TRIANGULATING A STAR-SHAPED POLYGON

A. A. Schoone and J. van Leeuwen

RUU-CS-80-3
April 1980

s % o
8 %
-t
& 2
* e
e Zabiite

Rijksuniversiteit Utrecht

Vakgroep inforrii;tiéa

Princetonplein 5
Postbus 80.002

3508 TA Utrecht
Teiefoon 030—-631454
The Netherlands

TRIANGULATING A STAR-SHAPED POLYGON

A. A. Schoone and J. van Leeuwen

Technical Report RUU-CS-80-3

April 1980

Department of Computer Science
University of Utrecht
P.O. Box 80.002
3508 TA Utrecht, the Netherlands

AL s pe e
Nt

1. e .
vaggroep informatica RIJ, Utrecht

all correspondence to:

Dr. Jan van Leeuwen
Department of Computer Science
University of Utrecht

P.0O. Box 80.002

3508 TA Utrecht

the Netherlands

TRIANGULATING A STAR-SHAPED POLYGON

Anneke A. Schoone & Jan van Leeuwen

Department of Computer Science, University of Utrecht

P.O. Box 80.002, 3508 TA Utrecht, the Netherlands

Abstract. We present two algorithms for triangulating star-shaped n-gons
in the plane in O(n) steps. We characterize a more general class of

simple n-gons which can be triangulated in linear time as well.

1. Introduction

A triangulation of a simple n-gon P is a way of drawing nonintersecting
line-segments between vertices of P through the interior, such that the
interior of P is subdivided entirely into triangles. It is an instructive
exercise to prove that all simple n-gons can be triangulated. While a simple
n-gon may very well admit more than one triangulation, each triangulation
will consist of n-3 line-segments ("diagonals") and give rise to n-2 triangles.

Garey et.al. [1] have shown that every simple n-gon can be triangulated
in O(n log n) steps. In an important step of the proof they shown that "mono-
tone" simple n-gons can be triangulated in O(n) steps. We shall not define
the class of monotone simple polygons formally, but note that it properly
includes e.g. the class of convex polygons. In this paper we consider the
question what other classes of simple polygons admit a linear time triangu-
lation and prove that the familiar star-shaped polygons form such a class.
(We leave it to the reader to verify that star-shaped polygons are not
necessarily monotone in the sense of [1].)

A simple polygon P is called star-shaped when there exists a point t in
the enterior from which all vertices of P are visible. Given an enumeration
of the vertices of a simple n-gon in the order in which they appear on the
boundary, it takes only O(n) steps to determine whether the polygon is star-
shaped and, if so, to find a point t as described (cf. Lee and Preparata [3]).
Hence the star-shaped polygons form an "easily recognized" subclass of the
simple polygons.

In section 2 we shall introduce the concept of a "reducible segment" and
use it to obtain some general algorithmic tools for later constructions. In
section 3 we present two different methods for triangulating star-shaped
polygons in linear time. One of the techniques used can be generalized and
allows us to characterize the larger class of "reducible polygons" for which

a linear time triangulation algorithm exists as well.

2. Preliminaries: reducible segments

A sector of the plane consists of a point t (the tip), two rays emanating
from t and the area "between" the two rays (the interior). We shall always
assume that the angle O between the two rays is < 1800, thus restricting
ourselves to convex sectors. A simple n-chain is a sequence of n vertices
Ppr --er P with line-segments connecting P, to Piq (1 £ i < n) and infinite
rays emanating from p1 and pn without any intersections occuring. An n-

segment (see figure 1) consists of (i) a sector with some tip t and (ii) a

simple n-chain pl, ey pn in the interior, with Py and pn on separate edges

(a) (b)

figure 1: examples of segments

of the sector or their "rays" intersecting separate edges. We allow that Py
and/or p coincide with t as degenerate cases. We shall always assume that
n

the sector containing a segment is implicitly understood, unless stated

otherwise.

Definition. An n-segment pl, ey pn is said to be reducible when for each
triple pi—l' pi, pi+1 for which the interior angle between the connecting
line-segments is < 180° (1 < i < n) the diagonal P, _4 P;,q can be drawn

without creating intersections, while the resulting (n-1)-segment pl, cens

;P PR pn remains reducible within the same sector.

i~1 i+1
The definition of reducibility is fairly straightforward despite its
"recursive” form and will be appreciated once it is read as saying that one
can "complete" any interior triangle formed by three consecutive vertices
along the boundary after the triangle has been cut off, Note that the n-
segment of figure l.a. is reducible and the n-segment of figure 1.b. is not.

