Software Support for an Intelligent Terminal,

the Beehive B500

Wilm Boerhout
Willem BShm
Rob Gerth

RUU-CS-79-11

November 1979

-4
05 @o

SSTA A
¢
‘Zsar

2

Rijksuniversiteit Utrecht

Vakgroep informatica
Budapestlaan 6

. Postbus 80.012

3508 TA Utrecht
Telefoon 030531454
The Netherlands

Software Support for an Intelligent Terminal,
the Beehive- B500

Wilm Boerhout
Willem BShm
Rob Gerth

Technical Report RUU-CS-79-11

November 1979

Department of Computer Science
University of Utrecht
P.O. Box 80.012
3508 TA Utrecht, the Netherlands

f

Index

pag.
PART ONE, CYBER SOFTWARE 2
MAC80, an INTELS8080 cross assembler on the CYBER
Extensions to the MAC80 assembler
Format of the object file as produced by the MAC80 cross assembler 10
ASM: a utility to facilitate the use of MACS80 12
STXT80: A systemtext utility 13
LINK80: a linker 14
INT80, an INTEE8080 interpreter / debugger on the CYBER 16
Installation of the CYBER software 26
Generation of a new cross assembler 26
Installation of MACS80 28
Installation of STXT80 28
Installation of LINKS8O ' 28
Installation of ASM 29
Installation of INTS80 29
PART TWO, B500 SOFTWARE 30
The Upper Level Terminal Program 30
The Monitor 35

References 37

Software Support for an Intelligent Terminal,
the Beehive B500

Abstract

This report documents software on the CDC CYBER and the B500 terminal,
that creates an environment for writing, testing and downloading B500

programs.

Keywords and Phrases

Basic software, downloading, intelligent terminal, microprocessor.

Introduction

In the summer of 1978 we got a Beehive B500, an intelligent terminal. The
B500 derives its "intelligence" from an INTELS080 microprocessor. The terminal
functions are controlled by a program, residing in ROM, called the Upper
Level Terminal program (ULT). Apart from the ULT, "user" programs can be
downloaded into the 8080, in this case from a CDC CYBER. In order to use this
facility we have areated an environment for writing software for the B500 (we
think of an editor).

On the CYBER we needed an assembler, an interpreter, a system text mechanism
and a linker, to write small pieces of basic software in assembly language.
To write bigger programs, such as an editor, we needed a high level language,
e€.g. PASCAL. On the B500 we needed a monitor program, that performs basic
input/output using the ULT, loads and executes programs, disassembles pieces
of memory, takes single steps through a program, sends blocks of data to the
host, reads blocks of data from the host, and the like. In order to write
this monitor, the ULT had to be fully documented.

As far as the CYBER software was concerned, a tape was available containing an
assembler, MAC80, an interpreter, INT80, and a PL/M compiler all written in
FORTRAN. So "all" we had to do was get it running, write the system text
program and the linker, and adapt the download file format to the needs of
the B500.

This report documents both the CYBER and the B500 software that we use at the
moment, i.e., all programs sketched above except for the PL/M compiler.

Part one of this report documents the CYBER software, part two documents the
B500 software.

PART ONE, CYBER SOFTWARE

MAC80, an INTELB080 cross assembler on the CYBER

NOS/BE Interface

To execute the MAC80 assembler, use the following JCL statements:

ATTACH,MAC80, ID=INFORMAT.
MACS80, SOURCE,OUTPUT ,OBJECT.

The given filenames are the default ones. The files are used as follows:

CROSS

L ») OBJECT
ASS.

The cross assembler (MAC80) expects its input from SOURCE. MACS80 will read
lines from column 1 up to 72. The file OUTPUT will consist of lines of width
72 and will contain the source text, error messages and the like. The line
width 72 enables you to put OUTPUT on any console easily. The file OBJECT
contains the symbol table, the object code in INTEL's standard hexadecimal
object format and two link tables.

Example: Suppose your assembly code is on file SRC.
Then
MAC80,SRC.
will assemble SRC.

The assembly language is described in the INTEL Microcomputer User's
Manual 98-135C.

' ASSEMBLER SCANNER COMMANDS

Scanner commands are directives which influence the assembly process.

Figure 1 shows their syntax.

<blanks> <—
($ = J d

<char> <value> 1

These commands are recognized only if the line containing them starts with
a $-sign in column 1. All information other than scanner commands is ignored
on such a line. They can appear everywhere in the source text and may be

redefined.

The following scanner commands are defined:

scanner
command value result
A 0 The symbol table on the object file contains
all defined symbols (including the register
mnemo's) .
1 (default) The symbol table contains only the absolute
symbols (symbols used as labels or defined
through an EQU pseudo) .
B 0 Write the binary in BNPF format.
1 (default) Write the binary in standard Intel hexa-
decimal format.
D 0 (default)

1 Every time the (operator precedence) parser
decides to reduce, a dump is given on the
output file of the working stacks, before
and after the reduce action.

F 1 (default) Issue a form feed every time a page has
been completed.

0 Generate a number of empty lines to simulate
a form feed.

L 1...132 (default=1) Everything to the left of the column position
specified is ignored by the assembler.
M 0 (default)

1 Every time a macro definition is completed

its symbol table entry is displayed.

P 0 Do not write a listing of the assembled

source to output.

1 (default) Write a listing to file output.
Q 0 (default)
1 Every time a symbol table entry is made

the symbol table is written to file output.

R 1...132 (default=72) Everything to the right of the column

position specified is ignored by the

assembler.
) 1 (default) Write a symbol table to the list file.
0 Do not write a symbol table to the list file.
T 1 (default) Write a symbol table to the object file.
0 Do not write a symbol table to the object
file.
W 72...132 (default=72) "Width" of the output file.

