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EFFICIENT RECOGNITION OF RATIONAL RELATIONS

Jan van Leeuwen* and Maurice Nivat**

Abstract. Let R be a k-ary rational relation over a fixed size alphabet.

We show that elements of R can be recognized in O(nk/loc_;k'1 n) steps on a

random access machine.

1. Introduction.

Let R E;ZT X ... X Zi (k 2 2) be a rational relation. The easiest way to
comprehend R is to view it as the set of accepted tuples of inputs of a
k-tape nondeterministic finite-state acceptor A with &-moves. In this paper

we consider the complexity of deciding whether tuples <u ceer U

’
€ ZT X +o. X Z; belong to R, using a deterministic compuiing devite.

While known to automata theorists for'years, rational relations have
recently become of interest in the study of parallel processes (cf. Nivat
[2]). Consider k processes A1 to Ak and view each process as a nondeterministic
finite state machine. The possible "behaviours" of process Ai (strings of
actions from a finite repertoire Zi) will form a rational set Ri which des-
cribes how Ai can function. When processes A1 to Ak cooperate in one system,
the necessary synchronization among them is likely to eliminate many tuples
<u1, ey uk> € R1 X ... X Rk as admissible behaviours. To describe the set
R of possible behaviours, given a particular synchronization mechanism, one
can usually distinguish a rational set K< A* and homomorphisms @, : A*-»ZI

(1 £ i £ k) such that

]

R=R X ...x Rkﬂ {<(.p1(v), cens q)k(v)>| v € K}

This makes R into a rational relation and it is not hard to see that every
rational relation can be so characterized.
Rather than recognizing R directly, we will introduce in section 2 a

very special type of relations (called discrete finite-state transductions)

from which all rational relations can easily be obtained. In section 3 we
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present a fairly standard tabular technique to recognize discrete k-ary
. , k ) . X
finite-state transductions in O(n ) steps on a random access machine with

unit cost per instruction (cf. Aho, Hopcroft and Ullman [1]). In section 4
1

we improve this to an O(nk/logk'I n) algorithm. A simple application is that

for strings u,, u, and w over a fixed size alphabet with |u1|,|u2| < lwl =n,
2
one can determine in 0(12g n) steps whether v is a shuffle of u1 and u2.

2. Discrete finite-state transductions.

In addition to its usual one-way input tapes (tapes 1 to k), a finite-state
transducer has a one-way write-only output tape (tape 0) as well. Finite

control contains instructions of the form

b 3
[p, IR RRY ak] = [q, w] (ai € Zi U{ e}, wea*®

which indicate that the transducer, when in state p, can read symbols a; (or ¢€)
from tape i (while moving the input heads accordingly), print w on tape 0 and

go to state g. Throughout this paper we only consider nondeterministic trans-

ducers.

Definition. R-E.ZT X ... X Z; x A¥ is called a finite-state transduction if
and only if there exists a finite-state transducer A such that

<u1, e Uy w> € R just when on inputs u, to u_ on tapes 1 to k, A can

1 k
print w on tape 0 and finish in an accepting state, with the input heads

running off the right end of the input tapes.

Finite-state transductions obviously are rational relations. A "discrete"
transducer will move just one input head over a square per instruction and

prints a single symbol rather than a "word" of output every time.

Defintion. A finite-state transducer A is called discrete if and only if

in all of its instructions [p, a., ..., ak] = [gq, w] (i) precisely one of

1’
the a; is non-¢ and (ii) lwl| = 1.

The transductions defined by discrete finite-state transducers will be called

discrete finite-state transductions. For example, S = {<u1, u,, w>l w is a

2

shuffle of u, and u2} C I* x I¥ x I* is a discrete finite-state transduction

of arity 2.