Given a n-segment Pyr ves P the lower convex hull is defined as the

shortest non-intersecting arc C from Py to 1 such that, when extended with

figure 2: a lower convex hull

the rays from p1 and pn across the sector boundaries, the entire set of
points is on or on the other side of C when viewed from t. A closely related
notion appears in Shamos [4] in connection with a geometric formulation
of isotonic regression. Viewed from t, the lower convex hull is a concave
arc connecting p1 to pn through selected vertices of the set.

We shall assume that n-segments are always given with the points Ppr «-nes
pn stored in a doubly-linked list. Hence we can navigate only with the

operations NEXT and PREV (of obvious meaning) and have no random access in

the list.

Lemma 1. Given a reducible n-segment pl, ceer P its lower convex hull C
can be constructed in O(n) steps, while the area between the original segment

and C gets triangulated at the same time.

The algorithm resembles one used by Graham [2]. Given the reducible
segment, have a cursor visit p3, p4, ... in this order and maintain a stack

containing the lower convex hull of the points visited. Let the stack con-

tain Cp = Pyr Cor ey cj = pi_1 as the cursor advances to pi. We proceed
by
while i < n do
begin
if j = 1 or angle (¢, ,c.p,) = 180° then
— j-r3Ti
begin c, := p,.; advance cursor end
—=— j+1 i —
else

begin output triangle cj_lcjpi; pOp cj end
end

When angle (cj—lcjpi) < 1800, the condition of reducibility guarantees

that the triangle can be drawn in the interior without intersecting previous
triangles or edges. The cursor is not advanced until the stack is popped

down to c, or to some Cy such that angle (> 180°. as figure 3

“k-1kP3)
shows, another triangle is drawn in each time the stack is popped. When the

“57Pio1

cursor finally advances, the stack has been updated correctly to contain
the lower convex hull of p1 to pi.

Note that we can charge the costs of a step either to the cursor (when
it advances) or to the point popped off the stack. It follows that the

algorithm takes time proportional to n + # (points not on C), which is O(n).

Two neighboring segments pl, c ey pn and ql, seer @ with the same tip
t are said to be adjacent when either pn=q1 or the rays emanating from
P, and q, coincide, effectively creating an edge joining pn and q1 without
intersecting any other edges (fiqure 4) (or when, of course, p,=q_ or the

rays emanating from P, and a, coincide to form an non-intersecting edge).

figure 4

Let the sector angles be al and 02 respectively.

o
Lemma 2. Let &, + &_ < 180 . Assuming the lower convex hulls C, and C

1 2 1 2
of the adjacent segments pl, ey pn and Qur oo qm have been formed, the
lower convex hull C of the full segment pl, . ey pn, ql, ey qm can be

constiructed in only O{ # points of C1 and C2 not on C) additional steps,

while the area between Cl' C, and C gets triangulated at the same time.

2

Let C1 and C2 be available as stacks C1' e eey ck and dl' ey dl. Beginning

with j=k and i=1, let there be a cursor 11 on cj and a cursor 12 on di. Unless

j-1
always possible to draw either triangle c_

anagle (¢, ,c.d.) = 180° (or j=1) &and angle (c.d.d, ,) 2 180o (or i=1), it is
J 1 JiTi+l

. {th
1cjdi or triangle deidi+1 without

creating intersections, as an analysis of all conceivable local situations

(b)

(d)

figure 5

(figure 5 a-d) shows. After deciding which one to take, either draw triangle
c, ,c.d. and move 11 backward or draw triangle c.d.d, and move 12 forward.
j-173°1 j i i+t

Slowly the edge cjdi will converge to the tangent of C1 and C2. When the

algorithm stops, we only need to concatenate cl, ey cj and di’ ey dl as

lists to obtain a consistent representation of C.
The run-time of the algorithm clearly is proportional to the number of
times a cursor moved, i.e., to the number of points removed from C, and C

2
to obtain C.

Note that the lemma is valid even when p1=t=qm. The notion of a lower convex

hull is voided in this case, but the algorithm yet triangulates the simple

region enclosed by the arc C, from t to P the edge pnq1 and the arc C

1
from q1 back to t correctly in linear time.

2

In the situation of lemma 2 the points of C1 and C2,

sector with tip t and angle al + 02, need not form a reducible segment.

