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THE COMPLEXITY OF BASIC COMPLEX OPERATIONS¥*

Helmut Alt** and Jan van Leeuwen¥**

Abstract. It is wellknown that the product of two complex numbers X+iY and
U+iV requires exactly 3 real m/d. We study the algebraic complexity of

several other operations from the repertoire of complex arithmetic. We show,
for instance, that complex inversion requires exactly 4 m/d and that general
complex division requires at least 5 m/d. For the latter problem an upper-
bound of 6 m/d is known, leaving some speculation as to its precise complexity.
The proofs illustrate several criteria which may be of more general use in

assessing the complexity of concrete sets of rational functions.

1. Introduction

Given a set of formulae {¢1,...,¢n}, algebraic complexity theory concerns
itself with the question to assess good (or even perfect) lower- and upper-
bounds on the number of operations needed to evaluate the joint formulae.

In this paper we shall investigate the number of real multiplications and
divisions (m/d for short) required to compute the following basic operations
from the repertoire of complex arithmetic, assuming that each complex number

involved is initially given by means of its real and imaginary part:

a)  (X+iY) (U+iv)
1

b) U+iv

c) X
U+iv

a) X+%Y
U+iv

* A preliminary version of this paper will appear as an extended abstract [3]

in the conference record of the 2nd Int. Conference on Fundamentals of Compu-

tation Theory, Berlin/Wendisch-Rietz (DDR), Sept. 17-21, 1979.
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It is wellknown that a) requires exactly 3 m/d. It was first proved by
Munro [7] and Winograd [13] and has become a common example in several
textbooks (see e.g. Aho, Hopcroft and Ullman [2]). strictly speaking only
the need for 3 multiplications is usually proved, the case in which
divisions are allowed as well requires a more careful argument.

It is usually left unobserved that one can save operations over the
straightforward algorithm even when evaluating b), c¢) and d). An algorithm
of Smith [8] dating back to 1962 already demonstrates that complex divisions
can be performed using only 6 m/d. The following expressions clearly indicate

how b), ¢) and d) can be evaluated using only 4, 4 and 6 m/d respectively:

b) 1 U i v_ 1 i v/U
iv 2 2 T U+v. - +V.
U+iv Uz+V U +v2 U+v.v/U U+v.v/u
X XU XV X X
= - i = - i . V/U
+iv 2 2 2 .2 +V. +V.
U+i Ulsy Uy U+V.v/U U+v.v/u
) X+iY _ XU+Yy ; XV-YU _ X+Y.v/u i X.v/u-Y
+iv © 2 2 2 T u+v. - +V.
U+iv vy u +v2 U+v.v/u U+v.v/u

Having formulated a) through d) as the evaluation of particular pairs of
rational functions in X, ¥, U and Vv, it is natural to ask if we can do any
better than the number of m/d each of the given expressions suggests. Where-
as there are scores of useful criteria known for multiplicative complexity,
there are only a few which work when divisions are allowed and which give

sufficiently accurate estimates in this case. We shall prove the following:

a) requires exactly 3 m/d (by a simple proof),
b) requires exactly 4 m/d,
c) requires exactly 4 m/d too,

d) requires at least § m/4.

With an upperbound of 6, our resulﬁ for d) leaves room for some speculation
about the true algebraic complexity of complex division.

While the results are of interest by themselves and further at least our
knowledge of the "complexity" of complex arithmetic, we should emphasize
that our study aims primarily at understanding some of the mathematical
complications involved when proving tight lowerbounds for concrete rational
formulae. Hence we shall pay some attention to the particular techniques we
employ in the proofs, as their usefulness may extend beyond the scope of

the present paper.



2. Straight-line computations

It is important that a precise concept of "computation" is agreed upon,
in order that we can meaningfully define the notion of algebraic complexity.
We shall briefly review the framework commonly adopted for this purpose
(see e.g. Aho, Hopcroft and Ullman [1] or Borodin and Munro [4]).

Let F be a field of char 0 and {xl,...,xk} a set of independent (and
commuting) indeterminates. A straight-line program m is any finite sequence

of instructions

s; « li1 opi 112 (i=1,...,r)

in which for each 1<i<r

li1(1i2) is either a scalar (from F), an indeterminate, or an

sj for some 1<j<i
and

'opi is any one from a (usually bounded) set of permissible opera-

tions.

We shall always choose operations from {+,-,%,/}. Each s; can be identified
with the rational function in {xl,...,xk} it "computes". A straight-line
program 7T is said to compute a set of formulae {¢1,...,¢n} if each ¢j
figures as the associated function of at least one step of .

