A PROOF SYSTEM FOR BRINCH HANSEN'S DISTRIBUTED PROCESSES

by

Marly Roncken
Niek van Diepen
Mark Kramer

Willem P. de Roever

RUU-CS-81-5
February 1981

Rijksuniversiteit Utrecht

Vakgroep informatica

Princetonplein 5
Postbus 80.002

3508 TA Utrecht
Telefoon 030—531454
The Netherlands

velgroon a0
aroen in

A PROOF SYSTEM FOR BRINCH HANSEN'S DISTRIBUTED PROCESSES

by

Marly Roncken
Niek van Diepen
Mark Kramer

Willem P. de Roever

Technical Report RUU-CS~-81-5

February 1981

Department of Computer Science
University of Utrecht
P.0O. Box 80.002, 3508 TA Utrecht

the Netherlands

~

A PROOF SYSTEM FOR BRINCH HANSEN'S DISTRIBUTED PROCESSES

by

Marly Roncken
Niek van Diepen
Mark Kramer

Willem P. de Roever

University of Utrecht

February 1981

- Abstract. A proof system is presented for proving partial correctness

of Brinch Hansen's Distributed Processes. The system is not complete for
programs that may deadlock because of inter-process communication. Proofs
of single processes are given in relation to their parallel environment.
As usual, a slight mistake was found in a published concurrent algorithm.
This time, it concerns a sorting algorithm that can be used as a priority
scheduler. The adapted version (for maintaining a priority scheduler) is

proved correct.

Keywords and Phrases:

distributed processes in general and Brinch Hansen's notion of them in
particular, monitors, concurrency, (simultaneocus) message passing, partial
correctness in absence of global deadlock, auxiliary variables, process

invariant, global invariant, (proof theoretical) environment, proof outline.

CR Categories: 5.24.

1. INTRODUCTION

We present a Hoare-like proof system for Distributed Processes (DP),
a language concept defined by Brinch Hansen [4]. This system deals with
proofs of partial correctness concerning programs that are free from dead-

lock caused by external requests (cf. section 7).

By a distributed model we mean a model, in which there is a system
of processors, each having its own local store, and in which processors

interact by means of message passing. For these models it seems more

natural to look upon synchronization as a simultaneous rather than mutual

exclusive action. On this observation we base our proof system.

Because communication may alter the store of a process, and hence may
affect the validity of assumptions made in a proof, we need a system that
considers proofs of properties about a single process not only within the
context of this process but within the context of the whole program. This
implies the validity of assertions in a proof of this process with respect
to the complete program.

Therefore, we introduce the (proof theoretical) environment of a program.
This environment contains the text of the program together with some special
assertions: a global invariant and for each process a process invariant.
Introduction of this environment has been inspired by de Bakker's book

[3].

The global invariant expresses the inter-process communications. It is

used in a similar way as the global invariant in the CSP proof system [2].

Further guides for the system came from various related papers by:

Apt, Francez and de Roever [1,2], Lamport [5], Levin [6], Owicki and
Gries [8].

The rest of the paper is organized as follows. In section 2, we
give a brief description of DP. Section 3 contains some simple examples to
illustrate several aspects of the language. In section 4 the proof system
is presented (4.1, 4.2), together with a discussion of the various rules
(4.3). In section 5 the system is applied to prove the examples in section
3. Section 6 contains a more advanced example: a sorting program which
is also applicable as a priority scheduler is proved correct. This example
was taken from Brinch Hansen's paper [4], but has been adapted, because
there was a slight mistake in the original version, which caused the program
to function improperly as priority scheduler. Finally, section 7 summarizes

and evaluates the results.

2. THE LANGUAGE CONCEPT DP

DP is especially conceived for real-time applications, controlled by
microcomputer networks with distributed storage. A real-time program
interacts with an environment in which many actions take place simultaneously
at high speed. Therefore, it may be convenient that the nondeterministic
requests to such programs from its environment are handled in arbitrary

order, and that the program never terminates but continues to serve its

environment as long as the system works. The last two properties are

clearly visible in DP's convention for process execution (cf. 2.4).

2.1. A DP program consists of a fixed number of concurrent and persistent
processes that are started simultaneously. A process does not contain
parallel statements.

The syntax of a process is as follows:

process<name>;
<private variables>
<common procedures>

<initial statement>

2.2. Communication

A process can access its private (i.e., local) variables only. No
common (i.e., shared) variables are used. However, a process can call common
procedures within other processes {(but not itself) in the program: external
requests (short: requests). When such a request is honoured, a new incarnation
of the common procedure being called is created for the requesting process.

Syntax of a procedure:

proc<name> (<input parameters> # <output parameters>)
<local variables>

<statement>

('#' separates the formal input and output parameters; if only input
parameters are used, the separator '#' is deleted.) An external request
in process P to procedure gr within process @ is written as:

11 . ;7 ee ’ [I ’
ca Q qr(u1 rouy v1 1 un
ey vm agree in number and type with the formal input,

e ey vm), where the actual parameters u
respectively, Vl'
respectively, output parameters of procedure gr in process Q.

DP uses call-by-value-result for parameter transfers. To avoid
unnecessary complications in the proof system, subscripted variables do
not occur as parameters (ch. 9 of [3] shows how this complication can be
solved, in general). Furthermore, an external request is regarded as an
elementary action within the requesting process: in the above setting,
process P is suspended until process Q has completed the request.

In other words the possibility for implementing distributed recursion
within a fixed network of processors, has not been realized. If inter-

process communications had been allowed to the requesting process during

the call (i.e., after sending the values of the input variables, and
before receiving the values of the output variables), then the full
expressive power of recursion could have been exploited!

This possibility is too exciting to be ignored, and research is going

on to find the appropriate version of Scott's induction rule in this new

setting.

2.3. Synchronization in DP

Synchronization is established by means of nondeterministic statements:

guarded regions. These statements have the following syntax and meaning:

(']' separates the guarded statements)

when~statement:

when b, : S, | ...] b : 8 end
— 1 1 n n —

meaning:
wait until at least one of the conditions bi is true, then select

one of these arbitrarily and execute the corresponding statement Si'

cycle-statement:

s, | | b : S end

cycle b1 25 .o 0 n

meaning:

endless repetition of the corresponding when-statement.