If a print line has a length greater than
specified, it will be chopped of from the
right.

Furthermore, if the command $$<blank> is issued, all command settings are
displayed, if $$<char> is issued, only the setting of command <char> is

displayed.

< @ 4 n x 0

ASSEMBLER ERROR MESSAGES

Address error: address referenced by a JMP or CALL instruction is not in
the range 0 to 65535.
Balance error: unbalanced parentheses or string quotes.

Expression error: badly constructed expression (missing operator, missing

comma, misspelled opcode).

Format error: usually caused by a missing or superfluous operand.

Illegal character: invalid ASCII character in string or digit to big for
base in which it occurs.

Multiple definition: two symbols declared which are identical or not unique
in the first five characters.

Nesting error: IF, ENDIF, MACRO or ENDM pseudo is improperly nested.

Phase error: the value of an element being defined changed between passl

and pass2.

Questionable syntax.

Register error: register specified is invalid for this operation.

Assembler internal stack overflow.

Assembler internal symbol table overflow (e.g. too lengthy macro definitions).
Undefined identifier.

Illegal value: value exceeds range defined for particular operator (e.q.

RST 8).

Extensions to the MAC80 assembler

Separate Assembly

When developping new software, one usually does not start from scratch,

nor is it usual that the software is conceived and written in one piece and
by one person. Normally one will make use of existing routines, and split up
the program into smaller modules which are written and tested separately.
Given these facts, one is facing the problem of using routines (or accessing
information) of other modules, i.e., of using externally defined data or
code.

With the original assembler, the only way was to use the absolute addresses,
with the inevitable consequence that a local modification which changed the
address would evoke changes in all software using it. A parallel can be
drawn between this and the use of absolute addressing in routines, which
causes difficulties as soon as one plans to insert some code.

The solution to the latter problem was to use symbolic addressing instead of
absolute addressing; the former problem will be tackled in a similar way.
The idea is to use symbolic names for the externally defined data or code.
First some terminology:

A reference in one module to a symbol defined in another module is called

an external reference (EXT).

A symbol in one module that is defined as being "visible" to the outside
world, i.e., that can be referred to from other modules, is called an
entry point (ENT).

EXT-s and ENT-s are each others counterparts. The process of linking a set

of modules starting from a master module can now be defined as follows:

for every EXT in the master module, the set of modules is searched for a
matching ENT. If a matching ENT is found the module containing it is added
to the master module. If a matching ENT is not found, then an error is re-
ported. This process goes on until all EXT-s are satisfied. Figure 1 pictures

this process:

oaL Bl

The set of modules. Fig. 1.

MM is the master module.

The holes on the left hand side of the modules denote ENT-s,

EXT-s are symbolized by the funny things sticking out of the right hand

side of the modules.

The stages in the linkage process:

MM w2 o>

M2

Stage 1 Stage 2 Stage 3

Result

The separate assembly facility is implemented using 2 tables: an entry table
and an external table. These are written to the object file at assembly com-
pletion. The contents of the entry (external) table, which is described in

further detail in the next section, is controlled by the ENTRY (EXT) pseudo

instruction, of which figure 2 specifies the syntax.

’

EXT
_____{:j_ —:}——-—-————L—-<symbol> ‘J {
ENTRY

The obvious semantics is, that only these symbols specified on the ENTRY (EXT)

Fig. 2.

pseudo will appear in the entry (external) table. These symbols are subject

to certain restrictions:

A. Entry symbols must be absolute symbols; i.e., they must either be used as
a label or be defined through an EQU pseudo.

B. External symbols, on the contrary, should not have a defining occurence
in the module. The use of them is also somewhat more restricted than the
use of "ordinary" symbols:

1. They may only be used as an operand of a DW pseudo or in the (absolute)
address field of a machine instruction (3 bytes instruction).

2. They may not be used in an expression.

Apart from these restrictions they are treated by the assembler as 16 bit

quantities with zero value.

C. The maximum number of entry symbols in a program is 127.
The sum of the number of externals and the number of uses may not
exceed 127.
If these limits are exceeded, the assembler will abort with a table
overflow.

Violations of all other restrictions will result in Q errors: question-

able syntax.

To distinguish entry and external symbols from the ordinary symbols in
a program, the former are flagged in the symbol table on the listing:

external symbols with a dollar-sign ($), entry symbols with an amper-
sand (&).

The macro-facilities of the MAC80 assembler are limited to substitution

of symbols. Sometimes, however, it comes in handy to be able to substitute
parts of a symbol.

To this end a new (meta) character __(underline)l) is introduced, which can
be used everywhere in a program. The effect, however, depends on whether

it is used outside or inside a macro-definition.

Outside, the assembler is transparent to the underline (UL); ji.e. the
symbols A_B and AB are the same and the string 'A__PE' is equivalent to
'APE'.

Inside a macro-definition the UL-char does affect the assembler, because
here it acts like a delimiter (if it is used outside a string); so the
sequence A_B would now be interpreted as 2 symbols (A and B) separated by
an UL, rather then as the single symbol AB. This means that if B was a
formal parameter of a macro containing A_B, the last character in A_B would
be substituted during expansion.

An example will clarify this:

Fig. 1 shows 2 macro's with which a set of machine instructions can be
iterated, moreover these iterations can be nested.

The formal parameter loc of the first macro serves a twofold purpose:

1. loc should address a location in which the iteration count can be saved,
2. loc is used to create a label for the 2nd macro to jump to.

The until-macro has 2 parameters.

The second one (n) defines the number of iterations, the first one corres-
ponds with the parameter of the first macro: it addresses the iteration count

and it identifies the jump-address.