Definition. The companion of a k-ary string-relation R.S_ZT SR Z; is the

n1+.-.+nk _
1 ! @ > | Uy e w> € R and |ui| =n; for

1$isk}§_Z’i‘X...xZ]"<‘xa*.

relation R = {<u



-

Proposition 2.1. R is a rational relation if and only if its companion R is

a discrete finite-state transduction.

The "if" part should be obvious. To prove the "only if" part, let R
be a rational relation and let A be a k-tape nondeterministic finite-state

acceptor for R with instruction set I. For each state p define
roLLOW(p) = {p} U {ql [p, &, ..., €] » q is in I}
Regardless of what A's initial state is, transform I as follows:

(i) add [P, a,s .-, ak] =» q for every instruction [¥, a,, ..., ak]

1!
=» q in I with at least one a; non-£ and r € FOLLOW(p),

1'

(ii) add every p which has an accepting state in its FOLLOW set to
the set of accepting states,
(iii) drop the instructions [p, &, ..., €]= ..., with all inputs ¢,

from I.

It is obvious that A still accepts the same relation, but its pure &-moves

have been eliminated. If A isn't discrete yet, then it must contain an

instruction

[P, seoy ai' ce ey ajr '~-]”q

with both an a; and an aj (1 # j) non-¢. It can be eliminated by introducing

a "new" state gnew and replacing the instruction by the pair

p, ..., ajs -eer ...] =» gnew

[gnew, ..., €, ..., aj, B e

Repeating this yields an instruction set for A that has precisely one ai
non-£ in every instruction [p, ayr cees ak] = g it contains. Printing an "a"
with every such instruction makes A into a discrete finite-state transducer

for R. O

Proposition 2.1. shows that for recognizing rational relations we may

restrict attention to the more well-behaved discrete finite-state transductions.

3. A tabular recognition method for discrete finite-state transductions.

Let R < ZT X ... X Z; x A¥ be a discrete finite-state transduction and

A a fair transducer for R. To recognize whether <u , w> belongs to

17 e Uy
R one may proceed as follows. Let Iuil =n, (1 £i=<k) and lwl =n = n, +
+ ...+ n We may assume without loss of generality that n, > 0 for all i.
(Otherwise we could do the procedure below as if A had fewer input tapes and

obtain a better time-bound.)



Design a k-dimensional table T = {(il' cess ik)l 0=<i, £n, for
1 £ j £ k} and think of the jth coordinate axis as the set of possible
positions of the jth input head on uy = uj[1] ... u.[nj]. No special
coordinate axis is required for w, because in discrete transductions the
position of the write-head on the output-tape is always equal to the sum
of the number of symbols read on the joint input tapes! Table entries will
be referred to as T(il’ ey ik) and will contain finite sets of transducer

states. More precisely we demand that

q€ T(i,, ..., i )®A can reach position i, on tape j for
1 k 3
1 £ j £k in state q, while the output

produced is w[1] ... w[i1+...+ik]

To "fill" a table or a table-entry will mean to fill it according to this
characterisation. T(0, ..., 0) will contain just the initial state of A

and <u1, seer Uy w> € R if and only if T(nl, ..:, nk) contains an accepting

state.

Lemma 3.1. A table-entry T(il' ey ik) can be filled once we know the

contents of T(ilil, i2, ceey ik), T(il' 1241, ey ik), .o, and

T(il' i2, ooy ikél).

The result is trivial when all ij (1 £ j £ k) are zero. Assume ij 21
for at least one j. To reach positions i1 to ik on the input tapes, a
discrete finite-state transducer must have made its last move with one of

the input-heads (say, the jth) going from square ij—l to square ij' Hence

q€T(i,, ..., i,) ® there is a j (1 £ j £k) with i, 21 and a
1 k J
p € T(il’ .eoy ij—l, ceey ik) such that
[p, &, ..., s e e] =» [q, b] is in T,

a. =u,li.] and b = wli, +...+1 ].
5 J[ J] [ 1 k]

The result follows. O

With any ordinary address calculation scheme it takes O(k) to compute

the address of T(il' ecey ik) but only O(1l) more steps to get the address

of each T(il' ceer ij-l, ceey ik) from it. Thus T(il' ooy ik) can be filled
in O(k) steps, where the constant of proportionality depends only on the

size of I. We conclude:

Lemma 3.2. T(il’ ceay ik) can be filled in O(k) steps once its low-end

neighbors in table T are filled.



