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ON PROGRAM EFFICIENCY AND ALGEBRAIC COMPLEXITY

Jan van Leeuwen

Department of Computer Science
University of Utrecht
3508 TA Utrecht, the Netherlands

Abstract. Minimizing the number of arithmetic operations to determine
the Schur transform of a complex polynomial provides a concrete example
of how the general concern for program efficiency can lead to the kind

of questions algebraic complexity theory attempts to answer.

1. Introduction.

Choosing the proper algorithm for a task is an important phase in
developing application software. In order to tell one algorithm from
another an analist must not only judge which algorithms score highest
in terms of clarity, robustness and maintenance, but also which achieve
a desirable or perhaps predetermined degree of efficiency. Analysis of
algorithms has provided tools to measure and compare algorithms, and
through the results of this area we now know for a good number of practi-
cal problems why some programs are "better" than others (cf., Aho,
Hopcroft and Ullman [1]). Pushing for the most efficient, i.e. "fully
optimized", program for a task can be of great commercial value, but
there is going to be some question as to how far the “optimization" can
be carried through. Within a given frame of mind (and the limitations of
your computer's instruction set) there is likely to be some limit to the
number of operations that can eventually be saved. Determining lower -
bounds on the number of operations all algorithms (of some admissible
type) must perform to achieve a given task is the domain of a field nor-
mally referred to as "complexity theory", sometimes with an additional
adjective indicating what mathematical model for algorithms is adopted for
the theory.

Returning to algorithms, it is not likely that the overall design of al-
gorithms is a programmer's responsibility. All he will do is make sure

that the steps of an algorithm are properly transcribed into program



statements when the design is handed to him. When the overall design is
fixed then, as one may observe, the programmer's concern for program
efficiency often leads him to optimize code locally. Where it pays he
attempts to write the shortest code for each "step" of the algorithm.
And this may well be the commonest way programmers run into complexity
theory.

The one topic of evaluating algebraic expressions using shortest
straight-line code {and/or fewest registers) leads to a collection of
difficult mathematical questions, which "algebraic" complexity theory has
been attempting to answer for the past decade or so (see €.g. Borodin and
Munro [2]). Looking at expressions as finitely generated elements of some
algebra, one should not be surprised to find that the minimum number of
ADD, SUB, MULT or DIV instructions to evaluate some polynomial or ratio-
nal expression has intimate ties to concepts of height, degree and rank
in classical mathematics (see Strassen [19, 20, 21] for a more detailed
account of this). In its widest sense, algebraic complexity theory is
concerned with all applications of algebra to lowerbound problems for
algorithms.

We shall attempt to illustrate how a programmer can very easily run
into the problems of algebraic complexity by exploring a relatively
simple (yet practicall) task, the computation of the Schur transform of
a complex polynomial. What the Schur transform is and why you may be in-
terested in it will be explained in section 2. Suffice it for now to say
that the Schur transform figures as a frequently called subroutine in
some universal polynomial root-~finder. It will appear that one can sub-
stantially save on the arithmetic in at least one documented program for
it. In section 3 we shall explore what algebraic complexity can tell us
about the optimality of the resulting program. I hope that the very same
exploration will show the programmer that the questions of algebraic com-
plexity (and the meaning of results "with or without preconditioning")
are of more than academic interest and that it will inspire others, per-
haps, to study the few concrete problems which I did not fully solve. No
particular background is needed to read the results below, but in the
proofs I shall assume some familiarity with the basic results of alge-
braic complexity as presented in e.g. Aho, Hopcroft and Ullman [1] (Chap-
ter 12) and Borodin and Munro [2] (Chapters II, III).



2. Software for the Schur transform.

Let p(z) = a0+alz+...+anzn be a (complex) polynomial of degree n and

let its reverse p* be

- -— — n
*¥(z) =a_+ +...ta z" .
p*(z) a an_lz Oz
t
Definition. The Schur transform of p is the (n-1)s degree polynomial
Tp given by
n-1 k

