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DYNAMIZATION OF DECOMPOSABLE SEARCHING PROBLEMS*

Jan van Leeuwen** and Derick Wood***

Abstract. A technique is presented for converting static solutions of de-
composable searching problems into fully dynamic ones, in which much of the
original static efficiency is retained. The method does not need to keep a
record of deleted elements and allows both insertions and deletions of ele-
ments without restriction. It constantly monitors and (when necessary)
adapts the size-limits on the datastructures maintained, to guarantee an op-
timized response time no matter how the set-size varies. A ramification and

several applications of the method are outlined also.

1. Introduction.

In the complexity theory of geometric configurations (and other areas of
algorithmic endeavor) one encounters a fair number of problems for which a
very efficient static solution is known, but no alternative to complete
reconstruction seems to come to mind when we wish to insert or delete even
a single point. Bentley [1] has recognized a large class of problems (which
he called "decomposable searching problems") for which there is hope that a
reasonably efficient dynamic solution can be attained.

Briefly, a searching problem is said to be "decomposable" if its solution
can be synthesized at only nominal extra cost from the solutions of the very
same problem for all distinct parts of some arbitrary partition of the ori-
ginal point-set. The question to determine which point of a given set is
closest to some (varying) point x is a typical example of a decomposable
searching problem. Bentley's primary technique of dynamization for these
problems consists of finding a partition of the set into pieces, each stati-

cally organised, such that insertions at the "low" end (see figure 1) most
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Figure 1.

often require a repartition of points at the same low end only. He has given
a specific technique which usually adds a factor of log n to both the pro-
cessing and query times of the static structure. A number of other techniques
have been explored in Saxe and Bentley [6].

Deletions are harder to handle in Bentley's framework, because points to
be deleted need no longer be at the low end and may have migrated into larger
blocks to the right (see figure 2). It is suggested to "tag"” such points as
being deleted, but to keep them in the structure for a while longer. By the
time about }% of the current points have been tagged, a clean-up procedure is
called into action which eliminates "deleted" points and rebuilds the dynamic

structure from scratch out of present points only. The cost for reconstruction

Figure 2.

may be high, but usually comes to an affordgble charge on the average per
(past) deletion. '

The quest for a dynamization which keeps its structure "clean" was recently
taken up by Maurer and Ottman [5]. They observed that, when a limit on the
largest set-size to occur over time is known, one can fix the number of blocks
and maintain their contents such that the worst case bounds on processing and
query time for the largest set-sizes are optimized. The method will do well
if set-sizes do not vary by an awful lot, yét one must recognize that (by
fixing the number of blocks) performance can degrade when the set shrinks or ...

grows in size beyond the limit originally anticipated.



In this paper we shall expand on the method of [5] to arrive at a tech-
nique which will adapt the size-limits on (and the number of) blocks dynami-
cally at no additional cost. The technique is perfectly general and guaran-
tees optimized response times no matter how the set-size varies. For the
technique to work, it is crucial that our programming environment provides
an unrestrictive dynamic storage allocation facility.

In section 2 we describe the technique of full dynamization and its many
degrees of freedom. The method requires that a size-count is kept with every
block. In a ramification of the technique, we will show how this can be
avoided and that only 3 counters are needed. In section 3 a number of examples,
all known decomposable searching problems, will be discussed to show how they

can be fully dynamized.

2. A technique to achieve full dynamization.

Suppose we know an efficient static solution of some decomposable searching
problem P, which involves a “static" datastructure S. Suppose that for a
current set of n points, S enables us to answer admissible queries in time
Q(n) and to process updates (insertions and deletions) in time U(n). Usually
Q(n) is small and U(n) is large, often equal to the time required to build S
from scratch. wWe shall assume, as we almost always can, that Q and U are
nondecreasing. i

As in [5] our method of dynamization will be based on a partition of the
current set of points into blocks, each block separately organized "like S".
We will need a dictionary to keep track of what points are present and ...
where they are located. One may think of a balanced tree or some type of
extendible hashing for it. We shall assume fhat the dictionary is fully dyna-
mic and guarantees an (average) response time of D(n) for each transaction.

