vakgroep informatica R.U, Utrecht

THE EVOLUTION OF LIST-COPYING ALGORITHMS

and The Need for Structured Program Verification

,
STANLEY LEE
WILLEM P. DE ROEVER
SUSAN L. GERHART

RUU-CS=-78-7

November 1978

Rijksuniversiteit Utrecht

Vakgroep informatica

- Budapestiaan 6
Postbus 80.012
3508 TA Utrecht -
Telefoon 030531454

eriandas

70011g-1-15

vakgroep informatica R, U, Utrecht

THE EVOLUTION OF LIST-COPYING ALGORITHMS

and The Need for Structured Program Verification

Stanley Lee
Computer Science Division
University of cCalifornia

Berkeley CA 94720

Willem P. de Roever
Department of Computer Science
University of Utrecht
3508 TA Utrecht, the Netherlands

Susan L. Gerhart
USC/Information Sciences Inst.
4676 Admiralty Way
Marina del Rey CA 90291

Technical Report RUU-CS-78-7

November 1978

Department of Computer Science
University of Utrecht

3508 TA Utrecht, the Netherlands

THE EVOLUTION OF LIST-COPYING ALGORITHMS
and The Need for Structured Program Verification

Stanley Lee¥*
Computer Science Division
University of California

Berkeley CA 94720

1. INTRODUCTION

How can one organize the understanding of
complex algorithms? People have been thinking
about this issue at least since Euclid first
tried to explain his innovative greatest common
divisor algorithm to his colleagues, but for
current research into verifying state-of-the-art
programs, some precise answers to the question
are needed. Over the past decade the various
varification methods which have been introduced
(inductive assertions, structural induction,
least-fixedpoint semantics, etc.) have estab-
lished many basic principles of program verifi-
cation (which we define as: establishing that
a program text satisfies a given pair of input-
output specifications). However, it is no coin-
cidence that most published examples of the
application of these methods have dealt with
"toy programs"” of carefully considered simplicity.

Experience indicates that these "first
generation™ principles, with which one can easily
verify a three-line greatest common divisor al-
gorithm, do not directly enable one to verify a
10,000 line operating system (or even a 50 line
list-processing algorithm) in complete detail.

To verify complex programs, additional techniques
of organization, analysis and manipulation are
required. (That a similar situation exists in the
writing of large, correct programs has long been
recognized -- structured programming being one
solution.)

This paper examines the usefulness of cor-
rectness-preserving program transformations (see
[6]) in structuring fairly complex correctness
proofs. Using our approach one starts with a
simple, high-level (or "abstract") algorithm
which can be easily verified, then successively
refines it by implementing the abstractions of
the initial algorithm to obtain various final,
detailed algoritims. In Section 2 we introduce
the technique by deriving the Deutsch-Schorr-

*partially supported by NSF grant MCS 78-00673

**pregent affiliation: Dept. of Computer Science,
Univ. of Utrecht, Budapestlaan 8, Postbus 80-0l12,
3508TA Utrecht, The Netherlands

***Ragearch conducted in part under Defense Advan-
ced Research Projects Agency contract DAHC-15-72-
C0308; also partially supported by NSF grant MCS
75-08146

SIXTH ACM SYMPOSIUM ON
PRINCIPLES OF PROGRAMMING LANGUAGES

Willem P. deRoever* **

Computer Science Division

University of California
Berkeley CA 94720

Susan L. Gerhart**+*
UsC/Information Sciences Inst.
4676 Admiralty Way
Marina del Rey CA 90291

Waite iist-marking algorithm [14]. Our main ex-
ample is the more complex problem of verifying
bounded-workspace list-copying algoritims: Sec~
tion 3 defines the issues, Section 4 presents
the key intermediate algorithm in detail and
Section 5 considers three of the most complex
(published) implementations of list-copying, one
of which is discussed in detail. 1In Section 6 we
make some general remarks on program verification
and the relevance of our results to the (larger)
field of program correctness; Section 7 mentions
some related work.

2. FIRST EXAMPLE: LIST MARKING

2.1 Problem specification and the initial algorithm

We wish to define list marking in general terms,
applicable to any particular implementation. As
list marking is a special case of computing the
reflexive-transitive closure of a relation, we let

(1) Mem denote a non-empty set,

(2) R denote a binary relation between
elements of Mem, and
(3) 2 denote some element of Mem,

Then (2) and (3) define our input assertion as
Z € Mem A R C Mem X Mem , and the goal is to con-
struct the set R*(Z), defined as the smallest set,
m, satisfying Z € m A R(m) S m . Interpreting

Mem as the (finite) set of all memory cells,
R as: aRb & b ig directly reachable from
a (a "points to" b), and
z as the root cell of some list structure,
we conclude that
Input~M: Z € Mem A R € Mem X Menm
Output-M: m = R*(Z) A Z, R, Mem unchanged
are appropriate implementation-independent ("ab-
stract") specificaticns of the task of construct-
ing the set m of all cells reachable from cell Z.
(As we use identifiers beginning with capital let-

ters exclusively for constants, the second half of
Output-M will be left implicit.)

Our initial marking algoritim is MA-0 (see top
of next page). In MA-0 (and throughout this paper)
we use R(p) to denote {g: pRq}, i.e. those nodes
directly reachable from p. Note that the while

January 29-31, 1979
St. Anthony Hotel, San Antonio, Texas

\;\\‘3

MA=-0:
Assert Input-M: 2 € Mem A R € Mem x Mem

m := {2} ;
loop asserting Invar-M0: Z € m A m & R*(Z)
while m < R*(Z) do
Select‘p in m satisfying not R(p) € m ;
m :=m U R(p)

endloop
Assert Output-M: m = R*(Z)

statement, delimited by loop ... endloop . includes
its invariant assertion. The semantics of the
Select statement are defined as follows:

p=3y € S: O(y)
{P} Select z in S satisfying Q{z) {PAZESAQ(2) }

for predicates P and Q not containing z as a free
variable. Thus the Select statement is non-deter-
ministic, in that any element of set § satisfying
Q may be assigned to z . When a transformation
replaces a Select statement with a deterministic
program segment, any implementation may be chosen
which meets the abdve semantic definition. This,
along with differing implementations of abstract
data structures, will enable us to generate daif-
ferent final algorithms from a common ancestor.

A formal proof of (partial) correctness for
MA-0 with respect to assertions Input-M, Output-M
is obtained by proving that 1) Invar-MO is invar-
iant for the while locp, and

2) [Invar-MO A ~(b G R*(Z))]= m = R*(2) .

Both proofs are straightforward, requiring the use
of various properties of the domain in question,
here finite sets. (2) trivially follows from

facbA~achl» a=b,
(1) requires several properties of sets, e.g.
a € R*(b) = R(a) € R*(b) .

Termination of MA-0 is proven with the variant
function |R*(2) - m| whose value decreases at
each iteration.

2.2 ’rx'lnsfotmatig_ns yielding the archetype

We apply our first correctness-preserving
program transformation to MA-0 in order to remove
the reference to R*(Z) from the loop exit test.
By using the transformation schema TS1 (Figure 1)
and the domain property:

[a€EbAbECR*(a)]= (R(b) €b) = (b= R¥))

we can change “"while m © R*(Z) do ..." in MA-O to
"while not R(m) €m do ..." , as the above set

property ensures that the premise of TS1 is satis-
fied.

Our next transformation introduces a new
variable to increase the efficiency of the exit
" test. If u (foxr "unsure") denotes a subset of m
satisfying R(m - U) € m , then only cells in u can
(possibly) point to new cells not already in m,
allowing us to ignore cells in (m - u) when eval-
uating not R(m) &m . Employing transformation
schemata TS1, TS2 and TS3 (see Figure 1) yields a
new algorithm, MA-1l:

MA-1:
Assert Input-M
m:= {2} ; u = {2},

loop asserting Invar-i: Invar-MO
- AUuECmARmD-ulcn

while not R(u) Sm &o
Select p in u satisfying not R(pl g m ;
m :=m U R(pP)

endloop
Assert Output-M

u := "new u"

where "new u" satisfies the premise of TS2 (i.e.,
maintains the invariance of Invar-Mi).

We refer to MA-1 as an archetypal algorithm
for list marking -- that is, different marking al-
gorithms can be obtained from MA-1 (via transfor-

- mations) depending on how set u is implemented.
In the remainder of Section 2 we shall derive the
Deutsch-Schorr-Waite (DSW) algorithm from MA-1;
by derivations omitted here, one can also obtain
Algoritims A, B and C of [10] from archetype MA-1l.