2.4. Process execution

A process begins by executing its initial statement. This continues
until the statement either terminates or waits in front of a guarded region
for a condition to become true. Then the process is idle until another
operation is started as the result of an external request. Note that this
is the only possible way to continue, for only the process itself can
access the variables, occurring in the conditions of a guarded region within

its initial statement.

When this operation terminates or waits in front of a guarded region, the

process will

(1) either begin yet another operation, i.e. honour an external

request,

(2) or resume an earlier operation as result of a condition becoming

true,

(3) or remain idle until one of the above situations occurs.

If the initial statement terminates, the process will still honour
external requests. Globally, a process acts like a monitor but for implicit

signalling operations, associated with guarded regions.

Brinch Hansen's processes never terminate. Hence Hoare's {p} 0 {r} formalism

could be trivially applied with r = false. However, one can very well consider

a program as being 'terminated' iff each of its processes

either (1) has terminated its initial statement
or (2) has not yet terminated its initial statement, and control is
at a guarded region within the initial statement with all

(constituent) guards false.

Now {p} @ {r} is valid iff for initial states satisfying p, upon 'termination'’

of Q, in the sense above, r holds for the possible resulting states.

Notice that if a process satisfies condition (1), it may very well be
the case that some of its. common procedures are being executed. Thus the
question arises: if all processes satisfy condition (1) or (2), it is not
possible that those processes which satisfy (2) are executing common proce-
dures? The answer is no. A common procedure of one process being executed
presupposes a call of that common procedure in another process, again not
satisfying condition (2), which may occur in its turn in a common procedure
body, etc.. The resulting chain of incarnations has a first call which
necessarily occurs inside an initial statement neither satisfying condition
(1) or (2). Hence the program is not 'terminated’'.

We are working on formalizing this convention in a framework such as

that of Lamport [5], in which properties of the location counter are ex-

pressible.

2.5. Nested external requests and recursive procedures

Program executions in which a suspended process (cf. 2.2) has to
honour requests for computation to continue, are not considered correct
executions. In particular recursive procedures are taboo in the DP language
concept. Beside the ambiguity about this in Brinch Hansen's paper [4],
the main reason for this convention is the following.
While a process is suspended, as result of an external request within it,
no operations take place in it. Consequently, this process is not able to
honour a request; especially requests to its own procedures; consult section

2.2 for a possible extension of DP in which such requests can be honoured.

2.6.

Nondeterminism

Nondeterminism in DP is introduced:

(1) implicitly by the unpredictable order in which earlier operations
are resumed, and

(2) explicitly by means of guarded statements:

(i) guarded region : also enables synchronization (cf. 2.3)

(ii) guarded commands: with syntax and meaning as follows:

(as in 2.3, 'I! separates the guarded statements)

if-statement:

ifb, :S, | ... 1 b :8 end
— 1 1 n n ———

meaning:
if some of the conditions are true, select one of them arbitrarily

and execute the corresponding statement, otherwise abort the process.

do-statement:

dob, :8, | ...]l b :8 end
— 1 1 n n —

meaning:
while some of the bi's are true, select one of them arbitrarily and

execute the corresponding statement.

Note that in contrast with a guarded region, a guarded command cannot

delay an operation.

2.7.
(1)

(2)

(3)

(4)

A few notational remarks

There is a shorthand notation for an array of n identical processes
within a program:

process nameln].

A standard function 'this' defines the identity of an individual
process within this process-array. Likewise.functions as 'succ' and
'pred' for the successor and the predecessor of an individual

process, if any, may be added.

seq[n]T or array[n]T denote a sequence or array with at most n

elements of type T.

We use [P1 ... lan] to denote the parallel execution of processes
Pl’ ooy Pn (n 2 2), i.e., execution of the DP program that consists
of the processes Pl' ey Pn (n =2 2).

Concatenation of array (or sequence) al with array (or sequence)

a2 is denoted as: al~"a2. (This is needed in the proof system).

Further details on the language concept DP may be found in [4].

3. SOME SIMPLE EXAMPLES

- to illustrate several language aspects -

3.1. One of the simplest examples of message passing in DP programs is

the following.

process P, ;
X : int

begin x := 0; call P..pass(x) end

2

process Pz;
y : int
proc pass (z : int) begin y := z end

begin y := 1 end

evidently, vy = 0 is valid after termination of this program.

3.2. The next example illustrates the arbitrary order in which different

outstanding requests to the same process are honoured.

Process 'soldier' with private variable 'salary' is requested
simultaneously by an array of n processes (cf. 2.7). Honouring a regquest
results in assigning the value the identity of the requesting process

to 'salary'.

process soldier;
salary:int
proc change (z:int) begin salary = z end

begin salary = 0 end

process military department[n] ;

begin call soldier.change(this) end

After termination of this program the assertion:
salary=1 v ... Vv salary=n, will be valid. And this is indeed the

strongest assertion possible |

3.3. Next, let us consider a program with synchronization by means of a
when-statement. The single guard of this statement is initially made false
and can only become true inside a procedure body in the same process.
Consequently a request to the procedure is honoured before the process

continues the execution of this when-statement.

Who believes that monkeys are not able to write nonsense in
cooperation - even people can. In this program two monkeys are obliged
to write "nonsense" for getting a banana. They can do this by typing
the syllable 'HUM' or 'BUG', which in cooperation and depending on the

typed order, may give 'HUMBUG'.

definition : mode syllable = seq[3]char.

process monkey[Z];
proc eat(x) begin "eat x" end

begin call writer.type end

process writer;

b, ¢, d : bool; word : segl2lsyllable; message : seql16]char

proc type if true : word := word“<HUM>; b := true; c := false;

d := true
[true : word := word~“<BUG>;
_J'.ic:d:.=‘_f§_]_.i€i;b:=_t:__:£l.l_e_
| e : ¢ := true
end
end
begin b :=c := 4 := false; message := word := <>;

when b : if cAd : call monkey[1].eat (banana) ;
call monkey[2].eat (banana)
[71(cAd) : message := <no_bananas_today>
end

end

end

Note: The boolean guard d is introduced to ensure termination of the
program (b := true) without the possibility of incorrect feeding

(d := false).

Unfortunately the writer of this program has fallen into monkeyism. For
even though the monkeys succeed in typing 'HUMBUG', they cannot be sure
of getting their desired bananas: process writer may resume the when-
statement directly after the first honoured request is executed (that
resulted in: word = <HUM>Ab = trueAc = false), and in that way stop the
supply of bananas for tocday.