Using the lower convexity of C1 and C2 enabled us to save time in computing

when viewed in the

the combined lower convex hull. It carries through when we add another

adjacent segment to it and so on (figure 6).

figure 6

Theorem A. Let S1 to Sk be reducible segments in neighboring sectors with
the same tip t and angles Gl to ak, such that Si is adjacent to Si+1

(1 £ i < k) and Gl + ...+ ak < 1800. The lower convex hull C of 51 u..u Sk

can be constructed in linear time, while the area between C and S1 to Sk

(with the joining edges) gets triangulated at the same time.

First compute the lower convex hulls (as lists of points) of each of the
segments separately. Next combine the segments one after another, using the

technique of lemma 2. After the combined lower convex hull of sectors S1 to

Si has been computed, the addition of S. to it takes a number of steps

i+1
proportional to the number of points that now get eliminated from the contour.

It follows that the total run-time remains linear. The desired triangulation

is obtained at no extra charge, as the algorithm proceeds.

Again, theorem A remains valid even when the "first" point of S, and/or the

1

"last" point of Sk coincide with t.

We need some more tools, to cover other ways of combining (reducible)
segments. Two neighboring segments pl, ey pn and ql, ey qm with the

same tip t and al = a2 = 180° are said to be adjacent (figure 7) when either

pn = q1 or the rays emanating from pn and q1 coincide and, in addition,

either qm = p, or the rays emanating from them coincide (effectively creating

figure 7

an edge joining 9, and 1< without intersections).

Lemma 3. Let 01 = a2 = 1800. Assuming the lower convex hulls C1 and C2

of the adjacent segments Pyr veey pn and ql, ey qm have been formed, the

area enclosed by Cl' C? and the edges pnq1 and qmp1 can be triangulated

in linear time.

Let C1 and C2 be available as stacks cl, e ey ck and dl' ey dl respec-
tively. Essentially the same algorithm as in lemma 2 applies, using cursors
™ (starting at ck=pn) and 12 (starting at d1
is at dj, then the crucial observation is again that by the concavity of

=q,) . If T is at c, and T2

the two contours one can always draw the triangle c,_ cidj and move 11

1

backward or draw the triangle cidﬁdj+1 and move 12 forward (and it takes

only 0(1) time to decide which one creates no intersections). The algorithm
keeps triangulating from right to left until the cursors eventually hit the

end of their lists (clzp1 for 11 and dl=q” for 12). The run-time clearly
1

is proportional to the combined size of Cl and C2.

Next consider three segments Sl' S2 and 83 in neighboring segments with

L a2 and 03 with Gl + a2 + 03 = 360°° Assume the

segments are adjacent in this order, in the sense that S3 is again adjacent

the same tip t and angles «

figure 8

to S1 (figure 8).

Theorem B. Let S1 to S, be segments in neighboring sectors with the same

3
. o a . .
tip t and angles 1 to 37 such thzt Si is adjacent to Si(mod 3)+1
(1 <1 < 3) and al + az + 03 = 360 . After the lower convex hulls Cl' C2
and C3 of the segments have been formed, it takes only a linear number of

additional steps to triangulate the area enclosed by C C, and C3 and the

1’ 72

joining edges (pnql, qmr1 and Py in figure 8)

Let g (see figure 8) be the extension of the half-line separating S1

and 52. Without loss of generality we may assume that 01 < 180° and

a2 < 1800, so g cuts through S3 in a nontrivial manner. Let the lower convex

convex hull C3 of S3 be available as a list c1, e ey Ck' The algorithm is

3° The following cases can

occur (we leave it to the reader to verify that the intersection of g and

simple, but depends on the way g intersects C

C3 can be computed in O(k) steps and that the cases are likewise easily

distinguished) :

Case I.

Let Sa be the segment ¢ be the segment c, to ¢, . By lemma 2

1 b i+l k

the lower convex hull of the adjacent segments C1 and Sb can be computed

in linear time, as can the lower convex hull of the adjacent segments Sa

to ci and S

and C?. Lemma 3 enables us to finish the triangulation of the enclosed

region in another linear number of steps.

Case II.

~

Cy is entirely to the "Sz—side" of g, hence lemma 2 can be used to compute

the lower convex hull of the combined segments C2 and C3. By lemma 3 another

linear number of steps suffices to triangulate the area between the resulting

contour and Cl'

ggse I1I.

This is analogous to case II and dealt with similarly, by first combining

C] and Cj.