2.3 Intermediate marking algorithms

In deriving DSW we interpret u as the set of
just those cells in m with any unexamined poin-
ters -- hence "u := new u" in MA-1 becomes

u = (u - {p}) VUR(p ,
which satisfies the premise of TS2. As u will
be implemented with a data structuxe not allowing
random access (e.g. a stack rather than an array),
our next algorithm, MA-2, removes the condition on
the Select statement:
MA-2:
Assert Input-M
m = {2} ;
locp asserting Invar-mi
while u# ¢ do
Select p in u ;

u = {2} r

if not R(p) cm
then m := m U R(p);
u := (u - {p}} VU R(p)

else u := u - {p}
£1

endlioop
Asgert Output-M

where ¢ denotes the empty set and Select p in u
abbreviates Select ... satisfying true. Note that
while the loop invariant is unchanged from algo-
rithm MA-1, the variant function necess to
prove termination is now {R¥*(2) - (m - u)| . The
transformation schema used is TS4. As the system
of basic transformation schemata that we use has
been formally presented elsewhere [6], [7], we
discugs in what follows only the intermediate al-
gorithms, since in this paper they, and not the
transformations themselves, are our chief interest.

Name of

transfor- Original program Premise(s) for
mation segment transformation New program segment
Assexrt P Assert P
TSl -- loop asrt. Invar loop asrt. Invar
exit test while B do Invar = B 2 B' while B' do
replacement s s
endloop endloop
Assert Q Assert Q
Assert P {p} v:=eo0 {P1} Asgert P
TS2 -- loop asrt. Invar v = @0 ;
addition while B do {I"“‘s’ e ?inv“ A g1} loop asrt. Invar A Pl
of loop s ! while B do
variable endloop v not free in P,Q or Invar S; VvV i=el
Assert Q v doesn't appear in S endloop
Assert Q
783 -- Select x in a bCaA Select x in b
Select stmt satisfying P(x) Vy: vy € (a=b) ™ ~P(y) satisfying P(x)
set restriction
Asgert P Assert P

loop asrt. Invar(a)

TS4 -~ while x€a: B(x) do
Select stmt Select x in a
condition satisfying B(x) ;
elimination s
endloop
Assert’ Q

[1nvar(a) Aa ¢ ¢

AyE€a while a ¥ ¢ do
A ~B(y)] = Select x in a ;
Invar(a-{y}H if B(x) then S

else a:= a-{x}

FIGURE 1 -- A Few Correctness-Preserving Program Transformation Schemata

Next we partition the set u into cell p
currently under examihation and 'all the rest',
denoted by ul ~- substituting ul U {p} for u in
MA-2 we obtain the new algorithm MA-3:

MA-3:
Assert Input-M

m:={2}; p:=2; ul :=¢ ;

loop asserting Invar-M3:
p, 2 €m A m S R¥(2)
AR(m=-(ul U{ph) Em
Aulcn- {p}
while not (ul = ¢ A R(p) €Sm) do
if not R(p) S m
then _S_elect q in R(p)
satisfying not ¢ € m ;
m:=n U {q} :

ul :=ul U {p};
p:=dq
else §elect p in ul ;

ul := ul - {p}
fi

endloop
Assert Output-M

55

The set ul can now be directly implemented as
a stack, which we denote by t . We then separate
the single while loop of MA-3 into two inner loops,
each corresponding to one branch of the conditional
statement, to get our next algorithm MA-4 (see
top of next page). In the invariant Invar-M4, t*
denotes the set of nodes contained in stack t .

Our next algorithm modifies MA-4 in two ways:
1) To avoid re-calculating R{(p) for each node pop-
ped off the stack in loop 2, we make each stack
element a pair: <node, set of nodes> , and in loop
1 push p together with its (possibly) unmarked des-
cendants R(p) - {g} onto stack t .
2) To avoid unnecessary pop-push sequences we move
the exit test for the main loop so that it follows
loop 2, and unfold locp 1 once. (In the following
algorithm the syntax

loop asserting A: S1; while B do 52 endloop
could equivalently be expressed

L1: S1 ;
if not B then goto L2 ;
S2 ; goto L1

L2: ...)

Applying the appropriate transformations yields
algorithm MA-5 (Figure 2a).

2.4 Implementing Deutsch-Schorr-Waite

MA-5 is an archetype for stack-based marking
algorithms (including DSW) which differ principally

MA-4:
Asgsert Input-M

m:= {2} ; p := Z; Create/Stack(t) ;

loop asserting Invar-mM4:

p:Z2 € m A m S R*(2)
AR(m-{ph -t* cm
At*¢m - {p}

while not (empty(t) A R(p) € m) do
loop asserting Invar-mM4
while not R(p) S m do

Select q in R(p)
satisfying not q € m ;
m:=mVU {q};

push (t,p) ;
p::=q
endloop ;

loop asserging Invar-M4
while R(p) € m and not empty(t) do

-—Tloop 1

~Lloop 2

p := pop(t)
endloop

endloop
Assert Output-M

in their implementation of stack t . The arche-
type has a "down phase" -~ loop 1 -- which follows
pointers to unmarked nodes, and a "backup phase” --
loop 2 -- which pops already-marked nodes off

stack t in search of pointers to unmarked nodes.
Obtaining DSW from MA-5 requires making four ad-
ditions:

1) Specify the node structure by defining each
node to contain four fields: mark, atom, a and

b . For any node p, p.mark is the mark bit of the
node; p.atom = false indicates p is non-atomic and
p.a, p.b contain left- and right-link pointers,
respectively (if p.atom = true then p.a, p.b are
disregarded as p is an atom). Since memory cells
corresponding to atoms are not marked in DSW, we
implement R by interpreting R(p) as Ra(p) YU Rb(p),

Ra(p) = if p.a.atom t:gen ¢ else {p.a}
Rb(p) = if p.b.atom then ¢ else {p.b} .

The atom and mark fields correspond to abstract
functions Atom, Mark: Mem - {true, falsel res-
pectively.

2) Implement set m by interpreting p €m as
equivalent to p.mark = true. N

3) Implement Select q in R(p) satisfying not q €m
(where not R(p) € m holds) by assigning the value

if not p.a.mark then p.a else p.b to q. Thus
the left link of a node is followed in the trav-
ersal before its right link (if possible).

4) Implement stack t as a reversed-pointer linked
list within the original list structure (see [12]).

Applying transformations to MA-5 to add the
above four features produces the DSW marking al-
. gorithm MA~6 (Figure 2b). The following general

56

observations about MA-6 also apply to the list-
copying implementations of Section S.

Two new types of assertions appear in the
loop invariant Invar-DSW. SameStack(t,tp) and
*m = {y: y.mark} " are equivalence assertions which
define the correspondence between the abstract and
implemented data structures. Note that m and ¢t
are, in MA-6, auxiliary or 'ghost' variables, as
the equivalence assertions have enabled the loop
tests to be expressed independently of the abstract
variables. We can now remove the statements in
italics from MA-6, and preface Invar-DSW with
» Jm, t: " ; the correctness of the resulting
(non-italic) Deutsch-Schorr-Waite algorithm and
invariant follows from the correctness of MA=6 by
the Ghost Variable Theorem (see [8]).

"Mod (aptr,bptr,atombit, tp,p) = (Ra,Rb,Atom) "
is a agturbation assertion which is necessary as
a result of the in situ stack implementation. This
assertion defines the changes made in the original
1ist structure -- which pointers are reversed --
and makes it possible to guarantee at termination
that all pointers (and atom flags) have been re-
stored to their original values, in other words,

" (aptr,bptr,atombit) = (Ra,Rb,Atom)". (See Ap-
pendix Al for texts of assertions SameStack, Mod.)

3. LIST COPYING: SPECIFICATION AND INITIAL ALGORITHM

In a fashion similar to Sec. 2.1, we now con-
struct a pair of input/output specifications for
list copying by considering the general case of
extending a relation to produce an isomorphic
mapping between elements. With Mem, R as in Sec,
2.1, let

s denote a subset of Menm,

[o] denote a set disjoint from Mem, and
equal in gize to S, and

D denote a pairing of elements from S and
Cs

then we wish to extend R to ¢ such that RS o
A (g ~R SCxCando(D(y)) = {D(x): x € o(y)}
for every y in S. Then, interpreting

s as R*(2),

c as a set of |R*(Z)| cells (disjoint frem
the original set Mem) used for the copy
of R*(2),

D as a one-to-one mapping from cells in
the original list structure to cells in
the copy, and

0 - R as the set of all pointers in the new

list structure,
we obtain

Input-C: Input-M A C Nl Mem = ® A D: R¥(Z) »C

A D is a bijection
RECoA(0d-R)YESC XxXC

AVy € R*(Z): a(D(y)) = D(a(y))
A Z,R,Mem,C,D unchanged

Output~C:

as our general copying specifications. (In
Output-C D(o(y)) denotes {D(x): x € o(y)} an@d "D
is a bijection" abbreviates "D(y) = D(X) » x = y

A range(D) = C")., We use "original list structure"
and "old cell” in referring to R*(Z), and "copy
list structure” and "new cell" to refer to

(o - RY*(D(2)).

