A PROCF RULE FOR FAIR TERMINATION OF GUARDED COMMANDS
by
Orna Grlmberg
Nissim Francez

Johann A. Makowsky

Willem P. de Roever

RUU-CS-81-2

January 1981

Rijksuniversiteit Utrecht

Vakgroep informatica

Princetonplein 5
Postbus 80.002

3508 TA Utrecht
Telefoon 030-53 1454
The Netheriands

& vakgroep informatica R.U, Utrecii

Y

~d g

Y .}‘\{

A PROOF RULE FOR FAIR TERMINATION OF GUARDED COMMANDS
by
Orna Grumberg
Nissim Francez

Johann A. Makowsky

Willem P. de Roever

Technical Report RUU-CS-81-2

January 1981

Department of Computer Science
University of Utrecht
P.O. Box 80.002

3508 TA Utrecht, the Netherlands

Please send any questions concerning soundness and completeness
of the rule (i.e. section 3) to Willem P. de Roever, Department
of Computer Science, University of Utrecht, P.O. Box 80.002,
3508 TA Utrecht, the Netherlands.

A PROOF RULE FOR FAIR TERMINATION OF GUARDED COMMANDS*

by

Orna Grimberg 1)
Nissim Francez 1)
Johann A. Makowsky 1)
Willem P. de Roever 2)

27 January 1981, Haifa

Summary: We present a proof rule for fairly terminating guarded commands
based on a wellfoundedness argument. The rule is applied to several
examples, and proved to be sound and complete w.r.t. an operational
semantics of computation trees. The rule is related to another rule
suggested by Pnueli, Stavi, and Lehmann, by showing that the (se-
mantic) completeness of the [PSL]-rule follows from the completeness

of ours'.

Keywords and phrases: Termination, fairness, guarded commands, soundness

and semantic completeness, computation trees, infinitary trees.

CR-categories: 5.24.

Affiliation of authors: 1) Department of Computer Science, Technion, Haifa.

2) Vakgroep Informatica, Rijksuniversiteit Utrecht,

Utrecht.

Preliminary work regarding this problem was carried out while the 2nd
author visited the University of Utrecht, sponsored by a grant from the
Netherlands Organization for the Advancement of Pure Research (Z.W.0.);

the work was completed while the 4th author visited the Technion sponsored

by the Technion; the 2nd author was partly sponsored by an IBM-Israel research
grant. The 3rd author was supported by Swiss National Science Foundation

grant no. 82.820.0.80.

I. Introduction.

The use of well-ordered sets to prove termination of programs originates
from [Floyd] and remained prominent ever since. After the appearance of
nondeterministic and concurrent programming language constructs, the notion
of termination was generalized to the notion of liveness [Lamport], which
also covers properties such as eventual occurrence of events during program
execution. One way of specifying and proving such properties is by applying

temporal reasoning [Francez & Pnuelil]. This may be formalized by using

Temporal Logic [Pnueli], a tool suitable for expressing such eventualities.
Within the framework, one of the more interesting concepts that can be
studied is the concept of fairness [GPSS]. However, application of temporal
reasoning does not appeal to a direct use of well-foundedness arguments, see

e.g. [Lamport & oOwicki]. Recently, there is a revival of the interest in
such direct appeals, see, e.g. [Apt & Plotkin], generalizing arguments
hitherto involving finite nondeterminism to a context of infinite nondeter-
minism, and [PSL], generalizing sequential well-foundedness arguments to
the context of concurrency (using a shared variable model).

A common property of well-foundedness arguments for more complicated types
of termination is the use of higher countably infinite ordinals, which can
be traced back to [Hitchcock & Park], this in contrast to the fact that
for deterministic programs (or programs displaying finite nondeterminism)
natural numbers suffice.

In this paper, we propose a rule for proving fair termination of guarded

loops using well-foundedness arguments, expressed in FGC, a variant of
Dijkstra's guarded commands language, restricted to fair execution sequences.

We chose guarded commands [Dijkstral] since it is relatively well-known
and simple, has a natural extension to the language Communicating Sequential
Processes - CSP [Hoare], and the proof-rule proposed in this paper extends
equally naturally to CSP. This extension is the subject of a companion
paper.