However, when the program terminates the assertion

word = <HUMBUG> V message = <no_bananas_poday>, holds.

3.4. This example concerns the nesting of procedure calls.

A process-array calculates n{ when the input item is n, provided

n is smaller than the length of this array. Item n is input from

the user process through calculate-process [1], that outputs 1 if
n=0, otherwise n-1 is passed to the successor, calculate-process [2].
The latter outputs 1 to its predecessor if n-1=0 and in the other
case n~2 is passed to its‘successor, and so on.

Finally calculate-process [n+1] receives the value 0 and
consequently outputs 1 to the user process if n=0, else to calculate-
process[n]. In the latter case the remaining requests are finished
successively by assigning the value of (n+l - this) * (passed value)
to one's predecessor in the sequence of nested requests.

Remember that the parameter passing mechanism is call-by-value-result.

Process calculate [m] H
proc faculty (x:int# y:int) if x>0 : call calculatel[succ].faculty(x-1,y);

Y = y*x
| x=0 : y=1

begin skip end

process user;
value:int

begin call calculate [1] .faculty(value,value) end

3.5. For those familiar with CSP (Communicating Sequential Processes),

a language concept by Hoare and related to DP [2,6,10], the former

programs are expressed by:

.. = 0 1
(1) P1 1o x = 0; P2 X
— .)
P2 v 1; P 2y
(2) soldier = PO :: salary = 1; y= 1;%[Pl?ye-salary =y 0...
. P _?y-salary = v
Pl 11z = 1i; PO!z , 1 £1 < n.

10

(3) monkey[i] % [true - writer!<HUM> [] true - writer! <BUG>];

*[writer?y - "eat y"] (i =1,2)
writer I word := <>;
[monkey[1]?x - word := word“x; monkey[2]?x; word := word-x
0 monkeyl[2]?x - word := word“x; monkey[1]?x; word := word-x];

[word = <HUMBUG> - monkey[1]!banana; monkeyl[2]!banana

0 lword = <HUMBUG> - message := <no_bananas_poday>}

Note that in this program process writer is indeed a fair judge.

(4) wuser_.=.P,. : value := n; Pllvalue; P, ?value

1

. ? > | -1) v]
p. “[p, ,2x->[x>0- Pipgtx=1)i P ?ys P L (xky)
Ox=0->p, I1
i-1

4. THE PROOF SYSTEM

4.1. Introduction of process invariant, global invariant, auxiliary

variables, bracketed sections and environment.

The absence of global variables in DP programs creates an ideal
situation to prove properties about programs by proving properties of the
processes within them in isolation, and then deducing the desired properties
by comparison. Assertions in a separate proof of a process may contain
only private variables and private auxiliary variables of this
process, analogous to Owicki's system [7] and the csp proof system
[2]. aAn inevitable phenomenon of languages for parallel programs,
however, is that the meaning of a single process is no longer
independent of its context, in contrast with sequential programs in
which, for instance, the meaning of a procedure (without global
variables) can be defined in situ. Consequently, a proof system that
captures deduction of properties about a program, but that contains
no meta elements such as the cooperation test in the proofsystem for
CSP or Owicki's interference freedom test, must provide these elements

(i.e., context dependency of isolated proofs) implicitly. Obviously, this

11

context dependency is expressed by predicates on values received at
synchronization which took place when the process in question was waiting.

This leads to the following definition.

definition 1: A process is at a waiting point (cf. 2.4):

(1) before a guarded region when all its guards evaluate to false,

(2) on termination of the initial statement,

(3) on completion of an honoured request.

For a proof system, this implies that rules concerning waiting points

must provide assertions about the actual state of the process.

Since we disregard programs that may deadlock because of inter-process
communication, the assertions in a proof of a process do not provide
information about suspension of the process, but are concerned only

with the values of the private variables and the parameters of the process.
Consequently, the actual state of the process at a waiting point can

be expressed by means of relations between, and values of, these private

variables; this will be done in the, so called, process invariant.

Before we continue with the process invariant, first some remarks

about auxiliary variables. The need for these variables is a familiar

fact in proofs concerning parallel programs.

definition 2: AV = set of auxiliary variables, different from program

variables and parameter incarnations;

Variables in AV do not affect the flow of control in a program and
appear only in assignments of the form x :=t, where x € AV.

Each process has its own set of auxiliary variables.

A process invariant, denoted PI or, if the processes
< process name >

are numbered,PI . , may contain only private wvariables
< process index >
and private auxiliary variables.
Henceforth, in references to the process invariant in general, the
invariant will be denoted by PI.
PI must hold at all waiting points in the process corresponding with PI and,
as such, provide information about the actual state of this process (notice

the analogy with monitor invariants).

12

However, it is not enough to add the PI's to the proof system.

Consider the following example:

process P{2];
jlthis] : int

begin jlthis] := 1; call P_.change end

3

process P3;
X,i:int
proc change begin i:=i+l; x:=x+1 end

begin i:=1; x:=0 end

The number of times procedure change in process P3 has been
called after termination of the program cannot be deduced in a
proof about P,. Not even after the private auxiliary variables 5011, j[2]
and i are added. This is a result of the fact that requests are

honoured implicitly; only the requesting process can keep pace with

its number of requests.

A solution is obtained by a well known strategy: introduction

of a global invariant of the program. This invariant will be denoted

by GI. GI catches the interaction between the processes. In the

example above GI = i=j[1]+j[2]+ 1 will indeed provide the value of i

on termination of the program.

For reasons that will become clear in section 4.3 (rules R6 and R13),
GI may contain only auxiliary variables (i.e. variables in AV). This is
no limitation because auxiliary variables can trivially simulate the

behaviour of process variables.

At present however, GI is not valid at all places, which
contradicts the property of being a global invariant, e.g., in the example
above the assignments to j [this] and i are not executed simultaneously.

Therefore we introduce program sections S in which GI need not hold:

bracketed sections. They will be denoted by < S >.

Outside bracketed sections GI must be valid, and to ensure this

assignments to variables free in GI are restricted to these sections.

Our first idea concerning the form of a bracketed section <S>

within the program [P1||... ||Pn] was the following:

13

n
1]

3,; call Pj.pr(ul,...,u ’ Vl""’vs); S

1’ r 2

1 2
guarded regions nor external requests; they usually contain

where pr denotes a procedure declared in Pj' and S, and S, do not contain

assignments to auxiliary variables but may be empty. Because a procedure

body may contain assignments to auxiliary variables of GI, all requests

are cast within bracketed sections.