Assert Input-M: Z & Mem A R C Mem X Mem Assert Input-DSW: Input-M A R = Ra URb
- A aptr = Ra A bptr = Rb
A atombit = Atom A nil.atom
A markbit = Mem X {false}

m:={2}; p:=2; m :m {Z}; Z.mark := true ; p := 2 ;
Create/stack(t) ; Create/Stack(t) ; tp := nil ;
loop asserting Invar-MS: ioop asserting Invar-Dsw:
P2 €m Am C R (2) Invar-M5 A m = {y: y.mark}
AR((m~{p})~t*) Cm A sameStack(t,tp)
A DefStack (t) A Mod (aptr,bptr,atombit,tp,p)=(Ra,Rb,Atom)
loop asserting Invar-MS d00op asgerting Invar-psw
while not R(p) Cm do while pot((p.a.mark or p.a.atom) and
(p.b.mark or p.b.atom)) do
Select q in R(p) if not (p.a.mark or p.a.atom)
satisfying not g €m ; then q += p.a else g := p.b £1 ;
m:-mU'{q}; - m:=mVU{ql ; q.mark := true ;
push(t, <p,R(p) - {q}>) ; push(t, <p,R(p)-{q}>) ;

if q = p.a then
p.atom,p.a,tp := true,tp,p

else p.b,tp := tp,p £i;
P :=q ‘ "pi=q
endloop endloop
loop asserting Invar-nsm'ip} loop asserting Invar-DSH"flp }
while (not empty(t)) cand while tp # nil cand ((not tp.atom) or
t2Cmdo (tp.b.mark or tp.b.atom)) do
pop (t) pop(t) ;

if tp.atom then
tp.atom := false ;
p,tp.a,tp := tp,p,tp.a
else p,tp.b,tp := tp,p,tp.b £i

endloop endloop
while not empty(t) do while tp ¥ nil do
Select q in t2 q := tp.b ;
satisfxing not q€m ;
m=nuU{q ; m:=muy{q}l ; q.mark := true ;
Replace Tdp-of t with <tl, t2-{q} > ; Replace Top-of t with <t1, t2-{q} > ;

tp.atom := false ;
P,tp.b,tp.a := tp.b,tp.a,p ;

p:=gq p:=q
endloop endloop
Assert Output-M: m = R*(2) Assert Output-DSW: Output-M

A {q: q.mark} = R*(2)
A (aptr,bptr,atombit) = (Ra,Rb,Atom)

A
Notation: tn A (t°p(t))n for n=l1,2 cptr g {<y,y.c>: y in memory A ~.y.atom
t* = if empty(t) then ¢ else tl U (pop(t))* g_j; A .~y.c.atom} for c = a,b
DefStack(t) = empty(t) V{t1€m A t2 CR(tl) Ct2Unm foit & {<y,v.£>} for f = atom, mark

A Defsuek(pop(t))] (see App. Al for SameStack, Mod)

FIGURE 2a -~ Algorithm MA-S FIGURE 2b ~-- Algorithm MA-~6

57

Although R*(Z) appears in the assertion
Input-C, the final copying algorithms start with
only 2 and R given, and must traverse the original
graph (i.e. construct R*(Z)) in order to copy it.
1f we assume for the moment that values of the
function D are known a priori, we can cbtain our
initial list-copying algorithm CA-0:

CA-0:
Assert Input-C: Ihput~M
(1a) ACNMem = ¢ A D:R*(2Z) + C
(1b) A D a bijection
m:= {2} ;

(2) g := R U copy(®) ;

loop asserting Invar-CO: Invar-MO A RCo
(3) A(c-R ScxcA o-R=copy(m

while m CR*(2) do

Select p in m
satisfying not R(p) Cm ;

m:=m YR(p) ;

(4) o := 0 Y copy(R(p))
endloop
Assert Output-C: Output-M
(5a) : ArRCao A(e-R CCcxcC
(5b) Ay €Re(2): g(D(y))=D(aly))

by applying a transformation to MA-0 in order to
add the lines numbered above.

In line (2) copy(2) denotes {<D(2),D(y)>: y € R(Z)}
i.e. the set of coples of edges fram node Z
(speaking of the list structure as a graph); in
lines (3) and (4), dopy(w) is U copy(y): y € W
for w equal to m or R(p) respectively. Hence in
CA-0, the edges from each node y are copied as y
is added to m (encountered in the traversal).
Given a verification of MA-0, to verify CA-0 with
respect to Input~C, Output-C we need only check
that the premises of the applied transformation .
are satisfied, by 1) establishing the invariance
of line (3) and 2) noting that

Invar-CO A Output-M = Qutput-C., The proof of ter-
mination uses the same variant function as for
MA-0.

4. THE ARCHETYPAL LIST-COPYING ALGORITHM (ALCA)

4.1 Motivation of the archetype

Three new issu¢s relevant to list copying
(but not list marking) influence our derivation of
the copying archetype ALCA from CA-0.

4.1.1 Generating the bijection D

In the final "target” copying algorithms a
pre-existent D, or dld-cell/new-cell pairing, is
not supplied; thus ALCA constructs a mapping which
satisfies CA-0's Input-C assertion. This results
in a multi-pass structure for the archetypal (and
final) algorithms: one traversal of the graph to
define a D (and identify R*(Z)), followed by a
second traversal to do the copying.

4.1.2 Specifying traversal/copy order

The target algorithms of interest to us oper-
ate under a bounded workspace constraint -~ i.e.
only a small, fixed amount of additional storage

is available to the algorithm apart from the orig-
inal and copy list structures. As a result, im-
plenmenting the abstract data structures of CA-~0
(and the copying archetype) will involve consider-
able re-arrangement of the original list contents,
which must nonetheless be restored to their ini-
tial values once the copying is complete, Veri-
fying that this is accomplished requires specifi-
cation of the exact traversal order in the invari-
ants, and to this end the archetypal algorithm de-
fines a spanning tree for the original digraph,
greatly simplifying the assertions necessary for
defining the traversal and copying order.

4.1.3 Edge-oriented copying and traversal

In CA-0, all edges from any node p are copied
simultaneocusly (e.g. at line (4), for p ¥ Z). 1In
the final zlgorithms of Section 5, however, edges
(pointers) from a given cell are in general copied
at different times. This suggests an edge-ori-
ented copying process for ALCA, since once copying
is postponed for some edges, the set m of visited
nodes can no longer fully characterize how much
copying has been done, as it does in CA~0. 1Instead,
the assertions in Pass 2 of ALCA, where the copy-~
ing is done, define the set of edges copied in-
dependently of m, and all loop tests and traversal
assertions are expressed in terms of edges rather
than nodes.

4.2 The copying archetype in detail

As Section 2 presented an extended example of
the use of correctness-preserving program trans-
formations, we omit here the intermediate algorithms
(several of them similar to MA-1 through MA-5)
lying between CA-0 and ALCA. Pass 1 of the arche-
type (Figure 3a) is a proper extension of MA-5;

Pass 2 (Figure 3b), which is derived from CA~-0 in-
dependently of Pass 1, has a very similar struc-
ture. The additions and changes to MA-5 (re-
flecting the comments of Sec. 4.1) are discussed
below.

4.2.1 Bijection generation (Pass 1)

The copy-area assertion Input-ALCA guarantees
that the set avail —— those cells initially avail-
able for constructing the copy -- contains a sub-
set which can satisfy Input~C of algorithm CA-0.
For each node in the original graph encountered
during the Pass 1 traversal, a new cell is trans-
ferred from avail to ¢ via a Select/Move statement
(an abbreviation for Select n in avail;
avail := avail - {n}; c := ¢ U {n}) and the pairing
is added to the constructed bijection u (now re-
ferred to as (the lowercase) u to distinguish it
from the constant D of CA-0). A new clause in the
invariant -- Bijection (u,m,c) -- asserts u to be
a bijection from m to c; thus upon termination of
Pass 1, y maps R*(Z) onto c, satisfying the a
priori bijection assertion of Input-C.