It is common practice to contract additions, subtractions, scalar multi-
plications and divisions by scalars, such that straight-line programs can

be redefined as finite sequences

s, «1 opi 1 (i=1,...,r)

i il i2

in which for some r'<r and all 1<i<r"

111(112) is some F-linear combination of x. to x and s, to si-

1 k 1 1’

and

op, is in {%,/}, with both operands non-scalar when op, = * and at

least the denumerator non-scalar when opi= /.

and the last r-r' steps are merely additive or scalar. We shall only "count"

the first r' steps and ignore the remaining.

Definition. The algebraic complexity of a set of formulae {¢1,...,¢n} is

the smallest number of counted steps a straight-line program computing the

joint formulae can have.



Few techniques are known to determine lowerbounds on the (algebraic)
complexity of given sets of rational functions. The only general criterion
we know is due to Strassen {9], other useful observations are made in e.g.
Kung [6] and Strassen [10]. We shall try to lift some of the considerations
known from polynomial complexity to the present domain of rational function
complexity. We shall first give a careful extension of the known technique
of elimination of indeterminates.

Let us call xj an "essential” constituent of {¢1,...,¢n} if there is a
1<i<n such that no a € F can make ¢i-axj become fully independent of xj.
It means that xj is essential just when in any straight-line program for
{¢1,...,¢n}, xj must occur in some nontrivial (i.e. nonscalar) multipli-

cation or division.

Lemma 2.1. Suppose it takes r m/d to compute {¢1,...,¢n}. Let xj be an
essential constituent. Then there exists a rational function R in

] t i < -—
{Xl""'x'—l'xj+1""'Xk} such that {¢1,...,¢n} can be computed in < r-1 m/d,

3
where for 1<i<n ¢£ is obtained from ¢i by substituting xj:= R.

Consider an arbitrary, contracted straight-line program computing

{¢1,...,¢n} using precisely r m/d. Look for the first counted step

S; “ 1y 0m 15,

in which xj occurs. There are two cases to consider.

Clearly one of the operands (at least) must be of the form axj+-R', for

some non-zero a € F and rational function R' only depending on
L

{Xl""'xj—l’xj+1""'xk}' Substituting xj:= £ will trivialize the step
into a scalar multiplication by €, which can subsequently be absorbed to
obtain a new contracted straight-line program 7' using one multiplication
less than 7 ... provided we were careful enough to choose £ such that no
later divisions did become singular. Since F is infinite, there is an ample

supply of e's that will do.

Case_(ii): op,=/.
This time we must examine both 1il and 112, and conclude that si must be
of the form

s, « (%3P R o v R,
1 J

where at least one of o,B€F is nonzero and R',R" again are rational func-

tions in indeterminates #xj. Substituting



will trivialize s into a scalar and again eliminate a counted step from w,
provided we choose ¢ carefully to keep later divisions from becoming

singular. Such € can again be found.

=]

A second and extremely useful technique can be to show that all (non-~
trivial) linear combinations of ¢1 to ¢n must remain "hard". The following
lemma is intimately related to the various "rank theorems" known in the
litterature (see e.g. Winograd [12], van Leeuwen and van Emde Boas [11],
Fiduccia and Zalcstein [5], also Borodin and Munro [4]), but has apparently
never been explicitly stated as we do here. Its proof was already shown

in Alt and van Leeuwen [2], but is included again for completeness.

Lemma 2.2. Suppose it takes r m/d to compute {¢1,...,¢n}, for some r 2n-1.

n
Then there exists a nontrivial linear combination %ai¢i which can be

computed in < r-n+1 m/d.

Let Syre-ers, be the "counted" steps of some contracted straight-line
program T computing {¢1,...,¢n} in r m/d. Considering the definition of

. . . T
computation, there must exist a scalar matrix M and a vector v= [v ...vn]

1
of linear (hence zero-cost) correction terms such that

- . o S
¢ Sy Y1
N = M : + N
¢ N v

L nJ L n-

S
X

The matrix M' consisting of the last n-1 columns of M must be singular
(because it has more rows than columns), hence there is some nontrivial
linear combination of the rows of M such that the last n-1 entries of the

resulting row are all zero. It means that for some nontrivial set of ais

Fs ]
| 1
r-n+l .
n ! . n
o ¢, = [.......'00...00...0] : + Za,v,
111 : 111
i .
s
[ T ]




n

Hence §Gi¢i can be computed by means of a (new) straight-line program
that only needs to perform the counted steps of m up to Sr-n+1:

o

As we can sometimes reason more easily about single forms than we can
about sets, lemma 2.2 can be extremely versatile. Alt and van Leeuwen [2]
have indicated how the lemma leads to a completely elementary proof of the
fact that general products in n-dimensional algebras A always need 2 2n-1
multiplications, provided that A contains no zero-divisors (a result origi-
nally proved by more sophisticated means in Fiduccia and Zalcstein (5],
van Leeuwen and van Emde Boas [11] and Winograd [14]). We shall use it to
prove the one result about complex arithmetic known until now (Winograd

[13]), this time in an entirely elementary manner. Assume F is a real field.