1
) on some keyboards: <«

repeat macro loc
sub a
sta loc
1 loc:

endm

until macro loc,n
lda loc
inr a
sta loc
cpi n
jm 1 loc

endm

fig. 1.

Fig. 2 shows the relevant parts of a program using the macro's. The 2nd

column shows the resulting macro expansions.

Note that the sequence 1 _loc in the macro-texts are expanded into 1 itrl

and 1_itr2 because UL acts like a separator and that during the subsequent

assembly of the expanded text they are interpreted as the symbols litrl

and litr2 because now the assembler ignores UL's.

program expansion
itrl ds 1
itr2 ds 1
i
E sub
' sta

repeat itrl —5
I
|
r

epeat itr2 —

;
i
i
'
ntil itr2,5->

u
|
i
|
i
t
[
1
'
t
!
|
1
!
+
)
U

until itrl, 10 —»

1l itriie—--__

sub
sta

1 itr2:e-o_

lda
inr
sta
cpi

jm

lda
inr
sta
cpi

jm

a
itril

~

a
itr2

itr2

itr2
10 .
1 itri~

7’

. e e e e . - ———— e —

fig.

2.

10.

Format of the object file as produced by the MAC80 cross assembler

The format will be explained using fig. 2 which shows the object pro-

duced by assembling the (nonsense) program of fig. 1.

The object consists of 4 tables: the symbol table (A), the load table (B),
the external table (C) and the entry table (D).

All tables but the load table are optional.

Now follows a detailed description of each of the tables.

A.

The symbol table contains a list of symbols together with their octal
value and ends with a $-sign. The contents of this list depends on the
$A scanner directive: if $A=1 (the default value) it contains only
symbols which are used as labels or which are defined through the EQU
pseudo; otherwise ($A=0) it will contain every defined symbol including
the register mnemos.

Note that symbols are truncated to the first 5 characters.

The load table consists of load records in hexadecimal form, which start

with a colon. Each record consists of 5 parts (see fig. 2):

1. RECORD LENGTH. This is the number of actual data bytes (part 4) in
the record. A zero record length indicates the end of the load
table.

2. LOAD ADDRESS. This is the 4 digit address at which the first data
byte of the load record is stored. The remaining data bytes are stored
in successive memory locations.

3. RECORD TYPE. This 2 digit code specifies the type of the record.
Currently all load records are of type O.

4. DATA. The data is made up of 8 bit bytes represented by 2 hex. numbers.

5. CHECKSUM. This is the 8 bit 2 complement value (complement +1) of the
sum of hex. (2 digit) numbers in a load record starting with the
RECORD LENGTH value and ending with the last data byte (last number
in part 4).

The last load record in the load table has a zero record length. The

load address on this record specifies the location where the execution

should start. The load table is followed by a dollar-sign.

The external table is divided into blocks, which start with an asterisk.

The link information of each external (where it was used in the program)

is collected into these blocks; each external in a separate block.

The link information consists of sets of (octal) coordinates which point

to the bytes in the load records which must be patched up by the linker.

These bytes are characterized by 2 coordinates, the first points to the

11.

load record containing the bytes, the second points to the actual
bytes (see fig. 2).
The table, again, is closed with a dollar-sign.

D. The entry table starts with an ampersand and ends with a dollar-sign.
It is a subset of the symbol table and contains all entry symbols
(defined through the ENTRY-pseudo).

8080 HACRO ASSImBSLER,y VER 3.1 12/709/73 1i.15.22, ZIRRIRS = A PAGE 1

LINE L0C codt
00010, EXT RIADLINE
00020, ENTRY START
0630, DIDD ORS5 ¢NDDDH
03040, DDDD 06010203 oR 03192930l
IDEL e
860s0. 2DZ2 COCQGY ORIGIN? CALL RcAD
00060, MWZ5 2100630 LXI He LINE
p007Td, ZEEE ORG DELEEEH
06080, il JG0CCIF START: DOW RZIADGJE=CI4
00090, END

NO PROGRA'1 ZRRORS

Fig. 1.

1234567 3901235567890123+45073301234

001 ORIGI 156Ta27

02 START 1673%6Q

‘] 2 3 of
t04EECE000003 CIEF bk //f
$QGEEF2034C

LINE o0 111

002 REAY 000C 0cQ
003 READ J001 06Q
001 START 15673550

Fig. 2.

The first line is a column-count and is not part of the object.

12.

ASM: a utility to facilitate the use of MACS0.

ASM resides on the permanent file ASM,ID=INFORMAT. It performs the appro-
priate file manipulations in connection with the MAC80 assembler. In case
of a batch job the files OUTPUT and OBJECT are returned before assembly.
After assembly, the file OBJECT is rewound.

When errors are detected during assembly, a program MACERR is called. This
program processes the file OUTPUT and displays a brief explanation of the

assembly errors. This feature is especially usefull when using ASM inter-

actively. The error processor can be switched on and off by the ERR para-

meter (on=1, off=0) in the ASM proaedure call.

Examples:

1. ASM,MYFILE,CODE,LIST,ERR=0,

will rewind and assemble MYFILE. CODE and LIST will contain the object

code and the listing, respectively. No error processing will be done.

2. ASM,

will assemble with default options: source on SOURCE, object on OBJECT,
listing on OUTPUT. Assembly errors, if any, will be processed by MACERR.

STXT80: A systemtext utility

This utility tries to satisfy all macro calls encountered in an INTEL 8080
assembly program. The program resides on an input file TEXT, the macro
definitions reside on files (called systemtexts) STEXT1, STEXT2, etc.
Satisfying means including macrodefinitions for which macro calls appear in

the program.