4.2.2 Defining the spanning tree (Pass 1)

The only other extension of Pass 1 beyond
MA-5 is a standard partitioning of the edges of
the list structure into sets (s and b) of spanning-
tree and back edges, respectively, as asserted by
SpanTree(s,b,m). While not all final copying algo-
rithms implement sets s and b, their presence (if
only as ‘ghost' variables) greatly simplifies our
proofs of correctness, since the spanning tree
(defined by) s is a recursively~describable struc-

Assert Input-ALCA: Irnput-M A avail N Mem = ¢
A lavail] 2> IR"(z)l

m:= {2} ; p:=3; Create/Stack(t) ;
¢ = ¢ ; Select/Move n from avail to ¢ ;

uis {<z, n>} ; s:=¢ ; b= ¢ ;

loop asserting Invar-ALCAl:
Invar-M5 A |avail| > |R*(2) - m]
A Bijection(u,m,c) A SpanTree(s,b,m)
loop asserting Invar-ALCAL
while not R(p) Cm do
Select q in R(p)
satisfying not g €m ;
m:=mVU {q} ;
push(t, <p,R(p) - {g}> :
s ;=g U {<p,q>} ;
Select/Mpve n from avail to ¢ i
u = u U {cq,n>} ;
p:=q
endloop

b :=b U {<p,ql>: qL €R(P)} ;

n-{p}

loop asserting Invar~ALCAl o

while (not empty(t)) cand t2 Cm do
b := b U {<tl,ql>: ql € £2} ;
pop(t)
endloop
while not empty(t)
Select p in t2 satisfying not p €m;
m:=nU{p};
Replace Top-of t with <tl,t2 - {p}>;
s = s U {<t1,p>} H
Select/Move n from avail to ¢ ;
u =y U {&p,n>} ;
endloop
Assert Output-ALCAl: Output-M

A Bijecticn(U,R" (2) ,¢)
A spanTree(s,b,R*(2))

do

(see Appendix A2 for Bijection, SpanTree)

FIGURE. 3a -- Pass 1 of ALCA

ture with respect to which traversal order can be
statically defined: e.g., "Pass 1 traverses the
spanning tree in preorder”, to paraphrase a typical
assertion from Section 5. Such invariants become
more complex when they must be expressed solely in
terms of traversal order cver a (possibly cyclic)
digraph.

4.2.3 Edge-copying and ~-traversal (Pass 2)

In parallel with the 'node' notation used so
far we now define

R as also a set of edges, each e e <e1,e2>

in R representing a directed edge from
(node) e, to (node) e,

59

assert Input-ALCA2: Output-ALCAl A 202 =2
et := {zel ; Create/Stack(tt) ;
O :=R ;
loop asserting Invar-ALCA2:
Ze, @ € ot A et C I*(Ze)
A I((at-{el) - tt*) Cet
A DefttStack(e,tt)
A Input-ALCA2
A 0 - R = copyof (et -

e := Ze ;

{zeh

loop asserting Invar-ALCA2
while I(e) Ns # ¢ do
Select e' in I(e) satisfying e' € s ;
et = et U {e'} ; '
o := O U copyof(e') ;
push(tt, <e,I(e) - {e'}>) ;
e 1= e'
sndlocop
et = et U I(e) ;
o := 0 U copyof(I(e)) ;
et-{e}
loop asserting Invar-ALCA2 .

(not empty(tt)) cand
tt2Ns =9 do

et := et U tt2 ;

G := O U copyof(tt2) ;

pop(tt)
endloop

while not empty(tt) do
Select e in tt2 satisfving e €s;
Replace Top-of tt with <ttl,tt2 - {e}> ;

while

et := et U {e}

:= 0 U copyof (e)
sendjoop
Agsert Output-ALCAZ: 0 - R = copyof (1% (ze))

Notation: copyof(e) is { <ule;) .u(e2)>}

copyof (eset) is U copyof (e € eset)
(see App. A2 for DefttStack)

FIGURE 3b -~ Pass 2 of ALCA

I as a relation between edges defined by:

ele' *® e is incident upon e' (or e, = e'1

in terms of nodes); hence I € R x R, and

Ze as an auxiliary initial edge incident
upon node 2, the root; thus I(Ze) = edges
out of the root of the list structure.

Like Pass 1, the second pass is a transitive clo-
sure algorithm: it copies 1¥(Ze), the set of all
edges of the graph (not I*(Ze) since Ze ig ficti-
tious), just as Pass 1 traverses R*(Z), all the
nodes of the graph. Pass 2 has a down and a backup
loop just as MA-5 and Pass 1 do. The loop-exit
tests in Pass 2 do not refer to membership in et,
the set of edges traversed (compare "while not

R(P) €m ..." in Pass 1), but use only the ‘spanning
tree defined in Pass 1 to guide traversal: tree

edges are copied and followed, back edges are mere-
ly copied. Showing that this results in only un-
copied edges being added to et in loop 1 (hence
termination) requires a more complex stack asser-
tion, DefttStack, than in Pass 1 (see Appendix A2),
Since edges are pushed onto the stack in Pass 2
rather than nodes, we now refer to the stack as "tt".

5. THE ROBSON LIST-COPYING ALGORITEM [11]

Below we present the Robson copying algorithm
(RCA) as one implementation of our copying arche-
type.

5.1 Overview of implementation of abstract data
structures

Node structure and relation R

5.1.1

Each node p considered by RCA contains two
fields p.L, p.R which contain either pointers to
other nodes, or the nil pointer. So R =Rl U R2,
Ri(p) = if p.L = nil then ¢ {p.L}

R2(p) = if p.R = nil {p.R} .

5.1.2 Setm

else
then ¢ else

RCA uses four pointer values -- called
"MARK~i flags" for i=0,1,2,3 -- which are distin-
guishable from any pointer in the original list
structure. The Rlink of each original node is
overwritten with one of these flags when the node
is first encountered, so we interpret

p € m * p.R = MARK-i,
i.e. m = {y: y.R = MARK-i for i=0,1,2,3}.

5.1.3 Stack t

RCA implements t just as DSW does, with a re-
versed-pointer linked list. Thus if the current
node p lies in the left (right) subtree of some
node y on the stack, then the Llink (Rlink) field
of y's left (right) descendant in the spanning tree
points back to y.

5.1.4 Set avail

RCA obtains cells for the copy list structure
from a free-list (i.e. heap allocation) -- so
Select/Move n from avail to ¢ is implemented by a
statement such as "new(n)", to use Pascal terminol~-
ogy.

5.1.5 Function u

RCA puts a "forwarding address", or FAddr,
which points to the corresponding new cell, into
the Llink of each old cell - thus ALCA's
"y := u U {<p,n>}" is implemented by "p.L := n".

5.1.6 Sets s and b

RCA uses the four values of the MARK-i flags
to indicate which of a node's two fields contain
tree-~ or back-edge pointers (nil is considered a
back~-edge pointer): odd-value MARK-i flags indi-
cate tree-edge Rlinks, flags valued 2 or 3 indicate
tree-edge Llinks. So in the implementation

Llinks in s = {<p,p.L>: p contains a MARK-2 or -3
flagl,

Rlinks in s = {<p,p.R>: p contains a MARK-1 or -3
flag},

where p.L, p.R denote the original pointer values.

60

5.2 Overview of program execution

We now describe in general texms the two
passes of RCA -- details are covered when the in-
variant assertions for the Robson algorithm are
considered in Sections 5.3 - 5.6 . The discussion
below refers to intermediate algorithms RCAl-A and
RCA2 (Figures 4a, 6 respectively), which roughly
correspond in their degree of refinement to algo-
rithm MA-6 except that stack t remains unimplemen-
ted. The reversed-pointer stack implementation
appears in algorithm RCA1-B (Figure 4b), as dis-
cussed in Section 5.7 .

5.2.1 Pass 1 (rigure'h)

As each old node, p, is first encountered in
loop 1, a new cell n = u(p) is obtained (as in
5.1.4 above) and p's original pointer values are
stored in the Llink and Rlink fields of n. Fields
p-L and p.R are then overwritten with a FAddr and
MARK-0 flag respectively (5.1.5, 5.1.2).

Figure Sb illustrates this stage in the pro-
cessing of p. Traversal then continues just as in
DSW (MA-6), with the addition that whenever a
pointer in p is followed to an unmarked node, the
MARK-i flag in p.R is incremented by one (two) in-
dicating that p's Rlink (Llink) is a tree edge
(5.1.6). No other processing (e.g. copying) is
performed during Pass 1, so at its conclusion we
have:

a) defined y- (via FAddrs) for every node in
the original list, .

b) classified every edge as in s or b (via
MARK~i flaqs) ’

c) not copied any edges, and all original

pointers are accessible (stored in corre-
sponding new cells),

exactly as in ALCA Pass 1. In addition, a depth-
first numbering of the nodes of the original list
structure is defined by means of an abstract func-
tion called df#. This is an auxiliary function
introduced solely to facilitate the correctness
proofs -- see Section 5.6.2 .