kEo(aoak—-an_kan)z

Tp(z) = a p(z) - a p*(z) =

It is interesting to see how the Schur transform got into being. Ever
since the days of Gauss, mathematicians and many others have considered
the questions of locating the roots of polynomials in the complex plane.
Near the end of the last century, some published the first results aimed
at finding effective criteria to actually bound the number of roots within
a given region. For example, the "Routh-Hurwitz problem" asked for the
most elegant necessary and sufficient conditions that all roots would lie
in the left half-plane. In a 1917-1918 paper, Schur [17] apparently was
first to run into a criterion for all roots of a polynomial to lie outside
the unit circle. (He immediately noted that, at the expense of a simple
transformation, it gave a new solution for the Routh-Hurwitz problem at
the same time.) Acknowledging Schur for guidance, Cohn [3] subsequently
found a method for counting roots by location with respect to the unit
circle which directly extended Schur's original criterion. Here one en-
counters the first occurrence of what became the "Schur transform".

In its simplest form the Schur-Cohn test goes like this. Let TJ denote

J

th t
the j iterate of transform T and always regard T p as an (n-j) h degree

polynomial (even when its first coefficient is 0). Let

6j='ij(O) (j=1,...,n)

Theorem 2.1. Polynomial p has no roots in (or on) the unit circle if

and only if 6ﬁ> 0 for all j.

(We shall give the generalization to a counting formula in a moment.)
One should realize that mathematicians in those days were greatly

interested in all sorts of problems concerning the location of roots of

functions (and not just of polynomials). See van Vleck [23] for an ex-

cellent account of the work in the early 1900's. So the "Schur-Cohn



problem" was not "solved and forgotten”, but it stayed quite alive
throughout the twenties (see e.g. Herglotz [7]). Fujiwara [5] showed
that the solutions to the Routh-Hurwitz and the Schur-Cohn problem could
be derived by one uniform method. In the late forties, Marden [12] (see

also Marden [13]) captured Cohn's results in an elegant new way. Let

Y.=6,...68. (§'s as above, j=1...n)

Theorem 2.2. If k of the yj's are negative and the remaining n-k are
positive, then p has k roots within, no roots on and n-k roots outside

the unit circle.

(There are ways to get around zero Yj's, but this will not be of interest

to us here.)

Ever since electronic computers became widely available for high-speed
general purpose computing (in the fifties), the world of algorithms has.
not been the same. Problem solutions that had never been feasible could
now be programmed and run in seconds. As far as polynomial root-finding
is concerned, some tried to find new methods specifically designed for
execution by computer and so powerful that, when prdperly programmed,
higher degrees of accuracy could be achieved faster than by any previous
algorithm. (The earliest attempt to find such a "uﬁiversal" method pro-
bably has been Moore [14].) In 1961 our story continues, when Lehmer [10]
showed how the Schur-Cohn test (which he did not mention by that name, by
the way) could be used for a practical algorithm to isolate all roots of
a polynomial in circles of any radius desired, no matter how small. Lehmer
must have been aware of Marden's [13] thorough treatment of the Schur-
Cohn results, but he did the necessary mathematics completely over in more
modern function-theoretic terms. Given the validity'of the Schur-Cohn
test, the idea of the algorithm is easy enough £6 exp}aih. By means of a
proper change of coordinates the Schur-Cohn test can be used on any circle
in the complex plane. Now begin with a sufficiently large éircle of radius
R containing all roots, and recursively probe circles which contain at
least one root with covering sets of some cénétént number of smaller
circles (of about half the radius). At each stage the regions that con-
tain no roots are discarded. See also Lehmer. [11].

The details of Lehmer's algorithm are included in most standard texts

on numerical mathematics today. See e.g. Ralston [15] (where it is referred



to as the "Lehmer-Schur method") and Henrici [6]. A precise study of the
practical merits of Lehmer's algorithm was undertaken by Stewart [18],
who came up with several modifications to alleviate the algorithm's
numeric instability. Compared to more classical root-finders, Lehmer's
algorithm reportedly is somewhat slow, mainly because of the computatio-~
nal overhead involved in each step to a (full) set of smaller circles.
Since the overhead consists of performing the Schur-Cohn test on an
entire set of new circles, it is very important that it is programmed to
run fast in each individual case. Savings, however small, will pay off
in the end because of the large number of times the test is performed.
Hence the requirement that the Schur-transform Tp itself be programmed
with the greatest care for efficiency.