The systemtexts are searched in the order in which they are specified by the
user. The search is cyclic, that is: after the last systemtext has been
searched and macro calls still remain unsatisfied, the search is started
again until either all macro calls are satisfied or no calls are satisfied
during a search through all systemtexts.

The result is written on the file SOURCE. If macro calls remain unsatisfied,
STXT80 will abort, though after abortion SOURCE will contain the assembly

program preceded by the macro definitions that were found.

There is, however, one restriction. The assembler allows a macro to be used
as a parameter in a macro call. Macros thus implicitly referenced will not

be satisfied.

The user can force copying information from a systemtext to the program even
though this information is not referred to in the program. This is done by
placing the information between a '$COPY' and a '$ENDCOPY' comment line.
E.g., if a system text contains:

; $COPY

Include this line

; $ENDCOPY
the line 'Include this line' is copied to the source file, regardless whether
it satisfies any macro call or not. The copied text will be searched for
macro definitions and macro calls.
For instance, by means ofmiﬁis mechanism the problems indicated above can
be overcome.
The COPY directives must not appear inside macro definitions, because then
they will not be detected (of course). Moreover, it is unclear what they mean

in such a context.

The program is called as follows:

ATTACH, STXT80, ID=INFORMAT.
STXT80,TEXT, SOURCE, STEXT,STEXT2 ,STEXT3, ...
TEXT, SOURCE and STEXT are default so
STXT80.

is equivalent to

STXT80,TEXT , SOURCE, STEXT.

14.

LINK80: a linker

LINK80 is a utility which can link several independently assembled programs
into an absolute load module.

Linkage is performed through certain tables on the object files, which are
constructed by the MAC80-assembler using the symbols defined with the

EXT and ENTRY pseudo's.

The linker is called as follows:
ATTACH, LINK80, ID=INFORMAT.
LINK80,MASTER,OBJECT,BINI,BIN2...BIN9,BINA.
where MASTER is the name of the master binary
OBJECT is the name of the resulting linked load module (LLM)
BIN1...BINA are the names of up to 10 secundary binaries.
The default names are the same as the ones shown and the call
LINKS80.
is equivalent to LINK80,MASTER,OBJECT.
So LINKS8O,,,TABLES, .
means that file MASTER contains the master binary, that there are 2

secundary binaries on files TABLES and BIN2 and that the LLM is written to
file OBJECT.

The linker discriminates between one master binary, which determines the
transfer address (the address at which eXecution should start) of the
resulting LLM and the contents of the symbol table of the LLM (if present)
and up to 10 secundary binaries which don't.

The optional symbol table contains the master symbol table, if one was
present, together with all the (satisfied) external symbols of the master
binary.

The LLM consists of the master binary together with those secundary binaries
which were used during linkage; i.e. those binaries which contain an entry

point which was referenced by a routine that had already been included in

the LLM.

This can however be overridden by prefixing the name of a secundary binary
(the master binary is always included) with an asterisk (*) on call.

i.e. LINK80,A,OBJ,*B,C.

means that the binary on file B is included in the LIM regardless whether

it was used for satisfying an external reference or not.

15.

LINK80 currently accepts 2 directives:
N - if this one is specified, the LLM will contain no symbol table
C - this one inhibits checksumming the loadrecords of each binary
when they are read in.
Normally, a checksum is computed which is checked against the
checksum provided by the MAC80-assembler.
These directives are specified on the control card.
They must be separated by a slash (/) from the names of the binaries, and
should be the last parameter(s).
So I,INK80, ,0BJ,BIN/N,C. is a valid control card
whereas LINKS80, ,0BJ/N,BIN. is not.

Diagnostic (unfatal) errors:
1. UNKNOWN DIRECTIVE-X IGNORED
This should be clear.
2. UNSATISFIED EXTERNAL REFERENCE-XXXXX
ON FILE-Z222222 '
The binary on file ZZZ2ZZZ contains an external symbol XXXXX for which
no matching entry symbol can be found.

Fatal errors:
1. TABLE OVERFLOW These messages flag internal table overflow, and indi-~
2. STACK OVERFLOW cate that the binaries are too big and/or contain too

many external references.

3. ILL FORMATTED SYMBOL TABLE These indicate format errors of the link

4. ILL FORMATTED EXTERNAL TABLE tables, and should never occur with the use
5. ILL FORMATTED ENTRY TABLE of the MAC80 cross assembler.

6. CHECKSUM ERROR This indicates a bad checksum on some load file.

This error too should never occur with the use of MAC80.
These messages are followed by a second line.
ON FILE-XXXXXXX

indicating which binary caused the error.

16.

INT80, an INTELS8080 interpreter / debugger on the CYBER

NOS / BE Interface

To execute INT80, use the following JCL-statements:

ATTACH, INT80, ID=INFORMAT.
INT80,0BJECT, INPUT,OUTPUT.

The given filenames are the default ones. They are used as follows:

INT80

OBJECT contains the binary obtained from the assembler (or from the linker).
If INT80 is used interactively, it connects INPUT and OUTPUT. INTS80
expects commands from INPUT and writes messages to OUTPUT.

Some characteristics of INT80 are:

- linewidth on INPUT: 72
- memory of the INTEL: 10240 bytes (at this moment)

- initially all registers are zero (including the program counter PC)

Description Method and Command Format

The following describes the input commands. The underlined parts of

keywords suffice; so you don't have to type
LOAD.
because

LO.

is enough.

We use a graph-like formalism (called syntax diagrams) to define the syntax
of the commands. The rule of the game is: start left, follow the arrows till

you get to the end.

Example:

A real number denotation of the form:

+a. fEte

where: a, f and e are integers, is described as follows:

<reaql deno>

17.