5.2.2 Pass 2 (Figure 6)

The main traversal tests of Pass 2 -- whether
a given edge is a spanning-tree edge -- are imple-
mented using the MARK-i flags. In general pointers
are copied in loop 2, during backup phase, by
placing the appropriate FAddr (of the cell pointed
to) into the copy cell (see Fig. 5f). The corre-
sponding old pointer is restored to its original
cell field at the same time; thus a FAddr (MARK-i
flag respectively) is lost each time a Llink
(Rlink) pointer is copied. In loop 1 Rlinks are
followed before Llinks when possible, in opposite
order to Pass 1 -- this is crucial to the algo-
rithm's success, as explained in Section 5.6.

5.3 Structuring the assertions

One important benefit of using the transforma-
tional method of program proving is the assistance
it provides in organization of the invariant
assertions. That these assertions will be of con-
siderable length for any but the simplest of pro-
grams, cannot be denied -- but this need not be
fatal to verification efforts, provided assertions

Assert Input-RCAl-A: Input-ALCA A R = R1 U R2
A Rj €ELj C Mem x (Mem U {nil})
A MARKset N Mem = ¢

m:= {2} ; p:=2; Create/Stack(t) ;
gel,oc2,c = ¢ ; y := {<nil,nil>} ;
sl,s2,bl,b2 := ¢ ; GL,02 ;= £1,Z22 ;
as := { <2,1>} ; dnum = 2 ;

loop asserting Invar-RCAl-A
loop asserting Invar-RCAl-A

Select/Move n from avail to ¢ ;
u = u VY {<p,n>};
Ocl(n),0c2(n) := OL(p),02(p) :
ol(p),02(p) := n,MARK-0 ;

while not (marked(0cl(n)) and
marked(0c2(n))) do

if not marked(ocl(n)) then
g := Ocl(n) ; addmark(p,2) ;
push(t, <p,0c2(n)> ;
sl := 81 Y { <p,q>}
else q := Oc2(n) ; addmark(p,l) ;
push(t, <p, 9 ;
82 := 82 Y { <p,q>} ;
bl := bl VU { <p,0cl(n)>} f£i :
m:=m VU {q};
af# := aff U K q,dnum>}; dnum:=dnum+l ;
p:i=q
endloop
bj := bj Y { <p,0cj(n)>} -—for j=1,2
loop asserting Invu-RCAl-Am-ip }

while (not empty(t)) cand
(62 = ¢ or marked(t2)) do

if t2 # ¢ then b2 := b2 U {<t1,£2>} £i ;
pop(t)
endloop
while not empty(t) do
p:=t2;m:=m\V {p} ; addmark(ti,l) :
Replace Top-of t with <tl, ¢ > ;
s2 := 52 U { <t1,t2>}
endloop

Agsert Output-RCAl-A: Output~ALCA-1
ARr(Z) = {y: 3-E:nc(y)}

A RCA~1-j for j=i to v
Notation: MARKset é {MARK-i: i = 0,1,2,3}
marked (y) = if y=nil then true
else 02(y) € MARKset
addmark (y,n) increments the MARK~i flag
in g2(y) into a MARK~-(i+n) flag
f(p) := x for any function £ denotes

£ := (£-{<p,£(p)>} v {kp,x>}

see Figure 7a for invariants

FIGURE 4a -- Algorithm RCAl-A

FIGURE 4

6l

Assert Input-RCAl-B: Input-RCAl-A
-=without MARKset
assertion

£ :=2; gf :=nil ;

new (MARK-0) ;
new (MARK~2) ;

loop asserting Invar-RCAl-B
loop asserting Invar-RCAl-B
new(newf) ;

new (MARK-1) ;
new (MARK-3) ;

newf.L,newf.R := £ L,f.R ;
£.L,£.R := newf ,MARK-0 ;

while not (marked (newf.L)
marked (newf .R))

if not marked(newf.L) then
s := newf.L ; addmark(f,2) :
newf.L,gf := gf,f ;

and
do

else s := newf.R; addiuzk(f,

newf.R,gf := gf,f ;

loop asserting Invar-RCAl-Bm.if}

while gf # nil

if odd(MARK(gf)) then
gf,newf.R := newf.R,s
else gf,newf.L := newf.L,s

s,f,newf := £,gf,gf.L

endloop
while gf # nil do
f := newf.R ; addmark(gf,l) ;

newf.L,newf.R := s,newf.L
endloop

Agssert Output-RCAl-B: Output-RCAl-A

variables in
RCAl-~-A -B
P £ father
q s son
£l gf grandfather
n newf U (p)

see Appendix A3 for invariants

FIGURE 4b -- Algorithm RCAl-B

cand marked(gf.L.R)

1) ;

do

£i

original node y: copy node u(y):
contents contents

PIGURE olly), o2(y) oel (uly)), oc2(uiy)) fi’-": encoun- /
er y B
Sa) 0-Enc(y) Il(y) L2(y)
Sb) y = p in Hiy) MARK=~0 Li(y) I2(y)
loop 1
5¢) 1-Enc(y) uly) MARK~2 £ z2(y) second en-
counter y
54) 2-Enc(y) u(y) MARK=-1 Il(y) £
Se) 3-Enc(y) H(y) MARK-1 Il (y) I2(y)
third en-
counter y
(above) Pass 1 - £ is father of y in spanning tree
(below) Pass 2 - FIGURE 5f
0-Enc(y) uiy) MARK-1i Z1(y) Z2(y)
1-Enc(y) wy) MARK-i IM(y) t FIGURE 5g == oo indicates
. Pass 1 traversal
2~Enc(y) H(y) L2(y) 4 u{Z2(y))
3-Enc (y) I1(y) L2(y) HZL(Y)) | w(Z2(y))
FIGURE 5

are not thought of and produced as formless ex-
pressions in first-order predicate logic. Asser-
tions become much more manageable when their struc-
ture clearly reflects (one's understanding of) the
functioning of the program which they describe.

We feel this is a property shared by our invariants,
by virtue of their incremental construction in the
context of increasingly-refined algorithms.

The concept we use to orxganize the assertions
needed for the final copying algorithms is node
status. A natural way to describe, in the course
of Pass 1 or Pass 2, how much processing a node has
undergone is to refer to how many times the node
has been "encountered® thus far in the traversal.
Since RCA uses Deutsch-Schorr-waite traversal, the
possibilities are 0, 1, 2 or 3 encounters (see
Figure 5g). Correspondingly we employ four pre-
dicates to partition the nodes of the original
graph -- referring to the abstract traversal stack
t, we define

0-Enc(y) as ~(y € m')

1-Enc(y) as y € t* A t2-of(y,t) # ¢
2-Enc(y) as y € t* A t2-of(y,t) = ¢
3-Enc(y) as y €m' A ~(y € t%

where m' denotes m - {p} in loop 1 of Pass 1, m in
loop 2. (For Pass 2 interpret m' as
{z} v {ez: e € (et N 8)}, and replace t with tt --

see Appendix A5). Given that node y is on stack t,
t2-of (y, t) is the set of nodes (in Pass 2, edges)
pushed onto t along with y. Thus, intuitively,

62

n-Bnc(y) is true just when y has been encountered
(in the DSW sense) n times.

virtually all of the new invariant clauses for
the Robson algorithm not present in ALCA are of the
form "n-Enc(y) = ...". This format for the asser-
tions clarifies the description of exactly how RCA
first builds up (in Pass 1), then dismantles (in
Pass 2) its in situ implementations of ALCA's copy-
related abstractions u, s and b. In the DSW im-
plementation (MA-6) of MA-5, in contrast, only the
invariant "Mod(...)=(Ra,Rb,Atom)" is needed to
define the progression of the single in-place im-
plementation (of stack t) which must be removed
before termination of the algorithm.

5.4 On verifying Pass 1

The invariant clauses for Passes 1 and 2 of
RCA appear in tabular form in Figures 7a, 7b re-
spectively. This figure is read as, the n-Enc(y)
predicate beginning each row implies (the conjunc-
tion of) all the entries in that row. Each column
comprises a single assertion, of one of the types
(perturbation, equivalence) introduced in Section
2.4. Thus reading across a row defines the state
of, e.g., all 1-Enc nodes; reading down a column
illustrates the stages that, say, MARK-i flags go
through in a given pass. Note in particular that
since at the end of Pass 1 every node in R*(Z) is a
3-Enc node (obvious since by the ocuter-loop exit
test empty(t) holds, and also m = R¥(Z), an old
friend by now), reading across the bottom row of
Figqure 7a yields the copying part of the RCR Pass 1

Output assertion. As every node of the graph is
again O-Enc at the start of Pass 2 by definition of
n-Enc, the top line of Figure 7b is jidentical to
the bottom line of Figure 7a, i.e.

Output-RCA1 * Input-RCA2, as desired.