A very important ingredient of our method will be some (predefined) se-

quence of switchpoints {xk}k>'1 which éatisfies

(a) xke N,

(b) klxk,
et %k
©) 31 > %

Observe that (c) implies that xk+1> X, - We leave it open what the switch-
points are, but note that their choice will be highly application-dependent.
The x, are typically given by means of some formula f(k) which is easy to

compute. (It will be true for almost all examples.)
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integers and yk+1> yk. From now on we shall always use n to denote the

Given a fixed sequence of switchpoints {xk} let y, = - The y, are
current set-size. Hence, n will vary as insertions and deletions take place.
If n passes certain thresholds, then our dynamized structure will "switch
gears". The thresholds will be our Xy 0 the switchpoints. In the following

definition we understand x0 to be 0.

Definition. We are operating on level k when xks n< xk+1.

On level O we shall operate the point-set manually. This can be justified
by the observation that on this level set-size is bounded by X, @ "small"
constant. On level k, k21, the point-set will be partitioned into k blocks

and a dump (see figure 3), with the following characteristics for each of

B .
k blocks r 1 (\yks s(B) <y, 4

N :
dump m—— m/_\o <s(D) <y,

Figure 3.

the constituents. Each block (and the dump) is structured like S and is aug-

mented with a size-counter. For blocks B, the size-counter s(B) will satisfy

(a) ykS s(B) < Yes1

and for the dump's size-counter s(D) we shall maintain
<
(e) 0<s(D) < Vi1

Conditions (d) and (e) are the characteristic invariants of level k.
Blocks on level k are divided into three classes: low blocks (which have
s(B)==yk), halfway blocks (which have yk< s(B)<iyk+1) and full blocks (which

have s(B) ). Rather than keeping blocks sorted by size-count, it is

= Yk41
sufficient just to maintain these three classes.

When all blocks on level k have become full, we'll switch to level k+1 by
the time the dump gets full too. This will be done by including the current
dump in the collection of blocks (making for a total of k+1), renaming the
"full" class as the "low" class (at no cost) and initializing a new dump with
0 elements. The reader should convince him/herself that we have correctly
switched to the invariants of level k+1. Observe that when the switch from
level k to level k+1 is made, there are precisely (k+1).yk+1==xk+1 points in

the set.
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Another crucial moment on level k occurs when all blocks are low, the
dump is empty and a deletion takes place (we will discuss how in a moment) .
Then we'll have to switch to level k-1, by "degrading” the block that lost
an element to be the dump (thereby replacing the currently empty dump) and
renaming the "low" class of remaining blocks as the "full" class. Again the
reader should convince him/herself that we have correctly switched to the
invariants of level k-1. Observe that the switch from level k to level k-1
was made just when the set-size went down from xk to xk-l.

We summarize these considerations into
Lemma 2.1. Level switching takes only constant time.

It remains to be shown that the structure as presented supports the com-
plete repertoire of dynamization, without the worst case response times getting
totally out of hand. Fortunately it can all be dealt with rather elegantly,
as is spelled out in the proof of the following principal result. Recall that

n stands for the current number of elements in the set.

Theorem 2.2. One can fully dynamize the static solution of a decomposable
searching problem such that queries can be answered in time 0(k.Q(yk+1)) and
updates (insertions and deletions) can be processed in time O(D(n)+-U(yk+1))

each, where k=k(n) is the level on which we operate for a set of n elements.

Consider the structure as presented. We show how to operate it, by dis-
cussing each of the allowable types of transactions in turn.

Because P is decomposable, we can just query each of the blocks
(4nd the dump) separately and assemble the final answer at no substantial
extra cost. The query time per block can be estimated as Q(Yk+1) and the total
amount of work spend is certainly bounded by O(k.Q(yk+1)).

(i1) Insertion.

Suppose we wish to insert a new point x. We first check the dictio-
nary (at cost D(n)) that x is not already present and see if there still are
low or halfway blocks around. If there are, then pick one and insert x into
it, update its size-counter and check its class. Otherwise, insert X into the
dump (in the same way). If it causes the dump to become "full" too, then
switch to level k+1. After all this is completed, enter X into the dictionary

and record where it was placed in the structure (by a pointer).



(1ii) Deletion.