This definition is based on the fact that by the grain of
interleaving that is used here, execution of a request is viewed as
an elementary action within the requesting process.
The strategy to be used depends on the validity of GI at the beginning
of a bracketed section: GI is indeed a global invariant of the program
if we can prove that GI is valid again at the end of each bracketed

section within the program.

However, with this definition of bracketed section our strategy

fails, which will become clear by the next program.

process Pl;

i : int

begin i := 0; <i := 1; call P, .pr2> end

2

process P2;

j2 : int

proc pr2 begin <j2 := §2 + 1; call P3.pr3> end
begin j2 := 0 end

Process P3;

X, k : int

proc pr3 begin <k := k + 1; x := x + 1> end

begin k := 0; x := 0 end

i, j2 and k are auxiliary variables: i is used as counter of the requests
to pr2 in process Pl' J2 keeps pace with the number of the requests to pr3
within the process P3, and k and j2 are counters for the procedure body of pr3
and pr2 respectively. In order to prove x = 1 on termination of the program
[P1 I P, f P3],we need the global invariant GI = k = j2 A 352 = i.

Let us take a look at the bracketed section <j2 := j2 + 1; EE}E_P3.pr3>

14

in process P2. This section will always occur within another bracketed section
in the program, because every request is inside a bracketed section. In this

case, the enclosing section is <i := 1; call Pz_pr2> in process P This

1
situation is disastrous for our strategy: GI does not hold at the beginning

of <j2 := j2 + 1; call P_, pr3> because by this time, i = 1 and j = 0.

3
Actually} the existence of nested bracketed sections is the cause
of this. We eliminate this, by the introduction of countersections.
The new definition is based on the fact that the validity of GI is in question
only when parameter passing occurs, because the free variables in GI need
be updated at these points. Inside the requesting process, there are at most

two places at which parameter passing occurs (on account of call-by-value-

result): at the beginning and at the end of the procedure execution.

Let pr be a procedure within Pj. Rearrange the assignments to auxiliary

variables within the body so that pr has the following form:

proc pr(xl, ooy xr # Yir veeq ys) begin T T; T, end

1’ 2 =2

where T1 and T2 do not contain guarded regions nor external requests, and
may be empty. Furthermore, in T no auxiliary variables free in GI appear
outside bracketed sections. (The form need not be unique for pr!)A

The next step is taken by associating the countersection T1 with S1
in the calling process and likewise for T2 and 52' The boundaries T1 and
T2 (remember the former bracketed section definition) are indicated by

the brackets ">" and '"<" respectively, and the begin, respectively, end-brackets

of the procedure body:

> T <; T, end

proc pr(xl, ey xr#yl, ooy ys) begin T >

17
Note that <Sl;T1> and <T2;S2> are not bracketed sections according to our

previous definition of § , with § = S1; call Pj.pr(ul, ceey U, vl, eeeys V_);

S. , where:

2
Definition 3: A bracketed section within the DP program [P1 b ... 1 p]
- n
- ; T.>, <T.; S.> <S.; . .- ;
is of the form <Sl' T1 ’ 2 82 , Or Sl’ call Pj pr(ul, , ur, Vl' .oy vs),

52>, where:

(1) <Sl,and Sz> are taken from the construction

<Sl; call Pj.pr(ul, ey ur, Vl' ey vs); S

(11) T1>,and <'I'2 are taken from the construction

> in Pi (1 £ i <n),

2

15

proc pr(xl, ceny Xr#yl’ ceey ys) begin T1;> T <; T2 end, in process
Pj(l € 3 €£n), and

(iii) Sl' S2, ’I‘1 and T2 do not contain guarded regions nor external requests,
and may be empty. In the last situation they may be indicated with

skip.
No assignments to auxiliary variables free in GI may appear outside bracketed

sections.

In order to enforce correct use of GI and the PI's in the formulae, by means
of which the axioms and rules of the proof system are expressed, we introduce
the (proof-theoretical) environment, E. Besides these invariants, E also
contains the texts of the procedure bodies in the program, needed for
application of R12, and the variables declared in the processes within the

program.

Definition 4: The (proof theoretical) environmment E of the program

[P1 || Pn] has the following composition:

E = <<<private variables € Pi>

[[Igs]

i
|<Prj(x1, coey Xin. # er ceooy yOutj) € Pi> j21>l

3

I<PI, > .0 | GI>,
i i=1

where:

(1) the procedures in process Pi are nurbered from 1 to in,
K k # 3,

(3) no free variable of GI is subject to change outside a bracketed

(2) no free variable of PIj is subject to change in P

section.

Let each process in the program be numbered. We will fill the last
"denotational holes" in the system by addition of the process index to
the axioms and rules. In the notation, they appear directly after the
statement in question, e.g., {p} S, i {g}. In this way, we ensure correct
choice of the process invariant on application of the when-rule, R9,

namely PI<i>’ and on application of the call-rule, R12.

As will be evident from the when-rule, we also need a formal system
for expressing and deducing properties of the location counter, such as

Lamport's at (S), in (S), after (S), cf. [5]. We are still working on this.

16

R1

R2

R3

R4

. List of axioms and proof rules

Notes

1. Where the index of the process has no particular role in the

axiom or rule, it has been omitted, to improve readability.

2. E]{pl} 8, {ql}, ceey {pn} s, {qn} is short for
E]{pl} s, {ql}, cees E]{pn} s {qn}.
Axioms:

Al assignment

El{plt/x]} x := t {p}
A2 skip

El{p} skip {p}

A3 invariance

EHp} call Pj.pr(ul, Ceer Wr Vg oeees vm), i{p}
provided freevar (p) N {Vl' vees vm} = @, and no variables free

in p are changed in process Pk' k # i.