Rasmussen [16] apparently contains the first explicit program for
Lehmer's (unmodified) algorithm documented in the open litterature. We
shall favor it, rather than Stewart's later program for a modified
Lehmer algorithm (microfiche appendix to [18]), for our discussion below.
Sure enough Rasmussen's program contains a subroutine for computing Tp,
but it will appear not to compute it in the most efficient way! This is
the point where the tools from (algebraic) complexity theory will become
important. To explain Rasmussen's routine for Tp we need some additional
notation. Recall that we must compute the coefficients of

= ~ - - k - - n-1
Tp(z)—-(aoao— anan)+...+(aoak-an_kan)z +...+(a0an_1- alan)z

An immediate complication is that we must do complex arithmetic. Let us

represent the coefficients ak as

a = x[k]l+1iv[k],

with X[k] and ¥[k] locations of the arrays X[0:n] and ¥[0:n] containing
the real and imaginary parts of ak, respectively. In section 3 we shall
just write xk and Yk to refer to the constituent parts of the coefficients
ak. The coefficients of Tp will be symbolically referred to as AO,...,An_1
when needed. With some further renaming of variables, Rasmussen's program
segment for Tp goes like this. (We omit scaling of the X and Y arrays

and a test to determine whether a complete transform is required or not.)



comment First calculate AO end of comment

pl := x[0]; p2 := Y[0]; ql := X[n]; g2 := YIn];
X[0] := pl*pl+p2*p2-qgl *¥ql-q2*q2;
v[0] := 0O;

comment Note that the values of a, and a are saved in pl, p2

and ql, g2 respectively, so there is no harm in overwriting their

array representation. Next we compute A, to An in pairs

1 -1

A;, A ., end of comment
i n-i

imax := n¥2;
for i := 1 step 1 until imax do
begin
rt := x[il; r2 := v[i]; st := x[n-i]; s2 := ¥[n-il;

X[i) = pl*r1+p2*¥r2-qgl *¥sl-qg2%s2;
Y[i] := pl*r2-p2*ri+ql*s2-ql*si;

if n#2* i then

begin

X[n-i] := p1*sl+p2*52-q1*r1-q2*r2;
Y[n-i] := pl*s2-p2*sl+ql*r2-q2*rl;
end

end;

comment The coefficients of Tp are now stored in X[0:n-1} and

Y[0:n-1] like they were for p end of comment

The program certainly shows some clever programming. By using pl, p2
etcetera the number of array references needed for the formulae is kept
to a minimum. Most interesting of all is the fact that the real and
imaginary parts of Tp's coefficients can be stored in the same arrays X
and Y immediately after being computed and no extra, auxiliary arrays are
needed. Yet the program has some weak points as well. For instance, why
would you want to include the test "if n#2*i..." in the for-loop when
you know in advance it's going to yield true for all values of i except,
perhaps, for i= imax. A moment's reflection will show that the program
remains valid when the test is dropped entirely, the only penalty being

that at-the end (when n is even) the value of An/ may get calculated

2
twice. If the effort wasted on this compares favorably to performing n/2

redundant tests, then you might just do it. Otherwise a program like the

following will avoid redundant testing.



imax := n+2; loopmax := imax- 1;
for i := 1 to loopmax do
compute Ai and An—' as before
end;
rl := x[imax]; r2 := Y[imax];

if n even then

begin
X[imax] := p1*r1+p2*r2—q1*r1—q2*r2;

Y[{imax] := pl*r2-p2*ri+ql*r2-q2*ri

end
else

begin

sl := X[n-imax]; s2 := Y[n-imax];

compute A, and A, as before

imax n-imax

end;

In either case we note that the calculations within the for-loop domi-
nate the run-time of the code. As it stands there are 16 multiplications
and 12 additions/subtractions performed each time ‘'round the loop (some
n/2 times!). Even when n is small there is reason for wanting to do
better because, as explained, the routine is used many times in the
course of Lehmer's algorithm and savings of any kind will add up in the

long run.

3. Optimal computation of the Schur transform.

We shall now gradually move towards the domain of algebraic complexity

- - t
theory. Let us call a.a - a the k h Schur coefficient. The task to

a
0k n-k n
determine all Schur coefficients in terms of real parameters amounts to

an evaluation of the following formulae in the "smallest number of steps":

2 2 2 2

XC+ Yo - (Xo+¥2)

. - - (3.1)
XXt Yorx = XnXnx ~ Yn¥n—x

X% " YoXk * *n¥n-kx T Yn¥n-k



for k from 1 to n-1. (Verify it from Rasmussen's program!) In a way
we're asking for the fastest assembly language program for it, a question
which can certainly not be answered universally for all machines. The
model for programming adopted in algebraic complexity theory makes use

of straight-line coding in purely algebraic terms.