DS N R N
<digit>4—=—FE <digit>
L_J

J

Brackets (<>) around a symbol indicate that it is nonterminal.

E.g., <digit> stands for the digits: 0,1,2,3,4,5,6,7,8,9 here.

A command has the format:

<keyword>] 13 <parameters> ——r———i

b
rd

that means: a keyword, optionally followed by a space (denoted by =) and
parameters, followed by a period.
We identify a command by its keyword and give a syntax diagram of its

parameters, if it has any. We make use of some primitives:

B M

The symbol must be present in the symbol table. The numbers can be

specified in hex, dec and oct:

hex: ———[ahex digit 41 H |

dec: —Uodee digit .J__|
!f b 0
oct: oet digit ::}———*

*' means: the value of the program counter.

18.

<range>
; <address> : TO

> 2 <address>
L , I

<ranges>

L____L:j_-,
<range>

<reg> : one of the registernames or flags:
HL, PC, SP, A, B, C, D, E, G, H, L,
CY (for carry), Z, S, P

The parts making up the parameters of a command must be separated by a space,

even if it is not stated in the diagrams, so
DSYID.

doesn't make sense, whereas
D SY ID.

is a valid DISPLAY command.

The commands in detail

LOAD
Loads the binary (symbol table and object code) from the object file.
This will generally be your first command.
If the load succeeds INT80 issues a "XX LOAD OK" message where XX

denotes the size of the program in bytes.

CONV <ranges>

The ranges are displayed in binary, octal, decimal and hexadecimal.

/—<
<gymbol>

(— SIMBOLS <number>——])

*

DISPLAYy¢— CPU SR |

\-@@mmwy-————-—-<range> <mode> ——
— PORT <range> ~/
g(reg) J
_ . J

<mode>

| o L |

SYMBOLS :

<number>

_I
ocr

— DEC

N EEX J

display label closest to the address specified
by <number>.

<symboll>/<symbol2>/ ...

if symboli is present in the symbol table its contents
is displayed in octal, decimal and hexadecimal.
CAUTION:

The symbol table is scanned only once so the <symbon>
must be given in the symbol table order! (The symbol

table is the first part of your binary file.)

The contents of PC is displayed.

<any other char>

cry

MEMORY

<r’eg>

BASE

I~

the whole symbol table is displayed.

The contents of all registers and flags are displayed.

The <range> is displayed according to the active base
(see BASE command) and, if specified, encoded as
determined by <mode>:
CODE: assembly language
address parts according to active base
BIN
OCT clear
DEC
HEX

The ports in <range> are displayed.

The register, register pair or flag is displayed.

BIN

oor L |
DEC
BEX —

The active base becomes the specified base.

19.

20.

SET s <
v > -
J—-<instruction>—1
—— MEMORY ——>—— <range> = (. <number> A] > i
2 ——
< PORT >- <range> = <number>—j——————~
(f L —€
HL
\— <reg except HL,PC> = <number> > =
CPU : Clear all registers and the timer (see TIME command)
MEMORY : The specified <range> according to the datalist is
reset. If the datalist is shorter than the specified
range the first element of the datalist is used as
a filler.
PORT : Ports are handled the same as the bytes in MEMORY .
HL,PC : reset HL or PC to <address>.

<reg except HL,PC>: reset specified register to <number>.

OUTPUT }
INPUT “ranges>
The I- or O-flag of the specified ports are set.
Only if its flag is set the program can read or write data through the

port by IN or OUT operations.

INTER <number>

=

<one byte instruction> —

STATE —
DISABLED —

ENABLED X

DISABLED.}

N

ENABLED : Disable/enable the interrupt mechanism completely.

STATE : The status (DIS or EN) is displayed.

21.

<number> If the interrupts are enabled the parameter
<one byte instruction> is executed next. In this manner one can
simulate interrupts (by inserting an RST-

instruction).

TRACE <range>
If code in <range> is executed, the following information is displayed:

~if a

$b=0

scanner command has been given the contents of all registers;

if a
$b=1

scanner command has been given the contents of all modified registers.
- The executed instruction is always displayed.

Addresses are encoded according to the active base.

NOTRACE <range>
Disables tracing for <range>.

REFER <ranges>
Every time a byte in one of the specified <ranges> is referred to, a
message is printed and, if requested, the nearest program label is
displayed.

After that, the user gains control. The request is done by a scanner

command :

$§ENLABfl the nearest label is displayed.
$GENLAB=0 it's not.

ALTER <ranges>
The same as for REFER, but now only if a byte in the specified <range>

is changed.

TIME T <number> jﬁ{

If the <number> is specified, the timer is reset to it. Otherwise the

amount of cycles elapsed since the last reset is d%splayed.

22.

GO <number> ——

. l

Execution is (re)started at (PC). The parameter specifies the number of

instructions that will be executed, before control is regained by the
user:

<number> : clear
* : until termination

<unspecified>: default value, set by a scanner command maxcycle:

$MAXCYCLE = <number>

When the user gains control the contents of PC is displayed together

with, depending on the scanner command, the closest program label.

23.

Interpreter Scanner Commands

Three useful scanner commands were described ($B, $G, $M). The general syntax

<value>—)-——1

where the first dollar sign has to start in column one. All information other

of scanner commands is:

L

scanner command (
$

<char>

than scanner command information is ignored on such a line.

Apart from the ones described above, two new scanner commands are defined:

char value description
H int i (default 5) print a header every i-th line of the trace.
T 0 do not display a prompting when a new command

is to be typed in, to facilitate interactive
use.
1 (default) display a prompting when a new command is to

be typed in, to facilitate interactive use.

$ blanks display the setting of all commands.

char display the setting of the command <char>.