Suppose we wish to delete a point X. First we check the dictionary
(at cost D(n)) that x is present. If it is, then we pick up the pointer to
its actual location in the structure and delete it from its block (or ...
from the dump). Some care must be taken in doing so. If we deleted x from a
halfway or full block (or from the dump) , then we just decrement the size-
count and adjust the classification of the block if needed. If we deleted x
from a low block, then we have an "underflow" situation. Borrow an element
from the dump or, when it is empty, from any halfway or full block around,
delete it and plug it into the underflowing block. Size-counts (and perhaps
the classification of the block we borrowed from) must be updated accordingly.
Note that it will restore the size-count of the underflowing block to yk. If
no element can be borrowed, then we cannot repair the underflow and must
switch to level k-1 (which will effectively make the underflowing block into
a dump). After all this has been done, delete x from the dictionary and, if
an element got repositioned because we borrowed, make sure its location in-
formation is updated. Note that it all requires no more than a bounded number
of dictionary accesses and a bounded number of insertions and deletions for

i <
blocks of size .~yk+1.

The formulation of theorem 2.2 is a bit awkward, because we have to refer
to yk+1. It can be rephrased if we assume that Q(n) and U(n) are "smooth",
in the sense that for all constants c the functions Q(cn) and U(cn) are still

of the same order. This is almost always the case in practical examples.

Theorem 2.3. When Q and U are smooth and there is a constant c¢ such that
yk+1S cyk for all k, then one can fully dynamize the static solution of a
decomposable searching problem such that queries can be answered in time
0(k.Q(%/k)) and updates can be processed in time Q(D(n)+—U(n/k)) each, where

k=k(n) is the level on which we operate for a set of n elements.

Observe that n/k==0(yk+1) and hence Q(n/k)==O(Q(yk+1)) and U(n/k)==0(U(yk+1)).

o

The condition that Yk+1£ cyk, again, will almost always be true in practical
cases. It means that on a single level we allow the blocks to expand by at
most a factor ¢ from their original sizes. Theorem 2.3 also expresses rather

succinctly what the dynamization has achieved. It cuts the update time from



U(n) down to U(R/k), which can be a lot when k=k(n) grows sufficiently fast.
On the other hand, if we arrange for a large or fast growing k=k(n), then
the time to answer queries will get out of hand, because it is proportional
to k.Q(M/k). It only shows that one must make a very judicious choice of the
switchpoint sequence the structure is to operate with, to strike a desirable
balance between query and update times for the application at hand.

Observe from the proof of theorem 2.2 that there still are many degrees
of freedom in the routines for insertion and deletion. For instance, we
suggested inserting a point into just any block that still had room. One
might wish to keep blocks balanced and always insert into the currently
smallest (as in [5]), or promote blocks from low to full as fast as one can
by always inserting into the largest. Likewise, one might wish to carry out
additional size-rebalancings among blocks when points get deleted. We
imagine that variations of this sort will be highly application-dependent.

As long as the invariants of a jevel remain valid, one can do as one pleases ...
provided the additional overhead in processing time is worth the trouble.

One objection to the structure as presented might be that apparently all
blocks are required to have a size-counter. Strictly speaking we only need to
maintain size-counts for the halfway blocks and for the dump, the other blocks
all have yk or yk+1 elements. Because size-counts do not change by more than
1 at a time, it is not hard to show that blocks can be kept ordered by size
at only constant extra charge per update. We will show that, if desired, the

need for keeping track of size-counts can be almost completely eliminated.

Theorem 2.4. The technique of dynamization presented can be modified such
that there never are any halfway blocks, without affecting query and update

times in order of magnitude.

The result will be shown by modifying the routines for insertion and deletion.
Suppose we are operating on level k énd assume there presently are no halfway
blocks.

(i) Insertion.
After passing the usual dictionary test, always insert x into the: dump.
If the dump gets full, then promote it to a full block (and have it join the
full class) and pick a low block to replace the dump. If there is no low block

left to do so, then switch to level k+l.



(ii) Deletion.

Here we must be careful again. Use the dictionary to find where x is
located. If x belongs to the dump, then delete it without further ado. If x
belongs to a block and the dump is (still) non-empty, then delete x from its
block and borrow an element from the dump (and delete it) to plug back into
the block (to keep it low or full). If the dump is empty, then we proceed as
follows. If x must be deleted from a full block, then do so and make the block
into the dump. If x must be deleted from a low block, then do so and borrow
an element from a full block (and delete it from it) that we can plug in to
restore the size of the low block. The full block borrowed from is made into
the dump. If there was no full block left to borrow from, then just delete x
from its (low) block and switch to level k-1. ‘

We leave the reader with the instructive task of verifying that the level
invariants are fully obéyed. No halfway blocks are needed to let it work.