Theorem 2.3. The product of X+iY and U+iV requires 3 m/4d.

Recall that the task consists of evaluating the following formulae

XU - yv
XV + YU

It is wellknown that 3 m/d suffice.

Suppose that 2 m/d would do. By lemma 2.2 there must exist al and o, (not

2
both zero) such that

al(XU—YV) + az(XV+YU)

could be evaluated in < 2-2+1=1 m/d. The one counted step can impossibly be
a division, hence must be a multiplication. Rewriting the form as

U

[a1X4-a Y azx-alY]

2 v

it is clear that Winograd's column-rank criterion ([12], see also (11, [4)

applies, forcing us to conclude that

12 #multiplic > column—rank[alx+ @Y o X- alY] =2,

Contradiction!



3. Complexity of division and other basic operations

We prolong our assumption that F be a real field throughout this section.

The proof that complex product requires 3 m/d made use of the paradigm
suggested before: an overly optimistic upperbound assumption allowed us to
contrive a single form whose complexity would not exceed 1 m/d, but had to.

If we try a similar argument for other sets 6f formulae, then it is un-
likely that we can reduce it down to a case similar in simplicity. We shall
attempt to go one level higher and characterize the formulae computable
using at most 2 m/d.

Let 11,12,... be generic names for scalars and linear functions in

{xl,...,xk}.

Lemma 3.1. Each rational function computed by a straight-line program using

£2 m/d can be written as P/11(1 1

+ i .
13 14), for some polynomial P

The result is trivially true for straight-line computations using <1 m/d4.
Consider an arbitrary, contracted straight-line program T using precisely
2 m/d. Let its counted steps be s1 and 52 (in order). Only a limited number

of different cases can occur.

Case (i): op1= *, op2= *,

If this happens, only polynomial expressions can be extracted from T.

We observe that S, and 32 must have the following form. Note that 52 may

make use of the quotient computed in s,.

1
Y
1 12
1 1
1 1 P'
s, = (a—+1)(B—+1,) = '
2 12 3 12‘ 4 12.12

for some appropriate polynomial P'. The forms we can possibly derive from
these steps without using further m/d, must always be of type

1
1 p'
Y—+ §——+ 1
l2 1212 5

and (hence) can be written as P/12.12 for some polynomial P. This certainly

satisfies our lemma.

Now S, and 52 must be of the following form. Note again that S, can use

the result of s1 or add in new, lineax "stuff".



s1 = 1112,
. - a1112+ 13
2 811124-14

Any scalar combination of sl, S, and the indeterminates must be of the form

P/B1.1. +1

115 4" Again the statement of the lemma is satisfied.

Case (iv): op1=/, op2=/-

This time computed forms can get a bit more complicated. We can still

represent s, as

1

s, = —

oL

The result of 52 can be anything of the form

l1
o—+ 1
. 2 3 a11+-121
2 11 Bl +1,1
B—+1
12 4

The expressions we can now obtain as a result must be of the form

Yil N 6a11+ 1213 .1
12 811+-1214 5

and (hence) can be written as P/1 (B1 +-1214) for some polynomial P. All
expressions of this sort fit the most general case allowed for in the

statement of our lemma.

The proof of lemma 3.1 shows not every expression of type 1 (l 1_+ 1 )

will occur as a denumerator, but we do not need a more precise asszrtlon.
The case-analysis could be extended to straight-line Programs which use
more m/d, although the "type" of expressions becomes increasingly unmana-
geable. (Hence one should switch to a degree-argument. Compare Kung [6].)
The given characterization can be rephrased as follows. In the formu-

lation we rely on familiarity with the concept of polynomial divisibility.

Lemma 3.2. Let P, Q and Q be polynomials such that P/Q Q can be com-
puted using <2 m/d. 1f Q has no divisor of the form 11(12134-14), then
Q1|P.



If P/Q1Q2 can be computed using < 2 m/4d, then lemma 3.1 learns that there
exists a polynomial P, such that

p _ P

Qle 11(121

W [ e

+14)

Rewrite this to
Q-P49

11(1213+ 14)

P =

and read it as saying that the right-hand side of the equality must be
purely polynomial. As Q1 cannot (by assumption) absorb the denumerator or

even any of its nonscalar factors (!), we conclude that

P O
172

must be polynomial. Since P==Q1.R , it means that Q1 must divide P.