For the most part the copying agsertions (col-
umns Invar-RCAl-i through -v) for Pass 1 of RCA
simply reiterate Figures Sa~e. RCAl-i says origi-
nal pointer values are stored .in the corresponding
copy cell. We use (the constant) Ll(y). I2(y) for
the original Llink, Rlink values of node y, rather
than Ra, Rb as in the DSW assertions, as a reminder
that the Robson pointer relations are subsets of
Mem x (Mem U {nil}), and extensions of ALCA's
R C Mem x Mem. This is why gci(y) is used to de-
note the pointer value of a copy node y (rather
than ¢ - R as in ALCA); oi is used to refer to
current pointer values in the original list struc-
ture (similarly to aptr, bptr of DSW). Note that
if, for example, both of p's pointers are nil, loop
1 of the implemented algorithm is exited. This is
one case of the abstract condition R(p) € m, since
R(p) (as defined in 5.1.1) is empty when
p.L = p.R = nil.

Of the four remaining equivalence assertions,
m-MARK and u-FAddr(RCAl-ii, -iii) are self-ex-
planatory; the sb-MARK assertion (RCAL-iv) indi-
cates how the information content of the MARK=-1
flag increases as first a node's Llink, then Rlink
are examined during Pass 1 traversal; and the
t-MARK assertion (RCAl-v) defines the possible
values of the MARK~-i flags for each n-Enc group.
This assertion is needed in Pass 1 since the flag's
value is incremented each time a tree edge is dis-~
covered - it is unnecessary in Pass 2 and does not
appear in Figure 7b.

5.5 The need for availability assertions

We use the term availability assertions in
referring to Pass 2's equivalence assertions, to
indicate the role played by these invariant clauses
in establishing the correctness of the second pass.
The need for these invariants is a straightforward
consequence of the bounded-workspace constraint on
the Robson algorithm -- since FAddrs and MARK-1
flags are removed during Pass 2, our assertions
mist be strong enough to prove that at every ap-
pearance of a "u(y)" or "e € s" in algorithm RCA2
the necessary FAddr or MARK-i flag is still present.

Availability assertions are unnecessary for
the copying archetype, since in ALCA the abstract
data structures ju, s and b are present throughout
the course of the algorithm. Note also that in the
implementation of DSW (algorithm MA-6) availability
assertions are not used because stack t can only be
accessed through the variable tp (cf. comments made
about MA-3). There is, however, no simple restric-
tion on when any given node's FAddr or MARK-i flag
will be needed in Pass 2 -- thus i, s and b are
represented as sets in ALCA and must be implemented
as (approximately) random-access data structures.
The next section explains, using availability as-
sertions, the precise extent of that approximation.

5.6 On verifying Pass 2
Note that instead of referring to a ‘current'’
edge e in the traversal, as in Pass 2 of ALCA,

we write p and q in RCA2 for (the head and tail
nodes respectively of) ALCA's e . Correspondingly

63

Assert Input-RCA2: Output~RCAl-A
q,p := nil, 2 ;
etl,et2 := { <q,p>} , ¢ ;
loop asserting Invar-RCA2
loop asserting Invar-RCA2
while E(p) Ns ¥ ¢ do
if E2(p) Cs2 then
et2 := et2 U E2(p) ;
push(tt, <p,ElL(p)>)
q/p = p.L2(p)
else etj := etj U Ej(p) ;
push(tt, <p,$>) ;
02(p) , 92 (H(p)) := Z2(p) ,u(I2(p)) ;
. qQ,p := p,Ll(p)

endloop

etj := etj UV EJ(P) ;
cson := U(IL(p)) :
02(p) ,0c2(u(p)) := EZ(p).U(ZZ(g)) ;
loop asserting Invar-RCAZet;{e

A cson = U(rson(ttl))

Create/Stack(tt)
--gee App. A4

.1
1

ko]

push(tt, <p,9>) ;

*ha2

while (not empty(tt)) cand
tt2 Cbl do
if tt2 ¥ ¢ then

o2(ttl) ,Oc2(u(ttl)) :=
L2(tel) ,u(I2(eel)) £

etl := etl U El(ttl) ; cson := U(ttl) ;
01 (£tl),0cl (U (ttl)) :=El(ttl) ,u(Z1{ttl))

pop(tt)
endloop
while pnot empty(tt)
etl := etl U El(ttl) ;
02(ttl),0c2(u(ttl)) == L2({ttl) SH(Z2(ttd)):
q,p = ttl,Il(ttl) ;

Replace Top-of tt with <ttl, ¢ >
endloop

Assert Output-RCA2:

w3

kg

do

*h_5

y € R¥(2): oj(y) = TLily)
A oci(uly)) = u(Li(y))

Notation: rson(ttl) Qg_ 1-Enc(ttl) then L2(ttl)
else I1(ttl)

each assignment stmt S containing a j .
denotes sJ ; s?
1 2
FIGURE 6 -~ Algorithm RCA2

the first component of each stack element in RCA2
is written as a node:

This essentially notational change in stack tt
is made in order to simplify the implementation as-
sertions, since in RCA2 it is more convenient to
think of implementation values (FAddrs, etc.) as
stored in the current node rather than in (the head
of) the current edge. Recall that in Pass 2 of
ALCA, nodes are not mentioned to emphasize that

(xtpuaddy a9s 13papidoy puw asay3-yadeq ‘Suofl}IISEE YOEIE ‘OuF-uU JO SUOTITUTIDP I03)

L 3L
(€'2°7°0 = U) u=XuWW = (K)zo J3T U = (AWM , T —
£~ ‘Z- ‘T~ ‘0-MUVH 2
(Kyza n (X)1a 3 (Kya { !
2’1 =1 303 {<(A)1T *X>5) m (KN)ya ¢ Bbujuyeauod Y uorjiesse Aue 103 Mt v Mc =V TUOTIRION
S3URTIPAUT 7 sSeq uosqoy -- qf FUNOIJ
=)
(33 ‘d) zuoeaszeaa
’ ~yad: - - = -
z0pa0&doD V ((2) »¥’#3P)3ISITI-Yadag V A-TVOH />\ V. (3379) xowagas geql WOTY-FPAUT = TVO¥-TeAUL
((Ky)fop = ((K)fDnl - -
< (K)£0 = (K) (g - (K)oua-¢
(£) DOMUYK ~
((Ay)zop = ((Kyen v - J ((Aleo = (Mza v
¢ = 0o U ((ATad ((K5)10) 120 = ()13 « (K)oug-z
(£)>navH ppo Hn = (510
$=o00uU (tHm)" ce mm.Wm““:u v V ((K) 10) Cop « (K)oua-1
185 (A)1a (4) P = (K)€3
« (A)oud-o
P
A-ZUN AT-ZWOY TTT-ZYod TT-zvod T~z
Uot13I9sse Kat1IqeTTRAR Kittrqerteae KyrTIqEITRAR uorjIosce
potdo) sabpa MIYH-qS IppYd MW uorIeqaInl 1dg
S3jURTICAUY [SSegd UOSqOoY -- ¥/ HNNOIJI
=)
K (3/d) Taxoeasyaq
’ o nm - 2 = - £
(w’ #3p)3IsITa-yadad v A-TYN />\ v (3) qowasgeq WOTE-TBAUT = V-TVO¥-IRAUL
(A)>RVH pPO
{e*2'1'0} 3 (A)uwm w8 D (Hea v « (K)oug-g
Z < (A)XuwH
o 18D (H1a ((£) 10) LoD
{e'1} 3 (K)naww Hn = (Ho (A) oV -)03 = (K)oua-z

. (an s> (Nea)~ v
{z} 3 (K)mauw (z € (A) VK « (K)ouz-1
e 18 D () 1a)

(4) PXAVYH ~ (ans> (Hta)~ -- . (&) PN ~ (X)Y£o = (A)(I « (A)ouz-0
A-TVOH AT-TVOM TTT-TVON TT-T¥DH T-T¥
@ouatearnba souatearnba aouatearnba aouateatnba uotjiesse

MUVH-3 XUVW-qs appva-it MIVH-u uoTIeqIN} 134

64

the transitive closure of the edge-incidence rela-
tion is being copied.

In algorithm RCA2, loop tests and assignment-
statement right hand sides are still expressed ab-
stractly; the next transformation to be applied
will replace "E(p) Ns ¥ ¢ " with "MARK(p) > 0 ",
“p := L2(p)" with "p := p.L.R", etc. In the dis-
cussion below the intermediate algorithm referred
to may be either RCA2 or its successor (omitted
due to lack of space) =-- the availability asser-
tions for the two are the same.