Rules:

begin-end

El{p} s {q}

El{p} begin s end {q}

where S denotes a statement.

composition
E] {p} s, {a}, {a} s, {r}
E] {p} S,i S, {r}

consegquence

PPy E] {p} s {qy}, q 2 q,

E] {p} s {q}
PP {pl} [P1 ... Pn] {ql}, q 9
{p} [P1 T .0 Pn] {q}

conjunction

E]l {p} s {q}, {p} s {r}
E] {p} s {g A r}
disjunction
E] {p} s {r}, {gq} s {r}
E] {p v q} s {r}

17

R6 substitution
E]l {p} s {a}
E] {plz/x]} s {q}
provided x € freevar(g,S,q)

{p} [P1 (| Pn] {a} ,
{plz/x]} [P1 o Pn] {q}
provided X € freevar(Pll ey PnIQ)

R7 if n
el {pAb}ts {a}, ..., tpAaDb s {ql, p~ wb,

1
el {p} if b, : Sll .. lbn : S end {q}

R8 do
E] {p A bl} s, {p}, ..., {p~A bn} s, {p}

I o A7 Wb}
el {p} do b, : Sll e Ib s end {p Al Wb,

R9 when

E]@Abﬁsyi{ﬂ,””{pA%}%,iwL

R
P A jg&bj - PIi’

{b1 A PI, A at(s)} Sy i {q}, ..., {bn A PI, A at(s)} S i {q}

E] {p} when b8, | ... ' b s end, i {q}

1 n
where S in at(S) denotes the considered occurrence of the when-statement.

RO’ cycle

cycle b :S,|...lb :S end=do true:when b |...lb :S end end
- 171 n n —_— n n-——

- 7
1771 —

R10 local variables
el {p} slz/x], i {q}
E] {p} begin new x; S end, i {q}

provided z € freevar(E,S,p,q)
R11 bracketed section
El {p A GI} s {q A GI}
E] {p} <s> {q}

R12 call

E]l {p A PIj} Xl[l] = ug; . Xn[l] s=u 5 T, J {p1 AP,y A GI},

E] {pl} T[Xl[l]/xlr ce ey Xn[i]/xnr yl[l]/er veay Ym[l]/Ym]r] {ql}l

E] {q1 A P, A G1} Tyi v, i< yl[l]; ceef Vo= ym[l], j {gna PIj}
E] {p} call Pj.pr(ul, ceer Uy Visoeeey vm), i {q}

where (i) xk[i], respectively, yk[i]denote the fresh copies of

b4 respectively, Yy for the incarnation of procedure

kl
pr belonging to this request,

(ii) procedure pr in Pj is declared in E as follows:

proc pr(xl, seer X # Voo cees ym) begin T1;> T <; T, end,

2

18

(iii) free variables of p and g which do not occur in GI are
not changed outside P.i {pl} T[...] {ql} may not contain
free variables subject to change in P, k # j; p, may not

k

contain free variables subject to change in Pk, k # 1.
R13 parallel composition

n

=1
{igﬁpi anerr e oo e] {ig&PIi A GT}

<E] {pi} Init , i {PIi} >,

where (i) Initi denotes the (annotated) initial statement of Pi'
(ii) auxiliary variables and bracketed sections are contained
in E and Initi.
R14 AV
E]l {p} s' {q}
El {p} s {q}

provided free-variables(q) N AV = @, and S is obtained from S' by deletions
of all assignments to variables of AV, as defined in definition 2 of

section 4.1.

In addition axioms and rules formalizing location properties are needed
(for at(s), in(S), after(S), cf. [5]). These are not provided in the present
version, but are needed in the formulation of R9, and the application of

R12 (cf. the correctness proof of the monkey-banana example in section 5.3).

4.3. Justification of the proof system

Justification of E, PI, GI and the introduction of statement-index pairs
in a formula is given in section 4.1 and will not be discussed here. The
axioms Al and A2 and the rules R2 to R5 are well-known and do not need
explanation. Rule Rl is obvious. Rule R6 is of importance because of the
elimination of auxiliary variables from pre-assertions. The axiom A3

will be explained directly after the discussion of rule R12.

(R7) According to the definition of the if-statement in section 2.6,

the program is aborted when all guards evaluate to false on execution of
this statement. In this case,p A igﬁbi does not hold and the statement
cannot be proved with the proposed rule, as should be. Besides this, R7

is the usual rule of alternative command.

(R8) R8 is the ordinary rule of the repetitive command.

19

(R9) Rule R9 is of great interest ©because the when-statement may act as
a waiting point: when the guards of this statement evaluate to false, the
process may resume an earlier operation or start a new one by honouring a
request. In the discussion in section 4.1, we demand that at this moment
PI, holds, which is expressed by p A_ngﬁbj - PI, in R9.

Whenever the statement is resumed again, anything might have happened
to the variables in assertion p and, consequently, p need not hold. However,
now one of the bi's is true and we just passed a waiting point, otherwise
control in Pi could not have switched to this when-statement. Therefore,
PIi holds and we have arrived at a situation equivalent to the alternative
command with precondition PIi A at(8), where S denotes this particular
occurrence of the when-statement, at(S) expresses that flow of control reached
S, and hence, PIi A at(S) "specializes to that part of PIi(using modus pornens)
applicable to 8" (cf. [5]). Thus, in order to prove that g holds after

execution of the when-statement, at least
E] {b1 A PI, A at(s)} S, {g}, ..., {bn A PI, A at(s)} S {q}

has to be proved (cf. R8).

In this case, validity of the first part of the premiss in R6:
E] {p A bl} s, {q}, ..., {p~a bn} s_ {q}

is easily checked, because p A bj = false, for all J.
If the when-statement is not a waiting point, then at least one b,
is true on arrival. The statement is now equivalent to the corresponding

alternative command and, consequently,

E] {p A bl} 5, {q}, ..., {p A bn} S, {q} has to be proved.
But in this case R9 forces also the proofs of p A'j.gﬁbj - PIi' which is
5=

trivial because p A'jjg'bj = false,and of the third premiss:

E] {b1 A PI, A at(s)} s, {g}, ..., {bn A PI, A at(s)} S {q}.

1
In practice, by appropriate manipulation of the auxiliary wvariables,
i.e., by encoding that the disjunction of the guards of a when-statement
did or did not hold, immediately prior to entry, one could obtain that

(p A-wbj »—W(PIi A at(S))) holds in that context.
(R10) This is a familiar rule (cf. [3], ch. 6).

(R11) This rule should be clear from section 4.1.

20

(R12) R12, the call-rule is relatively simple in comparison with the usual

procedure call-rules, because DP has no recursive procedures. The appearance

of PIj in the premiss has been explained in section 4.1, while discussing

the arrival of control in Pj at a waiting point (Pj is ready to honour

the request). The appearence of GI and its relation to the sections Tl’ T2
and the assertions p and g has been explained too in 4.1.
We have chosen this form for R12, because now the premiss {pl} Tl...] {ql} may

be copied from the proof of the procedure body in Pj' Because each request

is within a bracketed section, the application of R12 is always combined

with the application of R1l. This implies that the assertions p and q may
contain, besides variables and auxiliary variables private to Pi,also auxiliary

variables in GI. Observe that the actual input parameters need not be distinct

from the actual output parameters.