The ideas in this paper were developed mostly independent of [PSL], in
which a similar situation is dealt with. We shall describe the influence of
[PSL] on our work in the last section.

In section II we briefly describe an informal operational semantics of FGC
programs, introduce the proof rule for fair termination and apply it to several
examples. In section III we present soundness and semantic completeness proofs
of the suggested rule w.r.t. an operational semantics using computation trees.
Section IV ends with a reduction of the semantic completeness of the rule of

[PsL], called method F, to the present one.

II. A proof rule for fair termination

Basic notions and definitions

We consider the language FGC, which has the same syntax as "ordinary"

guarded commands. Thus:

<statement> = <assignment statement> | <composition>

<skip> | <selection> | <repetition>

<assignment statement> !l= <variable> := <expression>

<composition> L= <statement>; <statement>

<skip> = skip

<selection> = [<boolean-expression> - <statement>
{0

<boolean-~expression> - <statement>}*

<repetition> *<selection>

Boolean expressions are also called guards.

The semantics of FGC programs, however, differs from the usual semantics

in that only fair execution sequences are considered.

We follow the usual definition of a computation sequence T: EO 51 ey

where all Ei's denote states (mappings from variables to values).

In the sequel we consider programs of the form of repetitions
ook
o [Bl—>c1[|... []Bn—>cn],

also abbreviated to *[[B, » C
. i
i€{1,...,n}

Ci is enabled in & iff Bi(g) holds.

.
i

Definition 1. An execution sequence T of C is fair iff it is finite, or
it is infinite and for every 1 € i < n, if Ci is infinitely
often enabled along w, it is also infinitely often chosen
along mw.

2. C is fairly terminating iff all its infinite execution

sequences are not fair, i.e., unfair.

Thus, a fairly terminating program has finite computation sequences (terminating
computations), and unfair infinite computation sequences, which are excluded

by the FGC semantics, but may not have infinite fair computation sequences.

Actually, for a given initial state £, we consider the tree of all

possible fairly terminating computation sequences, T In case of a repetition,

£

*[B1 > C, 0... 0 B - Cn], a state(a node) in T_ has subtrees for every

3

i, 1 £1i £ n s.t. B.(n) holds. Observe that TE contains finite and unfair in-
1

finite computation paths.

Our goal is to characterize deductively the class of all fairly terminating
FGC programs. The characterization suggested does carry over directly to con-
current programs with shared variables; a companion paper [Francez & de Roever]

extends it to CSP.

We use the notation <r> C <g> to express that C fairly terminates in all

initial states satisfying r, and that q holds upon termination.

The intuition behind the suggested proof rule is as follows:
For an always terminating nondeterministic program, there exists a well-
founded quantity which decreases along every computation sequence i.e.,
along every direction in the computation tree.
Now, let us choose the directions along which a certain well-founded quantity
decreases, taking care that these directions (certain moves Ci) are always
eventually enabled, until they are taken. Let the other directions be non-~
increasing. Then by the fairness assumption eventually a decreasing move
has to accur. Thus all fair computation sequences are guaranteed to be

finite.

The proof rule

Choose a well-ordered set (W,<) (without loss of generality we can assume
that W is an initial sequence of the countable ordinals, as shown by the

completeness proof). Also choose a predicate

p : W [states » {EEESJ falsell], assigning a truth value to every
pair (w,&).
For each w € W, w > 0 (or, in general, any non-minimal element in W) choose
a partition Dw, Sw of {1,...,n}, with Dw # # (-D stands for decreasing, S
for steady).

Let the following clauses hold:

1 <p{w) Aw>0AB, >C. < 3Jv w.p(v)>, for all § € D
) o<p # 3 3 3 WPV J w'

2) <pw) Aw>O0AB, >C. <3v < w.p(v)>, for all i € s
i i W

’

3) <p(w) A w ; 0>x [I B, A7lv B, »cC.] <true>
i€s, ~ jep

4) p) > A B, w> 0 A Dplw > o B,, r > 3v.p(v)
i=1 i=1

Then we conclude
<r> C <p(0)>,

i.e., repetition C fairly terminates.