Case 1IV.
\
\
\ 52
51 Va
o t
e
| Y
/
/ “Civ1
c. ¢
i/

The reader may verify that one can still run the algorithm of lemma 2 on
C2 and C3 to obtain the combined lower convex hull C' in linear time and
triangulate at the same time. Because C' must lie entirely on the "S_-

side" of the separating line, lemma 3 can be used to triangulate the area

between C' and C1 again.

ggse V.

e
S . .
2 ,,
]
S
s a
//
<y A\g
Let S_ be the segment from ¢, toc ¢, and S, from c, to ¢, . The algorithm
a 1 i b i+l k

to follow is completely similar to the one for case I.

10.

Case VI.

This is symmetric to case V. If we let Sa be the segment from c, to .

1

and S, the usual segment from c, to ¢ then the same algorithm will do.

b +1 k'

3. Triangulating star-shaped and other polygons

Given a simple polygon, its kernel is defined as the set of all points
t in the interior from which all vertices of the polygon are visible. A
(simple) polygon is called star-shaped whenever it has a non-empty kernel.
Consider a star-shaped polygon with some point t in its kernel. Whenever

the angle between three consecutive vertices p' p" and p"' along its contour

is <180° and t is not contained in the triangle p'p"p"' (see figure 9), one
pll
/h\ p'
/ *
mo 4 t
P
figure 9

can draw the triangle p'p"p"' without intersecting edges of the polygon

and "eliminate" p" from the contour, thus reducing the task of triangulating
the given polygon to the same task on a polygon with one vertex less. The
observation fundamental to various triangulation algorithms is that the

resulting smaller polygon still is star-shaped and has the same point t in

its interior.

11.

12.

Consider a star-shaped polygon P. Let its vertices be Pyr eees pn and

assume we know the location of some point t in its kernel. (If no such
point was given, then an algorithm of Lee and Preparata [3] will find one
for us in O(n) time.) We shall present a fairly direct triangulation algo-

rithm for P first.

Theorem C. Star-shaped polygons can be triangulated in linear time.

We shall present an algorithm that (for reasons of explanation only)

consists of four stages.

Stage 1
Maintain a list (a stack) co, cl, ... (initially containing Py and p2)
and have a cursor visit p3, p4, ... in this order. The computation we do

is very similar to that of lemma 1, but is carried through a little further.

Suppose the stack is co, Cyr «--s C, as the cursor gets to pi. Then repeat

o
i >
if angle (Cj—lcjpi) 2 180 then
begin c. := p.; move cursor forward end
—==— Tj+1 i —_—
else if t not within triangle C'—lcjpi then
begin output triangle cj—lcjpi; pop cj end

else

stop.

Thus, each time we advance the cursor to a next pi we draw as many triangles
to previous points as possible, until t gets in the way. It should be obvious

that this can go on until the cursor moves to the first p. across the line
i

plt (see figure 10). After drawing some more triangles perhaps, the algorithm

(or rather, this stage of it) will stop with some list cO = pl, cl, ceey cj.
Note that it represents the lower convex hull of p1 to pi-l' with the part

“o P

figure 10

13.

beyond the line cjpi cut off. The area enclosed by the contour from p1 to

pj and the curve cO, ey Cj' pi will have been triangulated completely

at this time.

Stage 2

Continue and carry out the algorithm of stage 1 on the contour c ., pi,

o) The algorithm will compute the lower convex hull (viewed from the

i+1’

line cjt) as far as it can while disseminating triangles, until t stands
in the way for drawing the next triangle (figure 11). As before, the algo-

rithm will stop just after the cursor moves across the line c.t to pl.

figure 11

After drawing the triangles it could (while popping the stack), the next

triangle the algorithm inspects must contain t. Observe that this triangle

must have one vertex across the line cot from Py (see figure 11). There is

only one vertex of the contour cj, pi, ... this can be, namely Cj' It follows

that the stack maintained by the algorithm during stage 2 must have popped
all the way to the bottom and contain just cj and some P - The entire contour
up to Py is "behind" cjpkpl. (It is possible that pl=pi(=co) but the cursor

cannot have moved further).

Stage 3

Now carry out the same algorithm again on the contour Pyr ---r P c

n’ 0’

-y cj. Clearly one may omit the test whether a triangle contains t at this
stage and the algorithm becomes identical to that of lemma 1. Because Py

. cj (viewed in the sector with tip t and bounding line cjt) is a reducible

segment (!), the algorithm even has the same effect and computes the lower

convex hull of the contour (see.} in figure 12).

figure 12

Stage 4
Finish the triangulation by drawing edges from P, to all nodes between

Py and cj on the concave contour resulting from the previous stage (see

AN

figure 13
figure 13). The edges will not cause intersections, as is easily seen.