1

The lemma gives an exact account of one's intuition that rational functions
computable in <2 m/d cannot have too complicated factors in their denumera-
tor, unless they can be divided out of the expression.

We now have all tools ready to prove sharp lowerbounds on the complexity
of the remaining operations from the basic repertoire of complex arith-
metic. We shall treat complex inversion first, as it is simple and gives an

immediate example of the use of lemma 3.2 as stated.

Theorem 3.3. The computation of 1/U+iV requires exactly 4 m/4.

We recall that the task consists of evaluating the following two formulae

U

UZ+V2

\'

U2+V2

We saw that 4 m/d suffice.

Suppose that 3 m/d would do. By lemma 2.2 there must be al and a2 (not

both zero) such that




10.

i.e.,

A 2
02t 2

o, U+ v
%

can be computed using < 3-2+1=2 m/d. Since U2+V2 has no divisors of the
form 11(1213+l4), lemma 3.2 shows this can only be when

2 .2
+
U +v Ialu+a2v

+ an impossibility. Contradiction.

o

Division of a real by a complex number is also computable in 4 m/d4d and

can impossibly be easier than inversion. Hence

Theorem 3.4. The computation of X/U+iv requires exactly 4 m/d.

The hardest proof concerns our lowerbound on the complexity of complex

division. It requires an intricate combination of all three of the tech-

niques we have developed.

Theorem 3.5. The computation of x+iY/U+iV requires at least 5 m/4d.

The task consists of evaluating the following two forms

XU+ YV

U2+V2

XV - YU

U2+V2

Observe that X, Y, U and V are all essential constituents.

Suppose there was a straight-line program 7 evaluating the forms in < 4 m/d.
Look for the first, counted step containing X or Y. Without loss of generality
we may assume the step contains an X. By the same argument as in lemma 2.1
there must exist a rational function R in {U,v} and scalar a, such that the

substitution
X := oY+ R

eliminates the step and results in a set of formulae computed using 1 m/d

less. The choice of a and R can be made such that no later division becomes
singular. We conclude that the forms

{a¥+R}U + YV

U2+V2



11.

{a¥Y+R}V - YU .

2
UZ+V

must be computable in < 3 m/d.

By lemma 2.2 there must exist B1 and 62 (not both zero) such that

{ay+R}U+ YV {aY+R}V - YU

1T 2 2t B 2 2

U +vVv U +vV

B

can be computed in < 3-2+1=2 m/d. Let R==P/Q, with P and Q relatively
prime. The degenerated case R=0 will be accomodated for by choosing P=0 and

0=1. Rearrange the formula into

P{61U+82V} +Y.0.{ (aB,-B,)U+ (a62+81)v}

w?+v%) .0

By lemma 3.2 (and noting the algebraic nature of 02+V2 again) this ex-
pression can be evaluated in <2 m/4d only if

2 2
U +v IP{810+82V}+Y.Q{ (asl—ez)u+ (a32+31)v}

Observing that P, Q are both polynomials in U and V, this can only be when

U2+V2 | P.{810+82V} (%)

2 2
U +vo | Q.{(a81—82)U+-(a82+81)V} (%)

If P=0, then Q=1 and (**) can be satisfied only when

(a81~82)U+ (a82+Bl)V==O
. It would mean that

a81~82 81 - B a

N

a62+81 8

—

while the matrix involved is nonsingular (F is real!). Contradiction.
If P#0, then (%) can be satisfied only when

U2+-V2| P

Likewise (**) can be satisfied only when
2 2
uUt+vilo
, as we have just seen that the linear factor in the expression on the right

can never be zero (which would have been the only possibility to preclude

2 2
that U+ V" | Q). It follows that P and Q must both contain Uz-l-V2 as a factor,



12.

a clear violation of their relative pPrimeness. Contradiction.
This shows that there exists no straight-line program computing com-

plex division in fewer than § m/4.

4. Conclusion
We have investigated the algebraic complexity of several sets of rational
functions, as they present themselves in a number of basic operations from

complex arithmetic. The results are summarized@ in the following chart

operation lowerbound upperbound
complex product 3 m/d 3 m/d
complex inversion 4 m/d 4 m/d4
complex division 5 m/d 6 m/d

We see our intuition confirmed that complex division is "harder" than
complex product. It is intriguing that even the inversion of a single com-
plex number is more complex, algebraically speaking, than the product of
two. No definite answer has yet been obtained to the question of what the
precise complexity of complex division is. We conjecture that the lower-

bound of 5 can be improved and (hence) that 6 m/d are optimal.
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