Definition. A straight-line program for a set of formulae FO'Fl"" is

a (finite) sequence of steps w,,T e such that

1

K
(a) each “i is of the form Tlii}TZ for T which either are a scalar,

1,2
an input-variable or some “j for j<i,

(b) each formula Fi is the computed result of some “j'

(Compare e.g. Aho, Hopcroft and Ullman [ 1], sect. 12.2.) It is
tacitly understood that the scalars are taken from ® and that we shall
not want to use non-scalar divisions for our computational task ahead.
(Note that Stewart's program [18] uses both complex arithmetic and non-
scalar divisions, by the way.) The effect of choosing different fields
of scalars on algebraic complexity has recently been studied by
Winograd [25, 26].

With all vagueness of the computational model resolved and guaranteed
machine-independence, we can now ask for the shortest straight-line pro-
gram to compute all Schur-coefficients. Minimizing a total operation
count immediately appears to be a hard question. Algebraic complexity
theory offers powerful techniques for establishing a smallest number of
multiplications or a smallest number of additions/subtractions, but is
somewhat at a loss for minimizing the two combined. In a naive computa-
tion of the Schur-coefficients multiplications dominate the operation
count (it's 16 versus 12, remember) and it may be a good idea to try and
save on them rather than on the additions/subtractions. There may be
another good reason for doing so, when the same algorithm is to be effi-
cient in multi-precision arithmetic as well. Multiplications tends to
become rapidly more expensive than additions and subtractions if higher-
order precision is required and it is clear that the algorithms using
fewest multiplications will win. In our case the number of additions/
subtractions (fortunately) will stay low as well. Thus having defined
our aim, there is only one catch to our model that might give us head-
aches (it won't, but it could in general). If one has a parametrized set
of formulae F(n) like we do here, then the "optimal" straight-line code

for F(n+l) may very well have no similarity at all to the optimal code for



10.

F(n)! It does not matter if one just needs a program for one (fixed)
value of n, but it's a different ball-game if a general routine is de-
sired: there is no guarantee (apparently) that the different straight-
line texts can be coded together into one parametrized, finite subroutine
in a higher level programming language. Consequently, straight-line com-~
plexity may not be quite as realistic a measure for "real program" com-
plexity as we initially thought. Yet straight-line programs will do here
to obtain achievable (read: programmable) lower-bounds.

Let us first consider the more special task of computing the Schur
transform of a real polynomial (i.e. Y=0). The coefficients (3.1) reduce

to a much simpler form

2 2

Xy - X

>.<x X X (3.2)
0k n n-k

Nevertheless, straightforward calculation of (3.2) would take 2n multi-
plications and n additions/subtractions. The following scheme shows that

we can do with only n multiplications, together with a mere 2n additions/

subtractions
?g'xi=(xo'xﬁ(xo+xﬁ
%Oxk R _X_o';_n AL e XO+2Xn AR S (3.3)
):(Oxn-k T X T Xo-zxn i LN XO+2X St X

It is hereby understood that for even n the term for k==%-is just written
as
X - X =(X,- .
x0 n X n ( 0 Xn) Xg

2 2 2
There is nothing profound to this scheme and my guess is that you sus-
pected a simple trick like this right when you saw (3.2). Anyone could
see it! So why don't we try to be smarter and save even more multiplica-
tions... But can we? Elementary algebraic complexity provides a criterion

that shows that we can't. Hence we found a first example of a problem in
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formula-coding that needs algebraic complexity to solve it. We give the

solution in two parts.

1. E i -
Theorem 3 valuating XOXk ann—k

multiplications (hence n-1 multiplications are optimal).

for k from 1 to n-1 requires n-1

We have seen that n-1 multiplications suffice. Reformulate the problem

as the task to compute

X ¥ X
- X
X2 Xn-2 n
Xn—l - Xl
‘\_——\/_\)
M

;» where one should note the separation of variables. In this form the
problem precisely fits Winograd's row-rank criterion (Winograd [24],

also theorem 12.1 in Aho, Hopcroft and Ullman [1]), which learns that
the minimum number of multiplications required is bounded below by the

row-rank of M. This rank is seen to be n-1.