Intermediate assertion Fb is needed because g may contain free variables from
Pi different from the output parameters Vl' seer Vs and these are not allowed
to occur freely in {pl} T[...] {ql}. The precise formulation of the conditions
upon the free variables has to do with the wish to apply the technique of

"freezing the variables" in correctness proofs, see ch. 6.

(A3) In the present version, A3 is not needed because of the appearance of
P, in R12. since A3 is needed in a projected extension of the formalism and
its innocent use in the examples can be easily eliminated in favour of R12

in its present formulation, A3 is still included.

(R13) As a result of the termination convention (cf. 2.4) and the definition
of bracketed sections (cf. 4.1) program-control is not within a bracketed
section at the beginning nor at the end of execution of the program. By R11
and the restriction that no variables free in GI may be subject to change
outside a bracketed section (cf. 4.1), GI is valid at the beginning and end
of the program. Further, the consistent usage of E in the premisses of R13

implies validity of the conclusion, provided that these premisses were valid.

(R14) variables in AV do not affect the flow of control during execution

of the program and have no influence on the values of the variables within
the processes (by definition, cf. 4.1). Consequently, when no variables

of AV appear in the post-assertion,we may delete all assignments to variables
of AV in the proved program and claim the same post-assertion for the new

program with respect to the original pre-assertion.

2

5. PROOFS OF THE EXAMPLES IN SECTION 3

In order to make proofs readable, proof outlines will be given in

which the processes P ey Pn (modified by addition of auxiliary variables

1[
and bracketed sections to Pi, ceey

appropriate places. Because environment E is clear from the text, expressing

Pé) are annotated with assertions at

amongst other things that the PI's and GI are chosen once, we omit E in the
proofs. The index, used in the axioms and proofrules to indicate the process
in which the considered occurrence of a statement is situated, is likewise
omitted. Where the rules and axioms, used for the proof of {p} s {g}, can
be understood easily, we shall not mention them. Further, {Pl}{pZ} occurring
as adjacent assertions in a proof outline denote use of the consequence rule

R3, with P, = P,y Insofar possible x respectively, Yy is written instead

kl
of Xk[i] and yk[i] in the use of rule R12.

5.1. Proof of example 3.1.

We must prove: {true} [P1 I P2] {y = 0}

For this purpose, we choose the following invariants and proof outlines:

PI1 = h1 =xAx =0,
P12 =y = last(h2),
GI = h, =

) 0 - h1 = last(h2),

process P! ;

1
X, h1 : int
{h, = -1} begin {h1 = -1} x := 0; {h1 = -1 A x = 0}
<h, := 0; {PIl} call Pé.pass(x)>
{p1,}
end {Pll}
process Pé;
y : int; h2 : seg[2]int
proc pass(z : int) {PIZ} begin {PIz} h2 1= h2’<z>;>
{last(hz) =z}y =z <{PIZ}

end {Plz}
{h2 = <1>} begin {h2 =<1>} y := 1 {p12} end {p12}
(1) vVerification of all assertions is straightforward (with Al, A2, R2,

R3 and R4), except for those belonging to the bracketed section in process P

1

in

1

22

To prove:

]

{h1 = -1 A X 0} <h1 := 0; call Pé.pass(x)> {PIl} ... (i)

By rule R11l, this reduces to proving

{h1 = -1 Ax=20A GI} h1 := 0; call Pé.pass(x) {P11 A GI},
and, hence, by Al to
{le} call Pé.pass(x) {le A GI} ... (ii)
We will prove this by the call rule (R12);
the premiss needed is:
{PI1 A PIZ} z := X; h, := h, “<z> {z =0n last(hz) =2z AP A GI},
{z=0A last(hz) =z}ly =z {y=0a PI2},
{y =0na PI, A PI, A GI} §E£B_{P11 A GI A PL,},
and follows by application of Al, A2, R2 and R3.
By R12, we now conclude (ii) and, hence, we proved (i).
(2) From the proof outlines we conclude
{h, = -1} Init, {pxl}, and
{n, 1>} Init, {PI }.
Applying R13 and R3, we get
= e = 3 t —1
{h L A h, =<1>ac1} [P I p)] {p1, A PI, A GI} {y = O},

(3) Because y € AV, we may apply rule R14 to conclude

{hl = -1 Ah, =<1>aGI} [P1 f p2] {y = 0}.
Substituting -1 for h1 and <1> for h2, we finally derive by repeated application
of R6:

{true} [P1 I P2] {y = 0}.

5.2. Proof of example 3.2.

We have to prove:
{true} [soldier Il military-department[n]] {salary = 1 v ... v salary = n}

We associate in the proof outlines with each process a number. The
processes in the array are indicated with their array-index. Process soldier

gets number O.

23

The proof is along the same line as the previous example. We choose the

following invariants and proof cutlines:

1]

PI salary = last(h),

0

PI, = hl[i] =1, for 1 < i <n,
n n

GI = M\(hl[i] =1->3i€h) A length(h) =1 + I hl[i],
i=1 i=1

process military—department[n]';

hl[this] : int

{hl[this] = 0} begin {hl[this] = 0}< hl[this] := 1;

}

er!. . >
call soldier'.change(this) {PIthis

a {pr
end {p1 .3

process soldier';

salary : int; h : seqln+1lint

proc change(z:int) {PIO} begin {PIO} h := h <z>;>
{last(h)

end {PIO}

z} salary := z<{PIO}

{h = <1>} begin {h = <1>} salary := 1 {PIO} end {PIO}

(1) Aas in 5.1., we only verify the assertions belonging to bracketed sections,

and this time only those occurring within process-array military-department{n]'.