Hints for using INT80

It should be clear that INT80 is a highly interactive program. If one wants
to use it in the batch, many of its features will be of no use. If, e.q.,

INT80 is used in the batch with the following INPUT file:

LO.

$B=1

TR O TO 2560.

O 0 TO 255.

INP O TO 255.

G *,

1 <«

2 <— octal numbers as input
34 €—one per line

56 <

and the program runs wild (after the GO * command) it will hand control back

to the user, which means that INT80 will interpret the next inout number as a

command.

So, if you can, use INT80 from a terminal.

Termination

The scanner command $STOP will end the session.

24.

INTERPRETER ERROR MESSAGES

Execution errors

Program counter stack overflow

Program counter stack underflow

Program counter outside simulated MCS-8 memory
Memory reference outside simulated MCS-8 memory
Invalid machine code operator

End of file while reading port input

Invalid port input data (not between 0 and 255)

Command mode errors

14
15
16
17
i8
19

20

21
22
23
24
25

- an e ——— - ————

Reference outside simulated MCS-8 memory

Insufficient space remaining in simulated McS-8 memory

End-of-file encountered before expected

Input file number stack overflow (max 7 indirect references)

Symbol not found in symbol table

Unused

I/0 format command error (toggle has value other than 0 or 1)

Unused

Invalid cascaded labels. Must be of form X/Y/2.

Invalid search parameter in display symbol command (must be symbolic
name, address, or ¥)

Display symbols command invalid since no symbol table exists

Unused

Unrecognized command or invalid format in command mode

Missing . or extra characters following command

Lower bound exceeds upper bound or is less than zero in range list
The format of the symbol table is invalid (must be a sequence of the
form N SY AD, where N is an integer, SY is the symbolic name, and AD
is the address (in octal))

Invalid BNPF tape format (character other than N or P was encountered
within the B....F field).

Invalid hexadecimal code format (bad hex digit, or missing :T)
Unrecognized display element or invalid display format

Symbolic name not found in symbol table

Invalid address or no symbol table present in display symbol command
Output device width too narrow for display memory command (use
$WIDTH=N I/O format command to increase width)

26
27
28
29
30
31
32

25.

Invalid radix in memory display command (must be code, bin, oct, or dec)
Unrecognized set element in SET command

Missing set list in SET command

Invalid set list or set value in SET command

Missing or misplaced = in SET command

Missing program stack element number in SET PS N command

Invalid interrupt code specification (either more than one byte, or

element exceeds 255, or not a valid 8080 machine instruction)

26.

Installation of the CYBER software

Generation of a new cross-assembler

MACUP is a random update library. By using update define directives for one

or more of the symbols NOSYMB, NOCYB, NOLINK, NOB500, NOEDIT and NOMISC the
user can determine which version of the cross-assembler MAC80 will be generated.
The following section describes which parts of the assembler are controlled

by each of the symbols. Note that the OMISSION of a definition for any of the
symbols results in the effects stated. If all symbols are defined during

generation, the original MAC80 assembler will be recovered.

NOSYMB - The allocated space for the symbol table and the various operator
and operand stacks is doubled, thus allowing larger programs to

be assembled.

NOCYB -~ This symbol controls a number of modifications, of which the first
3 will greatly speed up the compiler (the average speed up is 50%).
1. All logical, shift and mask operations are performed through

the FTN built-in functions (albeit there remains the calling
overhead) .

2. Advantage is taken of the internal representation of the
characterset, thus eliminating a slow table look up during
the translation into internal code in the GNC-routine.

3. During the first pass the source text is packed (10 chars/
word) and stored in central memory thus avoiding disk-
access and translations during the second pass.

4. The page header is modified to contain the time and date of
assembly.

5. MAC80 identifies itself and prints the number of program errors
and the assembly time in the dayfile if the assembler used the
batch otherwise it will use the connected file Z22ZZ0U, which
is returned afterwards.

The assembler aborts if program errors were detected.

The assembly time is printed in the listing (following the
symbol table).

Also, messages resulting from erroneous scanner directives are
printed in the dayfile or in ZZZZZOU.

Keeping this symbol undefined during generation of a new
assembler, will result in a CDC FTN extended program; moreover
use is made of a number of small COMPASS routines which may
cause difficulties if the assembler is used under a different

operating system than NOS/BE.

NOLINK

NOB500

NOEDIT

NOMISC

27.

2 new pseudo instructions EXT and ENTRY are defined; the use of
these pseudo's creates binaries in a format which allows them to
be linked. These linkage symbols will be flagged in the symbol
table in the listing.

The block information in the symbol table on the binary is removed.

Creates a binary in the Intel standard hex. format: the last load
record contains the transfer address where execution should
commence.

(Otherwise the last record will be zero.)

A metacharacter _ (underline) is introduced which enables one

to replace parts of a token during macro expansion.

Some miscellaneous modifications.
1. The default setting of 2 scanner directives is changed:
$f=1 A form feed is generated at page end on the listing.
$i=2 The assembler directly starts reading the source file.
2. A new scanner directive $A is defined.
If $A=1 (the default) the symbol table on the binary will con-
tain only the absolute symbols.
I.e. those symbols which are either used as tables or are
defined through an EQU pseudo.
Otherwise ($A=0) the symbol table will contain all symbols
used in the source text.
This facilitates the use of the 8080 emulator (INT80) somewhat.
3. A line number (start value 10, increment 10) is printed before
every line on the listing contained in the source text, for
debugging purposes.
Also every page contains a sub header denoting the start of
the fields containing the line number (LINE) , location counter
(LOC) and code bytes (CODE).
4. The symbol table on the list file is printed with 55 lines/page.
5. A bug in the assembler.
Originally the line count was not updated during a dump of the

control parameters (scanner directives). This bug has been fixed.