2 2
The same proof breaks down if we want to show that when XO--Xn is to
be computed also at least n multiplications are required. The separation
of variables in the matrix-times-vector formulation, essential for

Winograd's criterion, no longer holds (viz. X. and Xn occur in both

0
the matrix 4nd the vector). We shall have to dig a bit deeper.

2
Theorem 3.2. Evaluating X_ - X2 and X X -X X for k from 1 to n-1
—_— 0 n 0k n n-k

requires n multiplications (hence n multiplications are optimal).

Suppose that one could evaluate the formulae using less than n multi-
plications. By 3.1 at least n-1 are required. Hence there must be a

straight-line m and n-1 products pl,...,pn_ evaluated during the course

1
of m, such that the n formulae desired can be synthesized from Py to P .
using no further products (hence using only multiplication by scalars and
additions and subtractions). It follows that there must be an n-by-(n-1)

matrix N of scalars such that



12,

o - — - — - — -
X2— X2
0 “n Py
X0%1 ~ Xn¥no1
N L
. = . +
XOXn-l_ xnxl _J pn-l
. — ] e e s p——

where £ is vector with coordinates purely linear in X_to Xn. The last n-1

0
rows of N must be linearly independent. If they weren't, there would be

scalars a1 to an—l’ not all zero, such that (look at what it means on the

left-hand side when you linearly combine rows on the right)

al(xox --ann 1)+ ...+~an_1(xoxn -an ) =

-1 n-1

)-X (o X+ ...+ @ X _q)

1

=.X0(a1X1+ et O

n-lxn-l

would be linear in all X-variables, an impossibility. On the other hand,
the row-rank of no scalar matrix with n-1 columns can be larger than n-1.
It follows that the first row of N must be linearly dependent of the

remaining rows. This means that coefficients 81 to Bn— exist such that

1
(again after translating row operations)
2 2 '
X=X =8, (xox1 XX )+ B _1 (xoxn__1 X X,) +L=
= + ... ces !
%o (B1%g PP En ) PR B Xyt ByX )+ L

with some purely linear form £'. This is impossible.

We now have proof that the simple trick in (3.3) cannot be outsmarted,
in the sense that there is no way more multiplications can be saved. It
is noted that the line of argument in theorem 3.2 can be used to show
that any set of n forms which are linearly independent modulo linear ex-
pressions require n non-scalar multiplications, a useful result observed
already in 1971 by Fiduccia [4] (see also Borodin & Munro [2], lemma 2.4.1).
It is easy but instructive to implement the scheme of (3.3), which one

can do again without using auxiliary array space.
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p:= X[0]-x[n]; q:=x[0]+ x[n];

x[0] :=p*q;

pl :=p/2; gq:=q/2; imax:=n+* 2;

for i from 1 to imax-1 do
r:=x[il+ x[n-i]; s:=x[i] - x[n-i];
one:=pl*r; two:=qg*s;
x[i] := one + two;

X[n-i] := one - two

end;
if n even then X imax :=p *X[imax]
else
begin
compute X[imax] and X[n-imax] as above
end

The routine overwrites the coefficients of a polynomial as given in X
with the values of the Schur coefficients like in Rasmussen's algorithm.
There is a new twist to this otherwise straightforward program: the
subexpressions X[0] - x[n] and x[0]+ X[n], needed in each Schur-coefficient,
have been moved out of the loop and are "precomputed" instead. This is
reasonable, because there is obviously no sense in doing‘the subtraction
and addition time and again around the loop. It immediately leads to the
idea that one could perhaps precompute some other (polynomial) expressions
in XO and Xn to lighten the computational burden in the loop-body. Any
programmer knows one should move invariant subexpressions out from a loop!
What does it mean for our computational model. In algebraic complexity
theory it has long been noted that there is a close tie with computing
modulo a subdomain of some algebra, in our case modulo the ideal I genera-
ted by the second order terms in XO and xn within the (commutative) poly-
nomial ring ﬁ[xo,...,xi,...,xn]. Thus the theory gets ramified depending
on whether "preconditioning" is taken into account or not (cf. Borodin &
Munro [2]). Could precomputing polynomial expressions in X, and X help
to reduce the number of multiplications within the loop once more? There
is a simple proof that it can't. The idea is to embed straight-line algo-
rithms into ﬁ[xo,...,xi,...,xn] modulo I and to argue that Winograd's row-

rank criterion still holds in the factor ring. (It does, as follows from
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the argument in van Leeuwen & van Emde Boas [22]). Hence we can rest
assured that the number of multiplications used is fully optimal. The
issue of preconditioning will have a major bearing on the general pro-
blem.