The lemma is instrumental in obtaining an efficient algorithm to fill T.

For k = 1 an immediate "one sweep" computation will do. Proceeding inductively,
we can fill T(X, ..., ¥) by filling the slice T(0, %, ..., %) first as if it
were a (k-1)-dimensional table, followed by filling T(1, *, ..., ¥) and so

on until, in a final round, T(nl, X, ..., X) gets filled. The algorithm will
visit all table-entries precisely once, spends only O(1) in organisational
overhead per entry and whenever an entry is visited, it knows that (due to

the recursive set-up) all low-end neighbors are available.

Theorem 3.3. Given a discrete finite-state transduction R, one can decide
k
whether <u1, ceer uk, w> belongs to R in O(k.T (ni+1)) = O(nk) steps on a

random access machine.

Implement the above algorithm. By lemma 3.2. it takes 0O(k) steps to fill

k
an entry and the algorithm visits all ? (ni+1) entries of T precisely once. O
With 2.1. we can immediately conclude

Corollary 3.4. One can recognize elements of k-ary rational relations in

k
only O(n) steps on a random access machine.

Observe in the given algorithm that to fill T(i+l1, %, ..., %) one
only needs to have T(i, ¥, ..., %) in storage. Thus, with a proper organisation,
only O(nk_l) memory—-cells need to be in use at any one time. We will see a

different table-filling technique next.

4. saving time in recognizing discrete finite-state transductions.

The remainder of this paper relies on the assumption that we can bound
the size of tape-alphabets by a fixed constant ¢. We have noted that the
contents of an entry T(il’ ceny ik) is completely determined by the contents
of its low=-end neighbors and by w[il+"'+ik]' Since the number of configurations
of this type is bounded, T will contain many identical entries just because
their environment is identical. Pushing this to a logical extreme, we can
divide T into bloéks of some size and claim that T must have many identical
blocks just because these blocks have identical environments.

Let d,, ..., @&

i k
d = d1 + ... + dk. We shall not fix a particular choice for the integers dj

be non-zero integers with dj < nj (1 £ 3 £ k) and let

until the proof of theorem 4.5. A block is any sub-table of T with indices



restricted to a set of the form
v o+ {(il, ceey ik)l 0 < ij < dj for 1 £ j < k}

, where v is a nonnegative displacement vector. We shall always identify a

block and its set of indices in T. Every block as given has k low-end faces

LS (1 £ s £ k), which are the sub-blocks defined by

L

) . .o < < .
g=V {(11, cees 1k)| i, =0and 0 < i, < dj for j # s}

, and likewise it has k high-end faces Hs (1 £ s £ k) which are the sub-

blocks defined by

= L Lo L < :
H, = v + (g, , i )l i, =d_and 0% i dj for j # s}

While a block has ﬁ(d +1) = O(dk) entries, its low-end faces (and likewise,
its high-end faces) only have Zd .o 7; .o dk = O(dk_l) entries. Consider
a block embedded in T.

Lemma 4.1. The contents of a block (and thus the contents of its high-end
k
faces) can be computed in O(k'T(dj+1)) = O(dk) steps, once the contents of

its low-end faces and the appropriate portions of u1 to U and w are known.