The modified technique of dynamization may require that in processing an
update more (and larger) blocks may get broken than before, but it will only
add a factor 2 or 3 to the worst case time estimates. Note how the manipulation
and constant réle-changing of the dump is crucial for the routines to work.

An important conclusion is that full dynamization can be achieved without the
need for an unbounded number of counters. Just maintaining yk and Yiert (and
the classification of blocks as being low or full) and a single size-counter

for the dump are sufficient.

3. Some applications.

The pay-off from dynamization will depend a great deal on the sequence of
switchpoints {xk}k>-0 that is chosen. We shall discuss a number of choices one
could make and their application to some common decomposable searching problems.

A typical sequence of switchpoints is obtained by defining
xk=="the first multiple of k that is 2 2k"

, which makes k=k(n) about log n. Hence, by theorem 2.3, one can fully dyna-
mize all normal decomposable searching problems such that the following worst

case estimates for individual transactions are guaranteed:

O(log n.Q("/log n)) for queries
o(D(n) + U(®/1log n)) for updates

Let's apply it to an example also used by Bentley [1] for his technique of

dynamization.



Theorem 3.1. There is a fully dynamic solution to nearest neighbour searching
in the plane which takes no more than O(logzn) for querying and O(n) for

updates at any point in time, where n is the current set-size.

There is a static solution to the problem due to Lipton and Tarjan [4],
which has Q(n) =1log n and U(n)=n log n. Dynamizing it w.r.t. the given
switchpoint sequence yields the bounds stated.

Note that this result for nearest neighbour searching is an improvement
2
over Bentley's, which only allowed for insertions and could take up to O(n log n)
for updates with an 0(log2n) time~bound for querying.

Another typical sequence of switchpoints {xk} is obtained by defining

k=20
a
xk-k ,
for some integer exponent o> 1. It makes k=k(n) equal to about n /a. Hence
one can dynamize all normal decomposable searching problems such that the
following worst case time estimates for individual transactions are guaranteed
1-1
/ /2y,

ly

1
on "%n

o(D(n) + u(nl'

for queries

a)) for updates

Note that different choices for a can lead to very different time estimates.

Theorem 3.2. There are fully dynamic solutions to range querying in the plane
which |

(i) take no more than 0(log3n) for queries and 0O0(n) for updates,
or which

(ii) take no more than O(vn log4n) for queries and O(vn 1og2n) for updates.

Results of Bentley and Shamos [2] can be rephrased to yield a static solution
to range querying in the plane with Q(n)==logzn and U(n) =n log n. Dynamizing
it w.r.t. the two distinct types of switchpoint sequences we now know leads to
the two conclusions stated (using a= 2 for the second).

a

Theorem 3.2 shows the kind of trade-off one can achieve between query and
update time, by varying the sequence of switchpoints that is in effect. In
this example one could balance the cost for queries and updates perfectly by

choosing the sequence of switchpoints {xk} defined by

xk==k?r- ;I

k20
log
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It makes k=k(n) about equal to Vﬁ/log n. Hence one can dynamize to guarantee

0(¥"/log n Q(vn log n)) for queries
O0(D(n) + U(Yn log n)) for updates

Applying it yields

Theorem 3.3. There is a fully dynamic solution to range querying in the plane
which requires no more than O(vn log™n) time for both querying and updates,

where n is the current set-size.

And so the applications go on without end. Full dynamization will be parti-
cularly fruitful for the many decomposable searching problems for sets of
lines and hyperplanes treated in Dobkin and Lipton [3], which usually are
"fast" except for some polynomial preprocessing time.

A last question might be how efficient one can hope to get when balancing
query and update times in an approach like this. An argument of Saxe and
Bentley [6] shows that one will never get below the /n limit. The structure
we presented to achieve full dynamization will never replace ingenuity in
dynamizing a specific problem, but should be taken as a general method which

is to be brought into action when everything else fails.
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