) v av(a,g) = 1 then true

else pR(hd(a,c),c[a:l,...])/\pR(tl(a,o),M(hd(a,o),c[a:l,...])) fi.

Now our induction principle J can be reformulated as

pI(a,c)#.L

And our theorem that J implies termination of M (in view of the remarks

about de Bakker's paper) by

pR(a,c) = i-*pI(oc,o) =1

58.

3. We shall prove by Scott induction that
pR((1,0)=J.='pI(0L,0)=J.,... (*)

As usual this assertion cannot be proved directly, since the inductive
nature of constructing the infinite computation sequence for pI requires
4 more general assertion.

The essential insight is here to prove
VYo,o0,T.((p(<a,0>,<a,T>) A pR(a,o) = 1) »pI(a,T) =1),e.. (**)

with p defined as on page 53; (*%) makes the inductive nature explicit

of the termination argument given in that section;

assertion (*) follows from (**), since p(<a,0>,<a,0>) holds, by taking o= T.
(Finding such a more general assertion as (*¥) requires an effort which sums

up to at least a month of work.)

PROOF of (**): By Scott induction on prs i.e., uXI[T[XI]], where T denotes
the procedure body of P;-

Hence we have to prove:
(1) Va,0,1.[p(<a,0>,<a,15) A bp<a,0>= 1= Q<a,t>=1]: trivial,
(ii) Va,0,t.[p(<a,0>,<0,1>) A pp<a,0>= 1= X <a,t>=1] }
Va,0,t.[p(<a,0>,<a,1>) A Pp<a,0>= 1= TI[XI]<a,T>= L],

(After having proved (i) & (ii), Scott induction implies (**) by the least

fixed point characterization of recursive procedures.)

PROOF of (ii):

Assume the inductive assumption, assume p(<a,0>,<a,t>) and assume pR(a,6)=.L.
Then one has to prove TI[XI](a,T)=.L.
There are three cases:
- —at(a)Aaf dom(o): then - at(a) A o € dom(t) follows from P, by assumption
X <a,T> and TI[XI](a,T)= X;(@,0), hence the result follows from the
inductive assumption,
- at(a) vav(a,0) =1: then ég(a,c)==gggg, which invalidates the antecedent
of the implication, and hence the implication is trivially satisfiedf
- a € dom (o) : pR(a,o) = pR(hd(a,G) olazl, ... A pR(tl(d,o) M(hd(a,0),0la:1,...1)),
and TI[XI](u,T)==XI(hd(a,r),T[a11,...])/\XI(tl(a,r),r[azl,...]).

(i) pp(hd(a,0),0laz1,...]) =1,
Chose o' = hd(a,0),c' = ola:t,...],1'= tla:l,...].
It follows from p that a'=hd(a,T).

By the result on page one has p{(<a',0'>,<a’,t'>).

59.

We already assumed pR(a',c')= 1,
Therefore it follows from the inductive assumption that XI(a',T')= 1.
Thus the result follows since XI(a',r')= 1 implies TI[XI](a,T)= L.

(ii) p(tl(a,0),M(hd(a,0),0la:1,...1)) = 1.
One can safely assume M(hd(a,o),ola:1,...]) to be well-defined, for,
if not, pR(hd(a,o),o[azl,...])= 1 and the previous case applies.
Chose a'=tl(a,0),0' =M(hd(a,0),0la:1,...]),1"'=1[a:1,...].
It follows from p that o'=tl(a,t).
by the result on page p(<a',0'>,<a',t'>) holds. We already assumed
pR(a',o')= 1. Therefore it follows from the inductive assumption that
XI(u',T')= i.

Thus the result follows since X;(a',7t') =1 implies TI[XI](a,T)= 1.

O

This completes our correctness-proof of DEUTSCH-SCHORR-WAITE with a
termination proof.

Note that we separated the problem of proving
LEFT (o, B,0) = BACK(a,B,M(a,0))

by n-step-n+l induction

from the problem of proving termination of LEFT(a,B,0) by assuming the
simplest induction principle available. This separation of proofs and
techniques agrees with FLOYD's observations concerning the separation of a
(total) correctness-proof into a partial correctness-proof (not involving
the assertion of termination) and a termination proof. We stuck to this
principle throughout these notes.