We prove:
. _ . 1. i N
{hl[thls] O}« hl[thls] = 1; {PIthis} call soldier'.change(this) {PIthis}
Assume this = io, then by R11 this reduces to proving:
i = i := 1; . i Y. i . A .
{hl[lo] 0 A GI} hl[lO] 1 {PIlO} call soldier'.change(i,) {PIlO GI}

Hence, by Al and the definitions of PIiO and GI, we have to prove:
{ p [1] € 2 [il}
PIiO Y. and(h2 il =11 h) A length(h) = 1 + i1 anaMlti
i#ig i#ig
call soldier'.change(io)

PI. A GI;.
(p1; A GI}

By R12, this follows from premiss

1
(Prjy Ay g0 [i] =1 -1 €h) A length(h) =1+ T, .nlilAPI]
ifig ifig
z := h := h™<z>

O;

24

{last(n) =z A PI; A %(%[ﬂ=1*i€h)Alquﬂm=l+ ghlh]Az=i&
i=1 i=1
{last(h) = z A PI, A GI},
ip
{last(h) = z} salary := z {PIO},

{pIO A PIiO A GI} skip {PIiO A GI A PIO},

which formulae are all valid by the definitions and Al, A2 and R2.

(2) From the proof outlines, we conclude validity of

{h = <1>} Inito {pIO}, and
{n,[i] = 0} Init, {PI }, 1 £ i < n.
1 i i

Next we apply rules R13 and R3, resulting in

n
{h=<1>A an il =0ac} [pr I ... I p]
. 1 0 n
n i=1
{ M PI, A GI} {salaxry = 1 Vv ... Vv salary = n}.
i=0

(3) Analogous to part 3 of section 5.1., application of R14 and R6 to the

formula above finishes the proof of

{true} [PO (R Pn] {salary = 1 v ... Vv salary = n}, i.e., of

{true} [soldier ! military department[nl]] {salary = 1 v ... v salary = n}
(by the index convention at the beginning of this section).

Q.E.D.

5.3. Proof of example 3.3.

Let the programs be numbered as follows:
P, = monkey[1], P, = monkey[27, P, = writer.
To prove:

{true} [Pln P, I P3] {word = <HUMBUG> v message = <no_bananas_today>}.

For this purpose we choose the following invariants and proof outlines:

PIthis = h{this] = 1, for this = 1,2,
PI3 = (b A d - HUM € word) A (¢ = last(word) = BUG) A
A length (word) = h3 A (loc = 1 - HUM, BUG € word V
vV message = <no_bananas_today>)
= PIé A length(word) = h3,
GI = h, = hl[1] + n[2].

3

25

process monkey[2]';

beai
proc eat(x) {PIt is} egin

{PItZiS} "eat x" {PIthis}
gﬂé-{PIthis}
{nlthis] = 0} begin
{h[this] = 0} <hlthis] := 1;
{PIthis} call writer'.type> {PIthis}
end {PIthis}

process writer';
b, ¢, d : bool; word : seq[2] syllable; message : seg[16]char;

proc type

{PI3} begin {PIB} h3 := h, + 1> {PI!

3 3
if true : {PIé A length(word) = h3 -1}

A length(word) = h3 -1}

word := word“<HUM> {PI. A last(word) = HUM}

3
b := true; ¢ := false; d@ := true {PI3}
true : {PIé A length(word) = h3 -1}
word := word~<BUG> {PI3 A last(word) = BUG}

if ¢ : {PI; A last(word) = BUG A c}
d := false; b := true {PI3}
e {PI3 A last(word) = BUG A lc}

¢ := true {PI,}
end {PI,}
end {PI,}
<end {PI,}
{h3 = loc = 0} begin
{h3 = loc = 0} b := ¢ := 4 := false;
message := word := <> {PI3 A 1p}

when b : {b A PI3}
ifcAad:{bAcaAdAPI]} {HUM, BUG € word A PI.}

loc := 1; {PI. A loc = 1}

<E§££_monkey[f]'.eat(banana)>;
<g§ii_monkey[2]'.eat(banana)>
{PI3 A loc = 1}
e A) : {P13 A e Ad)?

message := <no_bananas_today>;

{PI, A message = <no_bananas_today>}

3
loc := 1 {PI3 A loc = 1}
end {PI3 A loc = 1}
end {PI, A loc = 1}

3
end {PI3 A loc = 1}

1) The bracketed sections in Pé are verified easily. First we check the
annotated bracketed sections in process array monkey', and then the annotated

when-statement.

a) We have to prove:
{hlthis] = 0}< nhlthis] := 1; call writer'.type >{p1_; 3-
By R11, this reduces to
{hlthis] = 0 A GI} hlthis] := 1; call writer'.type {PIthis A GI}.

Hence, by application of Al, we have to prove:

— - : 1
{PIthis A hy o= hi{1] + n[2] 1} call writer'.type {PIthis A GI}.
which, by R12, reduces to proving (assume this = io):
{PIiOﬁnh3 = h[t] + h[2] - 1 A PI} hy := hy + 1
{PIé A length(word) = h, - 1 A PIiO/\GI},
{PIé A length(word) = hy - 1} if ... end {PI3}

(cf. the proof outline of process Pé),
{PI, A PIj AGI} skip {PI; A PI; AGI},

which all follow from the definitions, the proof outline of P_, Al and A2.

3
b) to prove: {PI3 A 1b} when b : if ... end end {PI3 A loc = 1}
For this when-statement in P!,

3
P13 A 1b A b =» false holds,

Which by al, A3 and R7 validates

{PI3 A 1b A b} if ... end {PI3 A loc = 1}.

Furthermore, PI3 A lb A lb = PI..
The proof concerning the rest of the premiss for this application of R9 is
outlined in the proof outline of Pé.

A 1b} when b : if ... end end {PI3 A loc = 1}.

By R9, we conclude {PI3

2) Thus we proved

{n[i] = o} Initi {PIi} for i = 1,2 and

{h3 = loc = 0} In1t3 {PI3 A loc = 1}.

Application of R13, realizing that the location counter loc is used to encode
after (Initwriter)’ that {p} s {after(S)} is an axiom - cf. [5] - and application
of R3 and R4 results in

5 APIAGIA loc= 1}

{word = <HUMBUG> V message = <no_bananas_today>}.

{nf1]l=nl2]= hy = loc= OA.GI}[Pi" péh Pé]{PIlA PI

27

Now, analogous to part (3) in sections 5.1. and 5.2., succesive application
of R14 and R6 (with 0 substituted for h[l], h[2], h3 and loc) finishes the

proof of

{true}[P1||P2||P3]{word= <HUMBUG> V message = <no_bananas_today>}

Q.E.D.