Computing the Schur-transform of an arbitrary (complex) polynomial p
is a decidedly more intricate affair, unless one takes complex arith-
metic for granted. We won't, but let's briefly examine what would happen

if we did. If we write
20% " %nx"n" %0 %nx

202n-k " 230~ (¥p ) (a

Y ra) el 3%

+ an) + akan—k - aoan

then it follows that we need to perform only about %11, rather than the
naive 2n, complex multiplications (assuming that once you have a value,
you can get its complex conjugate free of charge!). This can be shown to
be optimal in order of magnitude, yet writing each complex multiplication
in terms of its real parameters is nét optimal in real arithmetic. Con-
sider the horrendous formulae (3.2) again, in particular consider the

pairs for k and n-k
+Y Y - -Y v
X%kt Yo'k~ Xn¥n-x ~ Yn¥n-k

Y - -

X%~ Yo%k t XYk~ Yn¥n-x
+YY - -Y Y
Xo¥n-k ¥ Yo n-x ~ %0k~ Yn
k

Y -
X0 n-k ~ Yo*n-x

(3.4)
k

- XnY - YnXk
and remember that we are interested in computing these forms modulo pre-
conditioning in XO' YO, xn and Yn. Surely we can beat the 16 multiplica-
tions of the naive algorithm, but what should we strive for in lowering
this number. One idea is to see first what lowerbound can be derived by
means of an available criterion from algebraic complexity theory. Write

(3.4) as

R S X0
e X% Yo Xk Yo
xn—k n-k Xk -'Yk Xn
Yn—knX -k Yk Xk Yn
. > —————

A criterion of van Leeuwen & van Emde Boas [22] (see also Kruskal [9] or,

more recently, Ja'Ja' [8]), slightly modified to work over the presently
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relevant ideal here, shows that r+ d multiplications are required even

with polynomial preconditioning in XO, YO

numbers such that the row-rank of M remains 2 r no matter héw the mem-

’ Xn and Yn, where ¥ and d are

bers of some fixed d-element subset of the variables in M are replaced
by a linear combination of the remaining variables. Inspection shows

that we can take r=4 and d=2 (e.g. take Xn for rank-preserving

-k’ Yn—k
elimination), hence a lowerbound of 6 follows. It is not clear that this
has any meaning, since general lowerbound criteria like the one we used
give no assurance at 411 that the lowerbound they produce can be achie-
ved by any straight-line program. By experience the general criteria in
algebraic complexity theory are nearly always off by a few multiplica-
tions. Thus we can only credit good fortune in the present case that

there is a way to compute (3.4) in just 6 multiplications (&nd pre-

conditioning, of course). Here it is. Define the following parameters

p= (x[0]-x[n])/2
g= (x[o]+ x[n])/2
r= (Y[0]-Y[n])/2
s= (Y[0]+ ¥[n])/2 .
ul = x[k] + x[n-k]
u2=x[x] - x[n-k]
vl=Y[k]+ Y[n-k]
v2=Y[k] - Y[n-k]

and compute the following expressions, in the way indicated using just

exactly 6 counted multiplications,

I=p.ul+r.vl=(p+vl)(r+ul)-ul.vli-p.r
IT=qg.u2+ s.v2= (g+ v2) (s+u2) ~u2.v2-q.s
ITI=qg.vl-s.ul=(g-ul)(s+vl)+ul.vl-gq.s
IVv=p.v2-r.u2= (p-u2)(r+ v2) +u2.v2- p.r