5.6.1 MARK-i flag availability

Every implementation of an "e € s" test in
Pass 2 (marked by (*) in Figure 6) is applied to an
edge from either a 0-Enc node (node p at (*-1)), or
a 1-Enc node (node tti in statement (*-2), since
the test is only made if tt2 ¥ ¢, implying
1-Enc(ttl)). Thus by the availability assertion
Invar-RCA2-iv (which could be paraphrased as

0-Enc(y) v 1-Enc(y) = "y.R is a valid MARK-i flag"),

the implemented version of the tree-edge test is
correct. The invariance of RCA2-iv is an immediate
consequence of the fact that the only edge possibly
copied in loop 1 ("going down") is the back-edge
Rlink of a node y (1f it has one), after which y is
a 2~ or 3-Enc node (depending on whether or not y's
Llink is found to be a tree edge).

5.6.2 FAddr availability

Here the assertions must imply that when any
edge, e, is copied by a statement marked (**) in
RCA2, that the needed u-value for e -- i.e.
u(Zi(p)) or u(rIi(ttl)) -- is available. For tree

edges (**-3,4,5) this is accomplished by using in
locp 2 an extra variable cson'(gopy son), along
with a corresponding invariant clause stating that
cson stores the FAddr of the node up from which we
are returning. Since all tree edges are copied in
"backup phase", and each node has a unique tree
ancestor, the single variable suffices.

For back edges the case is more complex, as an
arbitrary number of back edges, from any node in
the list, may point to a given node y. As the
FAddr-availability assertion (RCA2-iii) states:

0-Enc(y) V l-Enc(y) V 2-Enc(y) "= ol(y) = u(y),

we may (indirectly) demonstrate the validity of
(**-1,2,4) by establishing

(1) 3-Enc(y) ®u({e €b: e, = ¥h goc

where Oc denotes the set ocl U Oc2 of edges in the
copy list structure. The invariance of (1) is a
consequence of Pass 2's traversing the list struc-
ture in reverse order (Rlink before Llink) from
Pass 1. A detailed argument of (l)'s invariance
is greatly facilitated by the presence of Af# and
the Depth-First assertion (see Appendix AS5), which
enable a simple case argument (omitted here for
lack of space) to be made.

Note that we certainly do not claim the above
discussions to be proofs of the invariance of
RCA2-iv or assertion (1) above; they are merely
intuitive arguments to that end. 1In this article
we emphasize the construction and nature of the
invariant assertions themselves, and have delib-
erately omitted formal proofs of their invariance.
For that reason this article should not be consid~-

65

ered to be an example of formal verification, but
rather an exposition on some methods useful in
formal verification -- gsee Section 7.1 .

S.7 The final transformations

Applying a transformation to algorithm RCAl-A
to implement stack t (just as with the MA~5/MA-6
transformation) yields RCAl1-B (Figure 4b), in
which we revert to Robson's original variable
names. (The corraspondence with RCAl-A's vari-
ables is noted in the accompanying table.) This is
done both to facilitate comparison with the program
as originally presented in [11] and because
Robson's mnemonics are more suggestive once the DSW
stack is introduced.

Given the assertions of RCAl~-B, together with
some elementary path analysis, one can then apply
to RCA1-B the final transformation, obtaining Pass
1 of the Robson algorithm exactly as originally
presented. That version bears approximately the
relationship to RCA1-B that MA-~3 has to MA-4,
since each pass of Robson's program is written as a
conditional statement within a single while loop.
Pass 2 of the Robson program is obtained from RCA2
via an identical sequence of transformations.

5.8 Beyond the Robson algorithm

One advantage of the Robson copying algoritim
is its adaptability to any system of copy-cell al-
location. 1In some applications, this is an impor-
tant consideration -- if, in the presence of gar-
bage collection, say, all free cells must be or-
ganized as a free~-list. However, more efficient
algorithms can be obtained by implementing ALCA's
storage pool by means of a contiguous region of
memory, addressed by values greater than Amin, for
example. This seemingly minor implementation re-
striction has a significant effect on the effic-
jiency of the resulting algorithms, as it eliminates
the need for traversal flags. (Forwarding addres-
ses are recognizable as pointers whose values
exceed Amin, and thus by their presence mark vi-
sited cells.) The extra workspace made available
by this double use of the forwarding addresses is
utilized in two ways.

1) All copying need no longer be postponed
until-Pass 2. Consider Figure 5b -~ once the MARK
£lag becomes unnecessary, only the node's Llink
must be saved in the copy cell; thus one new pointer
for the copy list structure can now be inserted in
Pass 1.

2) Different types of traversal may be used,
as follows. The Fisher copying algorithm, pre-
gented in [5], can be otained from algorithm CA-0
by a derivation which, at the transformation
correspording to the one producing algorithm MA-4
in Section 2.2, organizes the set, ul, of cells
containing unexamined pointers, as a queue rather
than as a stack. Subsequent transformations then
employ the contiguous copy region as an array in
order to implement the traversal queue. The
principal intermediate algorithm in this derivation
is, apart from its use of a queue, esgentially the
same as ALCA. The Clark list-copying algorithm,
from (3], is the current state-of-the-art in terms
of execution time. As its traversal method is
stack-oriented, its derivation parallels that of
RCA up to and including the archetypal algorithm.

However, in subsequent refinements, both pointers
of the current node are always examined in loop 1.
Only those nodes containing two tree edges are
pushed onto the stack, thus speeding up traversal
of the ofiginal list structure.

Our uppublished work on the Fisher and Clark
algoritigmi adds support to the opinion that the
refinement approach is particularly advantageous
vhen verifying a family of related algoritims.

6. PHILOSOPHY

In assessing the significance of program-
correctness research, we think it important to
present some personal philosophy. By "demonstra-
ting program correctness" we mean "establishing
that a given program does what we want it to do",
or more precisely, "increasing our confidence
that a given program does what we want it to do".
This is the desired end, which can be attained by
a variety of means:

1. There are empirical methods,; such as pro-
gram testing, by which we increase our confidence
in a program’'s behavior. Since this increase
results from an inductive inference based on a
particular experimental result, testing by itself
is not the ultimate solution to problems of program
correctness: "testing cannot detect the absence
of bugs, only their presence" as the proverb goes..

2. There are logical methods, such as program
verification, which employ (either formal or in-
formal) arguments that a program “does what we in-
tend". The advantage of an informal method is
that is deals directly with our intuitive notions
of what the program should accomplish; however, a
verbal analysis cannot take full advantage of cur-
rent logical techniques of program verification,
such as fixedpoint induction or our transformation-
al approach. Once we express our arguments com-
pletely within a formal system (e.g. predicate
calculus), however, we face the problem of trans-
lating our original intentions as to "what we want
the program to do" into mathematically precise
formal specifications. This problem of formal
specification of real-world programs is a concern
separate from the issues which we address in the
current article. Despite our optimism about the
progress being made (by others and ourselves) in
the area of machine~checkable proofs of large pro-
grams, we grant that further progress in formal
specification techniques is necessary before The
Day arrives (if ever) that formal verification,
alone, can claim to "solve" the problem of estab-
lishing program correctness.

7. CONCLUSION AND RELATED WORK

7.1 Conclusion

We see our version of the transformational
method as making three contributions:

1. As presented in this paper, it can be
used as an aid to informal verification: Sections
3, 4 and 5 arque the correctness of the final
copying algorithm by using our framework of ab-
stractions and implementations to motivate the
invariance of the loop assertions. That (verbal)
reasoning does not formally verify the Robson
algorithm, but we feel that explaining an algo-

66

rithm in terms of its high-level structure is a
more effective way of persuading oneself of the
algorithm's correctness than is considering only
the final program text. Also, the use of inter-
mediate algorithms reduces the complexity (and
hence increases the credibility) of the individual
components of the correctness argument.

2. The axiomatic definition of our trans-
formation schemata as presented in full in (7] es~
tablishes the correctness-preserving property of
the transformations ~-- thus the correctness of al-
gorithm MA-6 is a function solely of the validity
of the application of the transformations used in
its derivation, and the correctness of our initial
algorithm, MA-O. This fact may be used to for-
mally verify MA-6 without ever having to indepen-
dently establish the invariance of any loop as-
sertions (except that of the initial algorithm).
In verifying large programs, this may be an
easier approach than the traditional method of
proving, in one stroke, the invariance of the
final, extremely complex loop assertion.

3. Any formal verification should closely
reflect one's understanding of why an algorithm
works. Our methodology both reflects and supports
that opinion, and provides another "counterexample
to much-propagated and hence commonly held belief
that there is an antagonism between rigour and for-
mality on the one hand and 'understandability' on
the other" as Dijkstra says in (4].