Explanation

ad 1) This clause guarantees that along every direction in Dw' if it is
enabled and taken, then there is a decrease in the well-ordering.
(Note again that we use a unique minimal element, denoted by 0, to

keep the notation simple.) Note also that at least one decreasing

direction is required.

ad 2) This clause guarantees that along every direction in Sw, if enabled
and taken, there is no increase in the well-ordering. Thus, an infinite
computation proceeding along Sw directions only, and not decreasing,
is possible. We have to assume that such a sequence is unfair. Whence

clause 3).

ad 3) This clause imposes a recursive application of the rule to an auxiliary
program Cw' and hence requires a subproof. Cw terminates because of
one of two reasons:
a) A_'IBi is true, hence no Sw move is possible, and only Dw—moves
i€s
w
are left.

b) For some j € Dw’ Bj is true, i.e., a Dw—move is enabled.

Hence, this clause guarantees that along infinite Sw—computations,
Dw—moves are infinitely often enabled, that is, such computations
are unfair.

By convention, c, = skip if s = @.

ad 4) This clause guarantees that the program terminates only when reaching

a minimal element of (W,<).

Remarks 1. Without clause 3), our rule is complete for programs terminating
under the weaker assumption that each of their computation
sequences satisfies the following property: either it is finite or
every guard is infinitely often tried. This is discussed in section

Iv.

2. If we take Sw = @ (and hence Dw = {1,...,n}) for all w € W, the
rule reduces to the termination rule for the usual (non-fair)

semantics of GC (see, e.g., [Harell).

3. In proving clauses (1) - (4) of the rule, application of the

usual rules (for assignment, etc.) is presupposed.

Examples

Ex. 1. First, consider Dijkstra's example for a random generator of natural
numbers [Dijkstral; this is a possibly non-terminating program, its only
infinite computation sequence being unfair. Since this sequence is ruled

out by our semantics, the program terminates fairly.

C i x :=0; b := true;
¥b»>x :=x + 1

b - b := false
We prove <true> C <true>.

Choose as well-ordering {0,1} with 0 < 1, as S1 = {1}, D1 = {2}, and as

ranking predicate p(w) (x,b) DEF (w=12Db) A (w=0>1b).
As to clause 1) : b changes from true to false upon move b := false, and

hence w drops from 1 to O.
As to clause 2) : b remains true under x := x + 1, and p(w) is independent
of x, so w stays 1.
As to clause 3) : C1 2 *¥[b ATlb » ...] obviously terminates.
Ex. 2. In ex. 1, a D-move is always enabled (; in the terminology of [PSL],
that program is impartial). Next, consider a program, in which D-moves are

only eventually enabled, and clause 3) is less trivially satisfied.

C &I b := true; c := true;
¥[b»c :=lc
0bAc-Db := false

]

Again we prove <true> C <true>.

Choose W, p, Sl’ D1 as above. The difference lies in clause 3), with auxiliary

program:
cy - *[b ATl1(b A ¢) » ¢ :=TTc], which terminates after one step at most.
This example is still trivial, but it should give the reader a feeling
for the spirit of the rule, which captures eventual enabling of a D-move

by means of a proof of termination of the auxiliary program.

Ex. 3. Next, we show that the natural numbers IN are not sufficient for fair
termination proofs, since there is no bound on the length of finite compu-

tations.

Let x, y, 2 range over IN.

C ' x :=0; y :=0;
¥[x =0->y:i=y+ 1 [Ix=0-x:=1
0x#0Ay #0-oy:i=y-10x20Ay#0->2z :=2z +1
1.

To prove <true> C <true>, choose W

NU o,

pw)(x, v, 2) = W=022D2x=0) A (Wfgmoe=>2x#0AY =w),

S, = {1,3,4}, D_= {21, Sn = {1,2,4}, Dn = {3}. For clause 3) we get as

auxiliary programs:

C “*¥[x=0A%x#0->...

(e o]
DX#O/\Y%O—)Y =y—-1
Ox#0Ay#0->2 :=2 + 1

1.

c T *x=0-...0x

n

0= ... 0x#0AyYy#0Al(x#0Ay #0 - ...].