This is 3.2. in a different guise. It is ebvious for k = 1. Proceeding
inductively, we can f£ill the block by filling the subsets v + {(il' ceey ik)l
| i1 = )X and O <€ ij < dj for 2 £ j £ k} for A from O to dl' in that order,
as if it were (k-1)-dimensional blocks. The algorithm visits every entry
of the block once, spends O(k) per entry and {hence) finishes within

k
O(k.T(dj+1)) steps. O

Once we have computed a block it will take only O(dk-l) steps to shift the

contents of its high—~end faces by a certain displacement to any other place

where a block occurs with the same environment and there is no need to really

compute the entire block over again. We shall see in a moment that this is
sufficient for our purposes.

It is tempting to divide T intoc blocks B(tl' cees tk) defined by

ooy = i ooy 1 a, i, < . . £ 3j s
B(t,, t) {(11, lk)| tjdj < i (tj+1)d] for 1 < j < k}

, for 0 < tj < [g%]— 1 (1 £ 3 <€ k). The blocks cover T exactly when dj divides
nj for all j, but include empty entries beyond the bo;der of T whenever there
is a dj not dividing nj (some j). To avoid this impediment to uniformity, we
shall assume that all inputs are extended with a few $-signs on which the

transducer copies and maintains state, just to make nj a proper multiple of



dj for every j. We proceed on the assumption that the B(tl' ey tk) cover
T exactly.

Note that the sth low-end face of a B(tl' cens tk) with ts = 0 is
"svailable" once we have all entries T(¥, ..., 0, ..., ¥) in store, with

a "O" in at least one coordinate position. For the remaining faces and

blocks, the following observation is crucial.

Lemma 4.2. For any s (1 £ s £ k) with ts =2 1, the sth low-end face of
B(tl' ooy tk) precisely coincides with the sth high~end face of
B(tl' ey ts—l, e tk).

The high-end face Hs of B(tl, ceey ts—l, ceer tk) covers the indices in
the set

(t dl' e (ts-l)ds, ey tkdk) + {(11, ooy 1k)| i, = ds and
i

L < . , .
5 < dj for j # s} = (tldl, .ens tsds, eees tkdk) + {(11, veer lk)l

| i = 0and 0 < i, €43, for j s}
s 3 3 j#

, which precisely defines the low-end face Ls of B(tl' ceny ts' ...y £ ). O

k

The lemma and the argument preceding it show that it is sufficient to work

with just the faces of the blocks and that we might as well build the sub-

structure consisting only of the faces of the constituent B(tl' cens tk) of
T. After all, we are not interested in the contents of every single entry of

T but just in T(nl, ey nk) and this entry lies exactly in the outermost

- n
position on the high-end faces of B\a% -1, ..., 5; -1).

Use the following algorithm to £ill T. First fill T(O, X,

e ¥),

T(x, 0, X, ..., %) and so on up to T(%X, ..., X, 0) as if it were (k-1)-dimen-
sional tables, using the method of section 3. Next "fill" the blocks

B(tl' ceey tk) in an order determined by the enumeration of all applicable
tuples (tl' ceey tk) with "rightmost coordinates varying fastest". In this

way we achieve that whenever a next block must be filled its low-end faces

are available. Observe also that we do not need the interior of blocks anymore,

as only their high-end faces are of interest for later computations. Let
1

D = ﬁd E = Ed ;{ a4, = (=— + + JLéD and let A have Q states
ay 23y eee Fg e g a cee a .
The computation of each block can be viewed as mapping the relevant
sections of dj symbols from uj (1 £ 3 £ k) and 4 symbols from w and the
contents of the appropriate low-end faces (a list of E symbols alltogether)
to a list (of again E symbols long) representing the contents of the high-end

faces. Time can be saved if we precompute this mapping and fill T by table



look-up. A convenient way to represent the mapping is to build a tree TR
with labeled edges, such that lists of symbols leading to leaves read as
arguments and associated pointers refer to mapped values (length E lists).

24

. E
Lemma 4.3. TR can be constructed in O(k.o .Q .D) steps on a random access

machine.