The Schur-coefficients from (3.4) can indeed be synthesized from these

expressions without much further ado. One easily verifies that

+YY - -YY _=I+1II
X%k o'k " XnFnk T It T IHT

Y -Y + Y -Y =TI +
X0 k ¥k X Ynx T YpFnex s I IV

+YY - -YY =1-
X0*n-k ¥ Yo n-k ~ Xn%k nx I

Y -Y X + Y - Y ITIT-1I
X0 n-k ~ 0%k T X'k T Xn'k v

-k

We leave it for the reader to verify that for n even the "lone-standing"

Schur-coefficient with k==g-can be computed in just 3 counted multiplica-

tions.
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Putting it all together we get a routine for computing the Schur-
coefficients for k from ! to n-1 around the loop using a total of only
3n-3 real multiplications. We have yet to demonstrate that this bound

for the entire set cannot be improved further.

Theorem 3.3. Evaluating X . X +Y_ Y X X nd

0"k " o'k " *n*n-k " *n'n-k 2
xon-Yoxk4-ann_k-Ynxn_k for k from ! to n-1 requires 3n-3 multiplica-
tions, even when we do not charge for the computation of any polynomial

expression in XO’ YO, xn and Yn (hence 3n-3 multiplications are optimal).

: X0
Y
o~ — — — — 0
X
- -y
Xk Y( Xn—k n-k n
Yn
Yk - X‘( Yn—k - X — —
N P
-
—— W,
M

We shall apply the "r+ d criterion" from van Leeuwen & van Emde Boas

[22] again. Let n be odd. It is seen that M keeps row rank (n-1) ¥ 2 no

matter how we replace the n- 1 members of {X } by

'Y teeerX 'Y
n n n-1""n-1
Eq _q

2
linear combinations in the other variables. For n even the same applies

with the set {Y ,X reeesX »Y .}. The r+d criterion learns that
non., n-1""n-1
2 2

the number of multiplications required to compute the set of formulae,

even with preconditioning as said allowed, is bounded below by the sum

of rank-bound and set-size, i.e. by (n-1) *2+ (n- 1) = 3n- 3

Thus we know that in the following program implementing the tricky

scheme above, there is no way we can do with fewer multiplications in

the loop
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pl := x[0]-x[n]; ql := x[0]+x[n]); r1:=¥[0]-¥Y[n]}; s1:= Y[0)+¥[n];
x[0):= pl*ql+rl*si;
y[o] :=0

p:=pl/2; q:=ql/2; r:=r1/2; s:=sl/2; imax := ni2;
prel :=p*r; pre2:=q*s;
for i from 1 to imax-1 do

begin

ul :

]

X[k1-x[n-k]1;
Y[k]-¥[n-x1;

x[k]+x[n-k]; u2:
Y[k]+Y[n-k]; v2:

vl :

one :=ul ¥ vl; two:=u2 *v2;

terma := (p+vl) * (r+ul) - one - prel;
termb := (gq+v2) * (s+u2) - two - pre2;
termc := (g-ul) * (s+vl) + one - pre2;
termd := (p-u2) * (r+v2) + two - prel;

x[i] := terma + termc;
Y[i] := termb+ termd;
X[n-1] := terma - termc;
Y[n-i] := termb - termd

end;

if n even then

begin

one := x[51* Y[Z1;

X[imax] := (pl1+ Y[Izl-]) * (r1+ X[%]) - one- 4* prel;
Y[imax] := (ql - X[%]) * (sl + Y[-Izl]) + one - 4 * pre2
end
else
begin
compute Aimax—l and Aimax+1 as in main loop

end;

We've come a long way from Rasmussen's original routine to a program
that fully optimizes the number of multiplications to a minimum. One
more observation is of interest for the final program. It so happens that
when it is applied to a real polynomial, the program reduces to the form
which is optimal in number of multiplications also: just see what is left

after eliminating the predictably zero terms!
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4. Summary

We have argued that in writing commendable software a programmer
stands a goodl chance of running into questions, which can only be ans-
wered properly by means of algebraic complexity theory. The questions
invariably relate to evaluating sets of algebraic expressions using a
fewest number of machine operations of some sort. We have demonstrated
some of the typical problems that arise in attempting to optimize a sub-
routine of the Lehmer-Schur algorithm for polynomial root-finding in
the complex plane. The paper is nét a survey of algebraic complexity
theory, but rather an appraisal of the practical side of the area for

the non-expert.
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