Well, dear reader, where from here? A correctness proof of Clark's list-
copying algorithm ("Copying list structures without auxiliary storage",

Dept. of Comp. Sc., C.M.U., oct..'75) is in preparation., Au revoir!

60,

References
=TS

de Bakker, Termination of nondeterministic programs, in 3rd colloquium

on Automata, languages & programming, Michaelson & Milner (eds.),

Edinburgh University Press, 1976,

Burstall, Proving properties of programs by structural induction,

Comput. J. 12, 41-48, 1969,

Burstall, Program proving as hand simulation with a little induction,
IFIP 74, North-Holland.

Burstall & Darlington, A transformation system for developing recursive

pPrograms, J.ACM 24 (Jan. 1977), pp. 44-67,

Clark, D.W., A fast algorithm for copying list structures, C.ACM 21
(May '78), pp. 351-357.

Dwyer, Simple algorithms for traversing a tree without auxiliary stack,
Inf. Proc. Lett. 2, 143-145, 1973,

Dijkstra, Edsger W., A personal summary of the Gries-Owicki theory, EWD 559,

Burroughs, Nuenen, the Netherlands, 1976,

Dijkstra, E.W., et al., On the fly garbage collection - an exercise in

cooperation, in Springer Lecture Notes on Computer Science No. 46,

Springer Verlag (Berlin etc.), 1976,

Fisher, D.A., Copying cyclic list structures in linear time using bounded

workspace, C.ACM 18 (May '75), pp. 251-252,

Floyd, Non-deterministic algorithms, J.ACM 14, 4, 1967,

Floyd, Assigning meanings to programs, in: proc. of a symp. in appl. math.,

vol. 19, Mathematical aspects of Computer Science, J.P. Schwartz (ed.),

AMS, Providence, R.I., 1967,

Friedman & Wise, Cons should not evaluate its arguments, i& Automata,

Languages and Programming, Michaelson & Milner (eds.), Edinb. Univ,
Press, Edinburgh, 1976.

Gries, An exercise in proving programs correct, C.ACM 20, pp. 921-930, 1977.

Gerhart, Correctness—preserving program transformations, Proc. 2nd POPL

Symp. Palo Alto (1975).

Gerhart, Proof theory and partial correctness of verification systems,

SIAM J. Comp. 5 (Sept. 1976), pp. 355-377.

61.

Henderson & Morris, A lazy evaluator, Proc. 3rd POPL Symp. Atlanta,

Georgia, 1976.

Hitchcock & Park, Induction rules and proofs of termination, in Proc. IRIA

symp. on automata, formal languages, and programming, M. Nivat (ed.),

North-Holland, 1972.

Hoare, An axiomatic basis for computer programming, C.ACM 12, 576-583, 1969,

Lee, de Roever & Gerhart, The evolution of list-copying algorithms, Proc.

6th POPL Symp., San Antonio, 1979.

Manna, Ness & Vuillemin, Inductive methods for proving properties of programs,

in: Proc. of an ACM Conference on proving assertions about programs,

Las Cruces, 1972.

McCarthy, A basis for a mathematical theory of computation, in: Comouter

Programming and Formal Systems, pp. 33-70, Braffort & Hirschberg (eds.),
North-Holland, 1963.

Owicki & Gries, An axiomatic proof technique for parallel programs, Acta

Inf. 6, 319-340, 1976,

Robson, A bounded storage algorithm for copying cyclic structures, C.ACM 20
(June '77), pp. 431-433,

de Roever, Recursive program schemes: semantics & proof theory, Math,

Centre Tracts 70, Math. Centre, Amsterdam, 1976.

de Roever, On backtracking and greatest fixpoints, in Formal Description

of programming concepts, E.J. Neuhold (ed.), North-Holland Publ. Comp.,
1978.

Schorr-Waite, An efficient machine-independent procedure for garbage

collection in various list structures, C.ACM 10 (Aug. 1967), pp. 501-506.

Topor, Correctness of the Schorr-Waite list marking algorithm, Memo

MIP-R-104, School of Artificial Intelligence, Univ. of Edinburgh, 1974.

(Published in Acta Informatica?)

Vuillemin, Correct and optimal implementations of recursion in a simple

programming language, JCSS 9, no. 3, 1974,