_____ a a ) v
There are ¢ 1 ee. 0 XK, cd.QE =g d.QE possible arguments that must be

entered, using standard enumerations of faces. It takes about 2d + E = O(E)
steps to lay out a single argument so the block-filling method of section 3
may be applied. It takes O(k.D) to fill the bldck (compare 3.3.) and another
2d + E + O(E) steps to actually enter the argument and the resulting high-
end faces as a value. Thus we spend about 2d+ E+ O(kD) + 2d+ E+ O(E) = O(kD)

steps for each argument. O

. A more practical method would not list all lists of length dj over Zj into
the arguments, but first compile a inventory of the distinct substrings
pj[tdj+1] ...4uj[(t+1)dj] there actually are. It éhows thag our estimates
are crude especially when [nj/dj] is "small" compared to ¢ j. This applies
to the exhaustive consideration of all possible fillings of low-end faces

as well, but here no apparent saving can be made. In general one should list
arguments as soon as they come up in the computation but no sooner, to avoid

unnecessary work. Look-ups in TR take 2d + E + E = O(E) steps.

Lemma 4.4. Once TR has been constructed, the contents of T(nl, ooy nk) can

1

. . k- k
be determined in O(kn + E.Urnj/dj]) steps.
i

O(knk-l) steps are needed to fill all entries T(%, ..., 0, ..., X) with
at least one coordinate zero. (Just run the (k-1)-dimensional algorithm of
section 3 k times.) The remainder of the algorithm visits the ﬁrnj/dj] blocks
one after the other and spends a total of O(E) steps per block to determine

the precise argument, do the look-up in TR and read out the contents of the

high-end faces. O

Suppressing constants of proportionality depending on k only, the entire
recognition algorithm takes

24 k-1 1 1 .k
o . n + (51+ cae t Ek) gnl

steps. More precise estimates will depend on knowledge of n1 to nk.

QQD +



Theorem 4.5. Given a discrete finite-state transduction R of arity k 2 2,
1

w> belongs to R in O(nk/logk'1 n) steps

one can decide whether <u1, cesy uk,

on a random access machine (where |w| = n).

-

Extend u, to u, by $-signs to give all strings length n. Take

_ 1 \1/k-1 1/k-1
= (I8§—§§52> .log n and let n be large enough so & 2 4. Hence

2loga < ak-le log n/log 2Q02. Choose d1 = ... = dk =  (rounded) in the
preceding algorithm. It yields a recognition algorithm that takes time
proportional to

k-1
0ZkG.QkO( .ak + nk-l + g_nk .

k-1 1
e (ch)ka .ak + O-(\'xk/logk-1 n) =
1 .
k- ——
~ (ch)k p(k+Dloga O(n /lo -1 n) ~

1
k-1 —
~ (2004)K@ K, k-1 n>

1
en/a+o(p/lok1n>£‘

=0 <"‘k/109’k-—1 n>

QIH
O
~
[
0
Q

Corollary 4.6. Elements of k-ary rational relations can be recognized in
1

k -
O(n /logk 1 n) steps on a random access machine.

5. Final comments.

Rational relations are of interest in automata theory and, more recently,
in describing the synchronisation of processes. The recognition algorithm in

section 3 was obtained thr?ugh a common dynamic programming approach. The

saving of a factor of logk’1 n in recognition time was obtained by economizing
in the construction and eliminating repetitious computations. The technique
as such has been applied before (see e.g. Paterson [3]) and may be of wider
use in complexity studies. Note that the set {<u

1
, and u, } o I* x ©* x I* is an example of a discrete finite-state trans—

P Uy w>| w is a shuffle of
u
duction. Hence shuffles can be recognized in O(n /log n) rather than o(n )
time on a random access machine. No better bound is presently known to us.

As another example, take {<u,, Uyr Uy v> | v is a shuffle of uyr 4, and u,}.

1 3 3
As a discrete finite-state transduction it can be recognized in O(n”/log” n)

steps.
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