To prove <p(n) A n ; 0 >E_§Cn <true> is trivial since p(n) D x # 0,

and hence Cn terminates immediately.

To prove <x = 0> C_ <true>, choose W' = N, and let Sé = {1,3}, D = {21,

n EN, and p(n)(x, v, 2) =y =n A x # 0.

Note that the alternatives are renumbered.

~ Clause 1) is satisfied since y := y - 1 decreases y, and clause 2) is
satisfied since p(n) is independent of z. As to clause 3), we again construct

an auxiliary program, C ’
«J,n

C T lx=0Ax#£0-> ... 0x#0AVY#0ATx#A0OAY #0) - ...1,

oo,n

which trivially terminates.

Finally, consider the following program:

Ciy:=1; b := true;
¥[boy =y + 1
0 b A prime(y) A prime(y + 2) » b := false.

]

This program fairly terminates iff the conjecture that there exist infinitely

many "twin" primes is true.

ITI. Soundness and semantic completeness

In this section we prove the soundness of the suggested proof rule w.r.t.
the semantics of computation trees consisting of fairly terminating sequences,
and its semantic completeness. We shall not deal in this paper with the
specification language needed to express p(w) and the partitions, an issue

dealt with elsewhere (by the fourth author).

a. Soundness _

We have to prove that if all premises of the rule hold, so does its con-
clusion.

Assume that for program C we found a well-ordered set (W,<), a partition
Sw, Dw for each w > 0 s.t. Dw # #, and a predicate p, satisfying clauses 1) - 4)
of the rule.

Assume by way of contradiction that for some state EO' TgO contains an
infinite fair path <£i>£:o
<di>£:b' It cannot contain an infinite subsequence <dij>.°° of D-moves, since

3=0
by clause 1) this would imply the existence of an infinite decreasing sequence

. Consider the corresponding sequence of moves

of elements in W, contradicting W's well-foundedness. Thus, from some k onwards
p(w, £k) holds, and all moves dj for j > k are Sw-moves (by clause 2)). By
clause 3) there is some 4 € Dw which is infinitely often enabled and not taken,

contradicting the assumption that <£i>£§o is fair.

b. Completeness

This is the harder part. Assume <r> C <g> holds. Then we have to find a
well-ordered set (W,<), partitions Sw' Dw for each w > 0 s.t. Dw £ @, and a

predicate p (given by a collection of pairs (w, £)) such that clauses 1) - 4)

hold.

Since all we "have at hand” is the computation tree, we have to derive
everything needed from that tree (compare also [de Roever] for another well-
foundedness argument based on the "operational" object ~ the computation

stack, for nondeterministic recursive procedures) .

We are given that the computation tree Tgo, for every state £O satisfying
r, is either well-founded, or contains at least one infinite, hence unfair,
computation sequence.

The basic idea is to construct another (possibly infinitely wide) tree
ng, some of whose nodes are obtained by collapsing certain infinite families
of nodes in TEO' all lying on unfair sequences originating in nodes £ € T

go’
such that ng is well-founded, i.e., contains finite path's only. Then we use

a standard ranking of TEB by means of ordinals. A move which leaves £ and

remains in the same infinite family belongs to Sw for the corresponding rank.

A move which exits such a family belongs to Dw. Special care must be taken

that these partitions do not depend on EO' the root of the computation tree.

We now present the details of the construction. Let TEO be given.

case a. TEO is well~-founded (; this means that C always terminates in EO).
Choose a ranking of the nodes by means of an initial segment of the
ordinals, ranking leaves by 0, and proceeding inductively level by
level from leaves till root (a standard set-theoretical construction);
furthermore, choose uniformly S, = a, D, = {1,...,n}. It is easy to

verify that clauses 1) - 4) of the rule hold.

case b. Tg contains at least one unfair, hence infinite, computation path .

0
This case is dealt with below.

Definition 1. A computation sequence T is d-unfair (1 £ d £ n) iff along T Cd

was infinitely often enabled, but only finitely often chosen.
2. Let § € Tgo. Define &'s d-cone CONEd(E) as follows:

CONEd(g) = the set of all occurrences of states in Tgo residing
on infinite computation sequences which contain only
finitely many d-moves and which start in §.