7.2 Related work

While in this summary of our initial efforts
with list-copying algorithms we have spoken in
terms of larger-scale program transformations than
those described in [6], [7], this larger scale is
particularly important when the intermediate al-
gorithms are first formulated for complex programs.
Blikle [1] considers some correctness-preserving
program transformations defined in terms of an
algebra of binary relations, and uses them to de-
rive a swall but highly-optimized square root al-
gorithm.

Topor [15] was the first to prove correctness
of the Deutsch-Schorr-Waite algorithm. Yelowitz
wag among the first to apply the refinement tech-
nique to verifying list-marking algorithms -- see
Yelowitz and Duncan [16] for an alternate, more
formal definition of the abstractions of Section
2. Various implementations of an abstract back-
tracking algorithm are considered by Gerhart and
Yelowitz in [9]. The very elegant program trans-
formation work of Burstall and Darlington in [2]
is comparable in spirit to our approach; however,
their technique appears best suited to (algorithms
processing) recursive data structures such as
trees, in a simple applicative framework. The
imperative features required to handle pointer
manipulation and digraphs dictate a more complex ~
memory formalism -~ obtained in our method by
starting out with an abstract memory representa-
tion (cf. the 0 function of algorithm CA-0), and
then implementing it in later transformations.

De Roever in [12] presents proofs of correct-
ness, employing (both least and greatest) fixed-
point techniques, of a group of bounded-workspace
traversal and backtracking algorithms, including
that of Deutsch-Schorr-Waite, and focuses on the
similarity in their proofs without using trans-

formations (see [13] for termination proofs for
"the algoritims). It was the attempt to extend this
work to some difficult list-copying algorithms
which. Bfought out the importance of using the
explibitly structured techniques of the current
paper,

ACKNOWLEDGEMENTS

We wish to warmly thank the University of
Utrecht for its generous support of the interna-
tional collaboration involved in the writing of
this paper. The Tuesday Afternoon Club, especially
E. W. Dijkstra, provided many valuable comments on
an earlier version of this paper. Thanks also to
Emmy Busch and Sandy for their typing; and to
Stephanie for moral support.

' APPENDIX
Discussion of assertions omitted for lack of space.
Al. Alg. MA-6 SameStack(t,tp) = empty(t)Atpenil

V fel=tpA [(tp.atomAt2=tp.bASameStack (pop(t),tp.a))
V (t2= ¢ AsameStack(pop(t),tp.b))]]

Mod (aptr,bptr,atombit, tp,p) =def

if tpenil then (aptr,bptr, atombit) else if tp.atom

then Mod ((aptr-{< tp,tp. a>})u{<tp.p>5.bptr.

Tatombit-{<tp, tp.atom>1u{<tp,false>},tp.a, tp)

else Mod(aptr, (bptr-{<tp,tp. p>hul<ep,p>},

atombit, tp.b,tp) £i

Bijection(y,w,c) = u:w+c A u(a)=u(b)=
n-b A Iy Ivew: u(v)-y} - c where w = m,R*(2)
SpanTree(s,b,w) = {e2:e €s}={e2:e €3 Ub}=w-{2})
bNs= ¢ Als|=|w| -1 A I(Em-{ph-t*)C (s UB)C I*(Ze)
DefttStack(e,tt) = empty(tt) V [ttl € et
A Ib(ttl)C tt2C I(ttl)C et Utt2

where Ia(e)= A (£t2UITIs*(tt2Ns)) Net = ¢

I(e) N a for A e € Is(ttl)
a=g,b A pDefttStack(ttl,pop(tt))]
A3. Alg. RCAl DefStackRl(p,t) E empty(t)V[tl€m

A [(t2=22(t1) A <tl,p>€Esl)

vit2= ¢ A <tl,p>€s2 A I1(tl) €m)]

A DefStackRl (tl,pop(t))]

Invar-RCAl-B = 3Im,t,H,s,b: Invar-RCAl~A A Same-
StackRCA(t,gf) where i) Ocj in RCA-i is replaced
by 6c'j, def'd. by (0c'l,oc'2)=ModRCA(0cd,0c2,9f,f)
ii) SameStackRCA, ModRCA are virtually identical to
DSW assertions in App. Al.

Ad. Alg. RCA2 DefStackR2(p,tt) = empty(tt) \'
[<sinv(ttl) ,ttl>Eet
Al (et2=El (p) A <ttl,p>Es2Net A~(tt2C et)
A tt2C sl=IIs*(tt2) Net=d)
<ttl,p>€E€sl Net A E2(ttl)C et)]
A DefStackR2(ttl,pop(tt))]
where <sinv(ttl),ttl>€E€s.

AS5. Robson invariants

Vitt2s ¢ A

0~Encly) = ~{y €n’')
1-Encly) S y € stk* A t2-of (y,stk) # ¢
2-Enc(y) = y € stk* A t2-of (y,stk) = ¢
3-Enc(y) £ y € m' A~(y € stk*) , where

m', stk =m~{p}, t in Pass 1

= {z}u{e2: ec(et-{e}) Ns}, tt
in Pass 2
and t2-of(y,stk) = if y-(top(stk)) then

(top(stk)) else t2-of (y,pop(stk))

Depth-First(df#,w) = Bijection(df#,w,{j: 1 <i<|w|}
Adgk(z) = 1
A <x,y>€sl = dfk(y) = df#(x) + 1
A<x,y> €82 = df#(y) = afk (x)+s* (Z1(x)) 141

67

_ [51 risher, D.aA.

A<x,y>Ebl w af#(y) < af#(x)

A<x,y>ED2 = df#(y) < df#(x) V yEs*(I1l(x))
where w = m, R*(Z) and s*(q) is the set of nodes in
the subtree rooted at the node g (including q).
CopyOrder = df#(y) >af#(p) A ~(yEs*(p)) =

H(E(y)) Coc
dfé (y) Ddaf#{ttl) = u(E(y)) Coc ,
in loops 1 and 2 respectively.

REFERENCES

[1] Blikle, A. Towards Mathematical Structured
Programming, in Formal Descriptions of Programming
Concepts, E.J. Neuhold (ed.), North-Holland Pub-
lishing Co., 1978.

[2] Burstall, R.M. and J. Darlington. A Trans-
formation System for Developing Recursive Programs.
JACH 24 (Jan. 1977), pp. 44-67.

[{3] Clark, D.W. A Fast Algoritim for Copying List
Structures. CACM 21 (May 1978), pp. 351-7.

[4] Dpijkstra, E.W. Finding the Correctness Proof
of a Concurrent Program. Proc. Koninklijke Neder-
landse Akademie van Wetenschappen, Amsterdam, A 81
(June 9, 1978), pp. 207-1S.

Copying Cyclic List Structures
in Linear Time Using Bounded Workspace. CACM 18
(May 1975), pp. 251-2.

{6] Gerhart, S.L. Correctness-Preserving Program
Transformations. Proc. Second POPL Symp., Palo
Alto (1975), pp. 54-66.

[7] Gerhart, S.L. Proof Theory of Partial Cor-
rectness Verification Systems. SIAM J. Comp. 5
(sept. 1976), pp. 355-77. ’

[8] Gerhart, S.L. Two Proof Techniques for Trans-
ferral of Program Correctness, (forthcoming).

[9] Gerhart, S.L. and L. Yelowitz. Control Struc-
ture Abstractions of the Backtracking Programming
Technique. Proc. Secand Intl. Conf. on Software
Eng., San Francisco (Oct. 1976).

{10] xnuth, D.E. The Art of Computer Programming,
vol. 1: Fundamental Algorithms, Addison-Wesley,
1973, Section 2.3.5.

[11] Robson, J.M.
Copying Cyclic Structures.
pp. 431-3.

[12] AdeRoever, W.P. On Backtracking and Greatest
Fixedpoints, in Proe. Fourth Intl. Conf. on Auto-

mata, Languages and Programming, A. Salomaa (ed.),
Springer-Verlag, 1977.

[13] deRoever, W.P. An Essay on Trees and Iter-
ation. Report RUU-CS-78-6, Dept. of Comp. Sci.,
University of Utrecht, 1978.

[14] Schorr, H. and W.M. Waite. An Efficient
Machine-Independent Procedure for Garbage Collec-
tion in Various List Structures. CACM 10 (Aug.
1967), pp. 501-6.

[15] Topor, R. Correctness of the Schorr-Waite
List Marking Algorithm. Memo MIP-R-104, School of
Artificial Intelligence, Univ. of Edinburgh, 1974.

[16] Yelowitz, L. and A.G. Duncan. Abstractions,
Instantiations, and Proofs of Marking Algoritims.
Proc. Symp. on Artificial Intelligence and Prog.
Lang., SIGPLAN 12 (Aug. 1977), pp. 13-21.

A Bounded Storage Algorithm for
"CACM 20 (June 1977),