28.

Installation of MACS80

The installation of MAC80 depends on the kind of assembler that has been
generated. If the symbol NOCYB was specified the resulting source is a more
or less standard FORTRAN program. It can be installed with the following

JCL commands:

RFL,65000.

FTN, I=COMPILE,OPT=2,UO, LTP=0.
LOAD, LGO.

NOGO, MACS0.

If NOCYB was not specified the resulting source contains a number of machine
dependent optimizations written in COMPASS. This has two consequences for

the installation process. Firstly, the amount of memory needed for compilation
is increased to 100000. Secondly, two system texts are needed for assembly of

the COMPASS routines. The installation is therefore done as follows:

RFL,100000. _

FTN, I=COMPILE ,OPT=2,UO, LTP=0, S=SYSTEXT , S=CPCTEXT .
LOAD, LGO.

NOGO,MACS80.

Installation of STXT80

The source of STXT80 must reside on the file STXT80S. It consists of two
records. The first one contains a CCL-procedure which governs the compilation
process. The second contains the actual program. To install STXT80 the
following command suffices: STXT80S.

This will produce three files:

LIST - the source listing from FORTRAN and COMPASS,

STXTBIN
STXT80

the relocatable object file,

the absolute object file.

Installation of LINKS80O

The source of LINK80 must reside on the file LINK80OS and has the same struc-
ture as STXT80S. To install LINK80O issue the following command: STXT80S.
This, too, will produce three files:

LIST - the source listing,

LINKBIN - the relocatable object file,

LINK80 - the absolute ocbject file.

29.

Installation of ASM

The source of ASM must reside on the file ASMS. To install ASM issue the

following command: ASMS. This will produce two files:

LIST - the listing of the programs MACERR and REMARK which perform the error
post processing.

ASM - the object file.

Installation of INT80

INT80 is a more or less standard FORTRAN program and can be installed as

follows:

FTN, I=INT80S,0PT=2,U0,LTP=0.
LOAD, LGO.

NOGO, INTS8O0.

30.

PART TWO, B500 SOFTWARE

The Upper Level Terminal Program

The processor communicates with the ourside world by means of input and

output ports: the keyboard input port for the keyboard of course, the

receiver input (primary receiver) en receiver output (primary transmitter)

for the host computer. Our version of the B500 doesn't have AUXPORT hard-
ware so we don't take AUXILIARY input/output into account. Furthermore
the screen can be read and written, and the cursor can be positioned.

The following paragraphs shed some light on the way the Upper Level
Terminal (ULT) program does input output. This description is meant for
the usage of ULT in B500 programs. All routines presented here have no side
effects apart from the described ones. All ULT-routine-identifiers are written

in capital letters followed by their address in square brackets.

1. Keyboard input.

A keyboard interrupt causes a character to be placed in the keyboard
buffer (in the scratchpad) . Pointers relating to the keyboard and the screen
are updated. The routine GETKD [012C] can be used to get the last character

from the buffer into the A-register.

Example
The following routine waits for a keyboard interrupt and puts the character

read in into the A-register:

KBDIN: MVI A, 100B

OUT 30H ; masking out non-KBD interrupts

EI

HLT

PUSH H i DE & HL worden door
PUSH D ; GETKD vernield.
CALL GETKD

POP D

POP H

RET

2. The primary receiver.

When the host computer sends a character, this will cause a receiver inter-

rupt. The way ULT handles the receiver interrupt is analoguous to a keyboard

interrupt: the character is placed in the input/output buffer in the scratch-

pad. The parity bit is chopped off (to zero), which means that the host needs

two characters to send over an 8 bit quantity. The routine GETRV [0108] can

31.

be used to put the character in the A-register.

Example
The following routine waits for a receiver interrupt, and puts the charac-

ter in the A-register:

RCVIN: MVI A,1B

OUT 30H ; receiver int. only
EI

HLT

PUSH H

PUSH B

CALL GETRV

POP B

POP H

RET

3. The primary transmitter.

At the moment this report is written the host computer doesn't echo
characters sent to it. The ULT routine XMIT [030] waits for a transmitter-
ready signal and transmits a character in the B character. This routine

can be called by means of an RST 6 instruction (efficient but opaque).

Example
The following routine puts a character from the B-register on the line to

the host:

SEND: OUT 4 ; request to send
PUSH PSW;
RST 6 ; XMIT
POP PSW
RET

4. The cursor.

The display memory of the B500 consists of location 2000 up to 2F9F hexa-
decimal, which is two pages of 25 lines of 80 characters.

To position the cursor on location 2xxx (000 < xxx < FOF) some memory refe-
rence must be made to position 3xxx. This means that location 3000 up to 3F9F
cannot be used for other purposes. Throughout the whole ULT program the

cursor position is kept in the DE-register pair.

32.

Programs using ULT better stick to this convention'®
The ULT routine CURST [018] sets the cursor position and can be called by

means of an RST 3 instruction.

Examgle

The following routine positions the cursor on the location referenced by

the DE-register pair:

STCUR: PUSH H

PUSH PSW

RST 3 ; CURST
POP PSW

POP H

RET

5. Screen input/output.

Because the screen is viewed as just a piece of RAM, screen I/O is very
simple. All LOAD and STORE instructions in the 8080 repertoire can be used
for that.

Note, however, that the screen administration in the scratchpad, keeping
information about the cursorposition, new lines, scrolling etc., must also be
updated and that by just writing into RAM some special function associated to
(control) characters are not executed. To this end either the routine
WRITR [17F] (for all printable characters and almost all control characters)
or the entry RAMMG in the subroutine KBD [217] (for escape sequences, line-
feed and ETB code) can be used.