(Obviously, all occurrences of states on d-unfair sequences

starting in £ belong to its d-cone.)

Lemma 1. Let £ € TEO' and let n € CONEd(E), for some 1 £ d £ n. Then every
computation sequence leaving CONEd(g), say at node n, is either

finite or contains a d-move.

Proof. Suppose not. Then an infinite path W starts in n, leaves CONEd(g), and
does not contain any d-move. Since n € CONEd(E), there is some finite path m'
joining & to n, along which a d-move was taken at most a finite number of times.
Hence concatenation w!m of W' and W is contained in CONEd(E), contradicting the

assumption that m leaves CONEd(g). Q.E.D.

The situation is described in the following figure, where a triangle denotes

a well-founded tree:

CONEd(E)

Observation: If state £ resides on a d-unfair sequence, then CONEd(E) # 0.

Our candidates for families "to be collapsed" into a node in ng are

such d-cones.

Next we define inductively a hierarchy of d-cones.

Base step. Since by assumption Tgo contains an unfair sequence, fix some
1 < dOS n s.t. there exists a do—unfair sequence in EO, and let CONEdO(EO)
be defined as above. It is not empty by the observation above. We say that

CONEg4 . (£) is at level O.
do

Induction step. Suppose at level i - 1 a d-cone CONEd(gi_l) was defined, and

let ™ be some path leaving CONEd(Ei_l). By lemma 1 either mw is finite, or
there is a d-move on path W resulting in state gi. If wis finite we finish
the construction as far as W is concerned. So assuming state gi as above,

construct CONEd,(gi) at level i, where 4' is determined as follows:

If there is a move d' not appearing in EO cee El cee & e éi, and there

i-1
is an infinite sequence with a finite number of occurrences of d' starting

in éi, choose move 4'.

10.

Otherwise, choose the index of the move which didn't appear longest in
&0 e &i for which there is an infinite sequence containing finitely many

occurrences of that move, starting in Ei.

Thus, when iterating the cone construction, we vary the move-indices

of the cones maximally.

Lemma 2. There does not exist an infinite sequence of cones CONEdi(Ei) s.t.

<€i>ffo is an infinite path of TEO'

Remark. If we describe the construction of cones as in the following figure,

we have by lemma 2 only finite chains of cones.

CONEdO(EO)

CONE (&)

CONEg,, (E,)

Proof. Suppose such an infinite sequence <£i> exists. Then it is unfair by
definition of Tgo. Thus, there is some 1 < d € n s.t. <Ei> is d-unfair. Then
there is an iO s.t. at gio either d did not occur—?n EO ‘e Eio or it
occurred less recently than any other move. Hence d = diO
construction of CONEdiO(EiO), and <£i> would have been contained in CONEdiO(EiO),

in the inductive

contrary to assumption. Q.E.D.

11.

Now we define ng as suggested above. Its nodes are all the nodes in
Tgo not belonging to any cone, and the set of all cones. Its edges are either
edges entering cones, or edges leaving cones, and, otherwise, edges outside

cones. By lemma's 1 and 2, the tree ng is well-founded.

In order to get rid of unwanted Eo-dependence of Sw and Dw as suggested

above, we do one mova construction: combine all ng s.t. r(go) holds into

*
s

one infinitary well-founded tree T

Next, rank the nodes of Té. However, we must take care that if & occurs
in two places in Té with the same rank, it determines some (S, D) partition

uniquely.

In order to achieve this we perform a rank-shift:
Suppose that at some level of the ranking, say A, there are equiranked
occurrences of a state g, say of order type O. Then rerank these consecutively

by x + 1, ..., A + 0, and proceed to the next level A + & + 1,

Let p denote the ranking function of TZ. Then we define predicate p and
partitions (Sw, Dw). As W we choose the ordinals ranking Té, an initial

segment of the countable ordinals.

p(w)g = 3n,d.& € CONE_(n) A p(CONE_(n)) = w
a d
DEF
\
vn,d.£ € CONEd(n) Ap(E) = w.
= Ww

For w> 0 : S ={ Syr if 3n,d.p (CONE, (n))

#, otherwise.