It is interesting to observe that the edges drawn in stage 4 will all pass

t "to the left". This is so because the line pkcj 1 passed t to the left
(as picj_1 did) and all other edges must be further to the left of it.

Hence we could have put stages 3 and 4 together and run the algorithm of

stage 1 on the contour P Pir ooy cj. By the time the algorithm stops,

the triangulation must be complete, with t contained in the Ffinal triangle.
All steps of the algorithm can be charged to a point, either because

the cursor moved by it or because it got eliminated from the contour. As

14.

rno point will be charged more than a constant, the algorithm's total running

time is linear.

The (three-stage) "swing-around" algorithm of theorem C can be modified

in several ways. For example, instead of fixing a bottom of the stack (such

15.

as CO:pl)' one might allow it to grow "backward", as long as triangles
with preceding vertices can still be drawn without running into t. Whenever
the algorithm gets stuck on such a triangle (or when it cannot draw any
other triangle at all), move the cursor forward and continue. Assume the

points of the star-shaped polygon are stored in a doubly-linked, circular

list L. The algorithm would become

p := an arbitrary starting point;

#L := n;

while #L > 3 do

begin
a := NEXT(p) ;
b := PREV(p);

if angle (a p b) > 180° then
p := a
else if t not contained in triangle a p b then

output triangle a p b;

PREV(a) := b;
NEXT (b) := a;
#1, := #L-1;
p :=b
end
else
p := a

end;

output triangle NEXT(p), p, PREV(p).

There is yet another way to look at the triangulation problem for star-

shaped polygons. Draw the line plt (see figure 14). As P is star-shaped,

the line will intersect P in only one other point, say, on the edge pipi+

1

figure 14

lo.

(If plt intersects the contour exactly in a vertex, then the following

discussion carries through as well.) Let S1 and 82 be the segments from

Py to 12 and from Piq to P respectively. Note that S1 and 52 are reducible

segments, by the general character of star-shaped polygons! It follows that

we could first compute the lower convex hulls of s1 and 82 (separately) as

in lemma ! and next apply lemma 3 to complete the triangulation of the en-
closed region. Observing that the intersection of plt with P can be computed
in 0(n) steps (just walk around the contour and see when plt is crossed),

we get yet another linear time algorithm to triangulate P. This can be gene-

ralized as follows.

Definition. A (simple) polygon is said to be reducible whenever it is

composed of a (finite) number of reducible segments S1 to Sk in neighboring

sectors around the same tip t of angles Gl to ak, such that o, + ©

“ee o =
+ K 360

) . < i< .
and Si is adjacent to Si(mod K)+1 (1 i k)

Figure 15 shows the idea of reducible polygons. Note that we do not require

figure 15

k to be bounded by a constant, although it will always be bounded by n.

The following result generalizes theorem C.

Theorem D. Reducible polygons can be triangulated in linear time.

Let a reducible polygon be given in terms of its adjacent, reducible

seqgments S1 to Sk' If k=2, then al = a2 = 180o and the theorem follows by

epplying lemma 1 to S1 and 82, and lemma 3 to the result of it. Hence assume
o

that k = 3. As & + ... + o = 360" but each individual & is <180°, there

must be two indices 1 < i < j € k such that

17.

o, + ... + o, < 180O
1 i
o, + ... +a, < 180O
i+l j o
<
aj+1 + ... + ak < 180

These indices are easily found in O(k) steps, by running up largest possible

o
sums <180 in one sweep over the Q's. Theorem A enables us to compute the

1" 72 3 1 i+l
Sj+1 u .. u Sk’ respectively, in linear time, while triangulating the region

lower convex hulls C C.and C, of 5, U .. U Si' S u... U Sj and

beyond the boundaries along with it. By theorem B the region within the

tourdaries can be triangulated in another linear number of steps.

Star-shaped polygons are a simple subclass of the reducible polygons.
While they are easily recognized (cf. [3]), no efficient algorithm is known

to test whether a given polygorn is reducible.

4. References

[1] Garey, M.R., D.S. Johnson, F.P. Preparata and R.E. Tarjan, Triangulating

a simple polygon, Inf. Proc. Lett. 7 (1978) 175-179.

[2] Graham, R.L., An efficient algorithm for determining the convex hull

of a finite planar set, Inf. Proc. Lett. 1 (1972) 132-133.

[3] Lee, D.T. and F.P. Preparata, An optimal algorithm for finding the
kernel of a polygon, J. ACM 26 (1979) 415-421.

[4] shamos, M.I., Computational geometry, Ph.D. Thesis, Yale University,
1978 (to be published).