WRITR expects the character in the B-register, RAMMG [21B] expects it in the

A-register.

The ULT routine DATOT [1A43] puts a string on the screen. The HL register
pair is supposed to point at the beginning of the string. The string must be
delimited by FF hexadecimal. The DE register pair must contain the screen
location as usual. DATOT does not update the screen administration or execute
function codes. The routine SFMSG does. SFMSG [137B] expects the same para-
meters as DATOT.

6. Upload and download.

6.1. Upload.

Apart from character-wise transput as described in paragraphes 2 and 3 it is

also possible to send and receive blocks of data to and from the host. ULT offers

33.

the following facilities for this.

By means of the functionkeys F1...F8 a chunk of RAM can be associated with
a functionkey. (See the operators manual for details.) The chunk can then be
uploaded by means of keying " d". The chunk is sent up in INTEL's
"standard file format", which means that the host has to convert this format

itself.

Example
you are ON LINE, type:

CONNECT, INPUT
COPYSBF , INPUT,FILE

go OFF LINE by means of RESET

now type: d

ULT will send the information associated with F1 to F8 to the host. If
all goes well, ULT writes "END THE FILE" on the screen and goes ON LINE.

now type:
$EOF

so that COPYSBF will finish and INTERCOM will regain control.

Note that with this upload-function only "functionkey~RAM" can be sent to
the host. If one wants to send an arbitrary chunk of RAM, the host has to be
brought in the same condition as described above (it has to expect a file

from the terminal) and a routine has to be called, which does the following:

PUSH <display address>

HL := <start address for upload>
DE := <number of locations>
A := <upload stock size>; A=0 means: default block size (=18 hex)

JMP RAMU1 [1948]

6.2. Download.

Pushing a program from the host into the memory of the Bee is called
downloading. The program file must have the standard INTEL download format
as described in the B500 programming manual (table 2-4).

The software residing on the host (the assembler and the linker) generates
files in this format.
A download file consists of a number of records, each containing (amongst

others) a record length field, a load/address field, data, and a checksun.

34.

ULT will put the data on the specified address while checking the sum. If a
checksum error occurs it will ignore the rest of the file and put an error
message on the screen. If the whole file has been read in without checksum

errors ULT will "beep".

There is a little timing problem when downloading a file:
(i) The B500 has to be told not to act as a terminal anymore but as a
computer receiving a file from its host.

(ii) The host has to be told to send a file to the B500.

To do (ii) we need the B500 as a terminal. But in order to be in time for

the reception of the file (i) has to be done first.

This timing problem is solved by the following trick: you don't tell the host
to send a file to the B500, but you tell the B500 to tell the host to send
that file, and to go into computer mode immediately afterwards.

In our situation (ii) looks like:
COPYSBF,FILE, LOADF+

(« is return in "prog entry"-mode).
So what must be done is the following.
Get your files ready on the host, e.g.:
REWIND,FILE
CONNECT , LOADF

Go OFF LINE by means of RESET.

Put at the beginning of the screen message (ii), e.g.:

COPYSBF,FILE, LOADF<«

Push the PROG LOAD button, which will cause ULT to send the message written

on the screen to the host and wait for a download file.

35.

The Monitor.

The biggest B500 program written up till now is a monitor, which does
all kinds of nice things for testing and debugging other programs. Within

the monitor a user can

- run his program

- single step through his pProgram

- upload files

- disassemble pieces of memory

- examine and modify pieces of memory

- move pieces of memory around
(and a few things more).

After the monitor has been downloaded and started (by means of " o") '

commands can be entered.

< command >

L——< function letter > ~

< number part > < number >

j@——*
< number part >

’

< number > , < number > A

< number > , < nunber > ,<number>————J

<number> is a number of up to four hexadecimal digits.

In case of typing errors the monitor is reset by typing a RUBOUT.

The monitor knows one error message: "?", if that is what you call a message.
The following functions are implemented:
M (move) move a piece of RAM/ROM to some RAM area.

Parameters 1: move-from start address
2: move-to start address

3: number of bytes to be moved

example: M,4000,2050,800

shows the function-key-area on the screen.

X (examine and modify)

parameters 1: start address

{13

jn

|

{=

[e]

=

36.

A memory location and its contents are showed on the screen. The contents
can be changed by typing two hexadecimal digits followed by a carriage
return. When a comma is typed in, the next location is displayed.

RUBOUT gets you back to the monitor.
(translate: disassemble a piece of memory)

parameters 1: start address

2: number of instructions to be disassembled.
(single step trace)

parameters 1: start address

2: stop address

After executing one instruction, the CPU status, the next instruction and
the top three words of the stack are displayed. The monitor waits for a
space to execute the next instruction. To get back to monitor mode type

a carriage return.
(run)
parameters 1: start address

A program is executed starting at the indicated address. If the program

ends with a return instruction, the monitor regains control.

(upload a file)

Parameters 1: start address
2: number of bytes

The host has to be waiting for a file. The monitor does not regain control.

The B500 goes ON LINE so that the file on the host can be handled.

(clean the screen)
(wait)

Every three minutes a dummy-command is sent to the host to make sure the

terminal doesn't get logged out.

Acknowledgement

We wish to thank Hans van den Engel for helping us through the first

stage of getting the assembler running.

References

FORTRAN EXTENDED VERSION 4 REFERENCE MANUAL

Control Data Corporation

COMPASS VERSION 3 REFERENCE MANUAL

Control Data Corporation

NOS/BE VERSION 1 REFERENCE MANUAL

Control Data Corporation

INTEL Microcomputer User's Manual 98-135C

B500 PROGRAMMING MANUAL

Beehive International

B500 OPERATOR MANUAL

Beehive International

37.