Note that the rank-shift of Té assures that Sw is well defined.

Next we show that clauses 2) - 4) of the rule hold; and thereafter we

refine the cone-construction so as to satisfy clause 1), too.

12.

Lemma 3. W, p, (Sw, Dw) satisfy clause 2) - 4) of the rule. (As we shall

see clause 1) need not hold.)

Proof.

Clause 2): Assume p(w) A w > 0 A Bi holds in &, for i € Sw. Without loss

of generality (by the rank-shift), assume £ € Tgo and r(Eo) holds. Then

£ € CONEd(n) for some n and 4 (since, otherwise, Sw = @), and d # i. If

move Ci remains in the cone, by construction the rank remains the same.
Otherwise, it leaves the cone, and hence, since T: is ranked from bottom-
leaves to top-root, the rank decreases.

Clause 3): Assume again p(w) A w > 0 holds in §. We have to demonstrate that
Cw fairly terminates. Since Sw # @ D Sw = §_ for some d, the guards of Cw

d

are Bi ATIB Again, assume we are in TEO as above. Let T be a fair computation

g
sequence of Cw starting in £, Then T can be extended in front to a fair computa-
tion sequence starting in EO, and hence is finite. Thus Cw fairly terminates.
(At this point it should be clear to the reader that the whole proof proceeds
by induction on the number of alternatives of C, and on the complexity of these.)

Clause 4). By construcﬁion, in T: holds p(€) = 0 ¢ & is a leaf of T:. Q.E.D.

To see that condition 1) does not hold, consider the case:

CONEdO(El)

I.e., dodl°° is a do—unfair computation sequence, contained in CONEdO(El),

and let p(CONEdO(gl)) = w. Then p(w)g1 A w > 0 A B, holds, and hence,

0

<p(w)g1 AW ; 0 A BO > CO < p(w)£2>, that is, w need not necessarily decrease

under the CO move as indicated.

Finally, we modify our construction of cones so as to satisfy clause 1) of
the rules too. This modification affects the collapsing of a d-cone; instead
of collapsing such a cone to a node of ng, we collapse it to a well-founded
subtree of TEB'

Let CONEd(E) be given. Now repeat the inductive construction, but modified
by defining subcones within CONEd(E) which include only infinite computation
sequences containing no occurrences of 4 at all, and &£ itself (hence never

being empty).

13.

Definition. For n € CONEd(g), let S—CONEd(n) = (the set of all occurrences
of states along infinite paths in CONEd(E) starting in n and

containing no occurrence of a d-move) U {n}.
By an argument similar to the one in the proof of lemma 1 we establish:

Lemma 4. Every computation sequence leaving S—CONEd(n) is either finite

or contains a d-move.

The inductive construction of subcones of CONEd(E) goes as follows:
At level 0, define S—CONEd(no 0 1

defined at level i-1, let, by lemma 4, Cd be the first occurrence of a d-move

along a computation sequence leaving S—CONEd(ni

) with n, = £. Supposing S-CONEd(ni_) to be

), or starting in n, in case
l—

1 1’

S~CONE (ni_l) = @, s.t. this computation sequence does not leave CONEd(g); this

d
d-move results in n' = ni. Then S—CONEd(ni) at level i is defined.

ju]

Lemma 5. There does not exist an infinite chain of S—CONEd(ni)'s with

Proof. Suppose such a chain exists. Then there exists an infinite computation
sequence starting in & with an infinite number of occurrences of d-moves,
contained in CONEd(g), contradicting the definition of CONEd(E). Q.E.D.

Thus, we now collapse each CONE_(£) into a well-founded sub-tree, with

d
subcones S—CONEd(n) collapsed to nodes. By lemma 5 this subtree is well-
founded, and hence, the whole tree ng is well-founded. Now repeat the previous

ranking procedure to Tgé so obtained.

Now, clause 1) holds, too, because every d-move either leads to a lower
ranked node corresponding to a subcone, or leaves the whole cone, therefore
also leading to a lower ranked node. Satisfaction of the other clauses is not
affected by the modification described above. Hence we established:

Theorem. If C fairly terminates, (W,<), p, <(SW, Dw) exist satisfying

>
wEwW, w>0'
all the clauses appearing as premises in our rule for proving fair termination

of guarded loops.

14.

Comparing the construction in the completeness proof with the statement
of the rule itself, one cannot help noticing that there is a certain dis-
crepancy between the two. In the construction, we always end up with lDw = 1]
for collapsed nodes, whereas the rule itself allows IDWI >1. We would like
to give some semantic significance to the case Ile >1 in the light of the

previous construction.

Suppose in £ there exist infinite computation sequences "1' ceey “k’ not
containing, respectively, moves dl’ ceey dk an infinite number of times. Then
k .
mo€ .U CONEq (£) . Define CONEq), ..,quf&) = igl'.-'kCONEdi(E), where

{4,,...,4,} is the maximal set of moves s.t. CONEg, () # 8, i = 1, ..., k.
1 k —_— i

Next, one verifies:

Lemma 6. Every infinite sequence leaving CONE

d ey d

{dlr---'dk}(g) contains moves

1’ k*
Then, one modifies the iterative cone construction in that a new (generalized)
cone is constructed after all moves dl' ..., d occurred. Observe that the

k
analogue of lemma 2. holds again.

Now, generalize the construction of subcones to maximal sets of moves.
Assume k = 2, for simplicity of notation (the construction generalizes to
k = n). In order to satisfy clause 1), we refine our ranking, as in the

figure below.

ranked w", w' > w" ra?ked w' ranked w"', w' > w™
\ . p
1]
1]
’ I é
S-CONEg, (&) - l S-CONEg., (&) -
1 = 2
S-CONEg, (£) /;—cgyEdl(g) S-CONEg, (£)

~CONEJ, (£)

15.

Split S—CONE{dl’dz}(E) into three parts:

S-CONEg, (§) - S-CONEg, (), S-CONEg,(§) - S-CONEg, (&),

and S—CONEdl(g) n S—CONEdZ(g), and rank them, respectively, w", w", w' with
w' > w", w' > w". (This can be easily accomplished by superposing a lexico-
graphical order on p.) Choose D_,= {dl,dz}, D w = {dl}' D w = {dz}. Now

clause 1) is satisfied (as suggested in the figure).

IVv. Relation to other work

As already mentioned in the introduction, our work is closely related
to [psL].
In [PSL] three fairness-like notions are introduced:

1. Just execution: along infinite computation sequences all moves appear

infinitely often (no reference to being enabled or not).

2. Impartial execution: along infinite computation sequences enabled moves,

which once enabled, remain enabled until taken (i.e.,

are continuously enabled), are taken.

3. Fair execution: along infinite computation sequences, moves infinitely

often enabled are eventually taken.

This distinction influenced clause 3) of our rule. Without clause 3},
our rule is sound and complete for impartial execution. The difference
between impartial termination and fair termination is reflected in examples

1 and 2 in section II.

Actually, omitting clause 3) suffices for termination in case of eventual
impartiality, i.e. an enabled move may be disabled finitely often, but eventually,
becomes continuously enabled and then it is eventually taken. For such a rule
(without recursive application of clause 3)) the underlying assumption about
the scheduler (i.e., the underlying semantics) is that each direction is
infinitely often tried (in case of infinite computations). Therefore, if it

is eventually continuously enabled, some try is bound to succeed.

A notable difference between our rule and the one in [PSL], called method
F, is that we partition the moves in an ordinal-dependent way, whereas in

[ps1] state predicates play a crucial rule in determining decreasing moves.

Now we show that our rule implies method F, and hence the semantic complete-
ness of our rule implies the semantic completeness of method F. (We do not

have a proof of the reverse implication.)

le.

Assume that for program C we found W, p, <(SW, Dw)>w€W satisfying clauses

1) - 4) of our rule, relative to precondition r, and that |Dw| =1,

In order to apply method F, we have to:
i. Find a partial ranking function p: States - W', where W' is ordered by

a well-founded ordering, <.

n<s

ii. Find predicates Qi' i=1, ..., nover states, where Q =

i 1Q., satisfying:

i
0) 0(%) implies p(£) is defined,

1 x(g) 2 9(8),

2) Q&) A n €cC.(E) 2 (Q(n) A p(E) 2 p(n)),

3) Q&) AnE Cj(E) Ap(E) =p(n) 2Q. (), for i # 3,

4) Qi(g) AnE€E Ci(E) > (p (&) ; p(m)) (, thus the Qi determine the decreasing

directions),

5) Program C' 3 *[.o B; A 1By = C4] satisfies <Q,> C' <true>.
i=1,...,n J J i —

To satisfy method F, take W' = W, < = <, and define p(§) = m%n p(w&k,

Qi(g) = i € %XE)' Hence Q(&) = Iw.p(w)&.
Next we verify conditions 0) - 5) of method F.

condition 0): Iw.p(w)E D {wlp(w)E} # @, and the minimum of {wlp(w)&}

exists by a property of the ordinals.
condition 1): r(g) D Iw.p(w)E holds by clause 4).

condition 2): follows from clauses 1), 2) of our rule, guaranteeing that
p(v) holds for v £ w, hence the minimal v s.t. p(v) does not

increase, either.

condition 3): Qi(g) AnE cj(g), i # j, implies that an S-move is taken, and
since p(£) is the minimal w s.t. p(w){, this S-move does not

decrease the ordinal, hence Qi(g) still holds.

condition 4): follows directly from clause 1), since n € ci(g) and Qi(g) imply

a D-move is taken.

condition 5): reduces to clause 3).

17.

Acknowledgements. Amir Pnueli and Samuel Katz are thanked for helpful

discussions. Daniel Lehmann suggested the reduction of

the [PSL] rule to ours'. The Netherlands Organization for

the advancement of Pure Research (Z.W.0.), The Technion,

and IBM Israel are thanked for their financial support,

and the departments of computer science of the University

of Utrecht and the Technion for their hospitality.

V. References.

[apt & Plotkin]:

[Dijkstral:

[Floydl:

{Francez & Pnuelil:

[Francez & de Roever]:

[Gpss]:

[Harell:

[Hitchcock & Park]:

[Hoare]:

[Lamport]:

[Lamport & Owicki]:

Apt, K.R. and G. Plotkin, A Cook's tour of countable

non-determinism, submitted to ICALP 1981.

Dijkstra, E.W., A discipline of programming, Prentice

Hall, 1976.

Floyd, R.W., Assigning meaning to programs, in: J.T.
Schwartz (ed.), Math. Aspects of Computer Science, Proc.

Symp. in Apl. Math., AMS, Providence, R.I., 1967.

Francez, N. and A. Pnueli, A proof method for cyclic

programs, Acta Informatica 9, 1978.

Francez, N. and W.P. de Roever, Fairness in communi-

cating processes, Univ. Of Utrecht, 1980.

Gabbay, D, A. Pnueli, S. Shelah and Y. Stavi, On the
temporal analysis of fairness, Proc. 7th POPL Conf.,

1980,

Harel, D., First-order dynamic logic, Lecture Notes

in Computer Science 68, Springer-Verlag, 1979.

Hitchcock, P. and D. Park, Induction rules and termina-
tion proofs, in M. Nivat (ed.), Automata, Languages

and Programming, IRIA, North-Holland, 1973.

Hoare, C.A.R., Communicating sequential processes,

cacM 21, 8, 1978.

Lamport, L., Proving the correctness of multiprocess

programs, I1EEE - TSE 3, 2, 1977.

Lamport, L. and S. Owicki, Proving liveness properties

of concurrent programs, SRI - TR, 1980.

[Pnuelil:

[psL]:

[de roeverl]:

18.

Pnueli, A., The temporal semantics of concurrent

programs, TCS, 13, 1, 1981.

Pnueli, A.,, Y. Stavi and D. Lehmann, Proving termination

of just concurrent programs, submitted to ICALP 1981,

Roever, W.P. de, Dijkstra's predicate transformer,
nondeterminism, recursion and termination, MFCs, 1976,

Lecture Notes in Computer Science 45, Springer Verlag,

1976.