5.4. Proof of example 3.4.

In order to prove
{value=nA 0<n<m}luser | calculate[1]ll ... Il calculatelm]]l{value=n!}
we choose the following invariants and proof outlines:

I = PI_ = value = nl,
user gef O

PI = E i = . s 0
calculate[this]gef PI g = txue, for this =1, , M,

GI = true,

process user';
value : int
{value=nA O0<n<m} begin
{value=nA 0<n<m}<call calculate[1]'.
faculty(value,value)>{PIO}
end {PI }

process calculate[m]';
proc faculty(x : int#y : int)
{x=aA0<sa<m - this} begin>
{x=aA0<a<m - this} if x>0 : {x=aA0<asm - this}
<call calculate[succl'.
faculty(x-1, y)>
{y=(a~1)1Ax=a} y := yXx
{y=al}l
| x=0 : {xk=aAna=0}y :=1 {y=al}
end {y=al}
<end {y=al}
{true} begin skip end {true}

Next, the annotated bracketed sections within the processes will be proved;

the other annotated statements are easily verified using Al, A2 and R7.

28

We want to prove:

{value = n A 0 £ n < m}
<call calculate[1]'.faculty(value,value)>

{value = n!}

i.e. validity of the bracketed section in process user.

The request call calculate[1]'.faculty(value,value) leads to the request

call calculatel2]'.faculty(value-1, y) in process calculate[1]', etc., until

the request call calculate[n+1]'.faculty in process calculateln]' ends the

iteration. The processes requested in this iteration are defined, because

n+l < m.
a) Firstly, we have to prove this last request, i.e.,
{x=1A1<n+1<m}<call calculateln+1]'.faculty(x-1, y)>{y=0lAax=1}.
By Rl1l and the definition of GI, this leads to proving
{x=1A1<n+l1<m} call calculate[n+1]'.faculty(x-1, y) {y=0lAx=1}.
For this, we must prove (R12)

{x=1A1<n+t<m} x[n] :=x-1 {x[n)l=0Ax=1},
{x[n] =01}
if x[n]>0: {false}
<call calculate[n+1]'.faculty(x[n] -1, y[nl)>
{false} yln] := y[n]l ¥ x[nl{false}{y[n]l=o!}
| x[n]l=0: {x[n]l=0}
ylnl:=1 {y[n]l=01}
end {y[n]=01!}
{y[nl=0tAax=1} y:=ylnl{y=0lax=1},

which are valid by A1, A3, R11 and R7, the if-rule.

b) Secondly, assuming call calculate[n+l - (j-1)]'.faculty(j-1, y) in
calculate[n+l -~ j]' to be correct for 1 < j < n, we must prove as induction
step call calculate[n+1 - j]'.faculty(j, y) in calculate[n-j]' to be correct.

Hence we have to prove:

{x=3+1Al<j<nAam>nl<call calculate[n+l - j]'.faculty(x-1, y)>
{y=31Ax=3+1}
We have: {x=j+l1Al<j<nam>n} x[n-j] := x-1

{x[n-jl=jAal<j<nAam>nAx=j+l},

{x[n-31=3jA1<j<nAm>n}

if x[n-3j1>0: {x[n-j1= (3=-1) + 1A 1< j<nAm>n}

<call calculatel (n+1) - (3-1)]1'.faculty(x[n-j1 -1, yIn-31)>

(this call is correct for 1< (n+l) - (j-1) € n+l <m)
{x[n-91= 5-) +1Aay= (5-1) 1}

(by induction hypothesis)
y[n—j] X x[n—j]
i}

| x[n-3j)1=0: {false}
{false}yln-31=31}

end {y[n-31=3l},

yin-j] :

{yln-j1

{yln-31=3tAax=3+1} y:=yln-31{y= 3l A x= j+1},
which by R12 yields the result.
c) Thirdly, from a) and b) follows by induction

{x=nA0<n<m}

<call calculate[2]'.faculty(x-1, y)>{x=nAy= (x-1)1}

in the proof outline of calculate[1]'.

By reasoning as above, we obtain

{value=nA 0< n<m}

<call calculate[1]'.faculty(value,value)>{value=nl}.

2) By the proof outlines, we deduced

{value=nA 0<n<m} InitO {PIO}, and

{true} Init, {PIi}, for i=1, ..., m.
Application of R13 yields
{vdue=nAOSn<mHP6"“."Péﬂvdme=nﬂ,
by the definitions of PIi and GI.
Finally, rule R14 delivers the result:

{value=nA0< n<m}[PO ... Pm]{value= nl}, i.e.,

{value=nAa 0<n<m}luser | calculate[1]ll ...l calculatelm]]l{value=n!}

Q.E.D.

The proof given aboven reflects that in the DP processes concerned no

synchronization takes place, which differs essentially from the kind encountered

when considering procedure calls in sequential programming. Yet one might wish

to make the DP-synchronization explicit. This can be done as follows:

Rename process user as calculate[0]. Then the functioning of the

network can be visualized as below after call calculatel[1].faculty(n, value)

occurs:
n n-1 1 0
- . - -
calculate[0] ¢ calculate[1] © # calculateln] < calculate[n+1]
« - « «
n! {(n-1)1 1 1

Introduce auxiliary variables alj, j+1], alj+1, j] for §=0, ..., n,
by assumption initialized to 0. Replace <E§ll_calculate[j+1]'.faculty(n—l, y) >
in calculate[j]' by <alj, j+1] :=n-j; call calculate[j+1]'.faculty(n-1, v)>,
3=0, ..., n, and add alj, j-1] :=y as last instruction to the body of faculty
in calculate(jl', j=1, ..., n+l.

n
Now GI = j@b(a[j+1, jl#0->alj+1, jl=alj, j+1]1) expresses the functioning

of the network.

Also, one could introduce auxiliary variables recieve[j], §=0, ..., n

(by assumption initialized to 1), and replace

<alj, j+1]:=n-j; call calculate[j+1]'.faculty(n-1, y)> by

<alj, j+1] :=n-3j; call calculatel[j+1]'.faculty(n-1, y); receiveljl := y>.

Then PIj = recieve[j]l=alj, j+1]! expresses the I/O-behaviour of call
calculate[j+1]'.faculty(n-7, y) in process calculatel[j]'.
Obviously, superposing all this on top of the proof sketched above, amounts

to adding a chain of trivialities.

Finally, in an alternative version of this program, using dynamic
process creation for execution of faculty(x, y), the proof-theoretical
environment of calculate .. would be based upon formalization of the

this
functioning of the channels

n-pred n-this
- -
calculate hig calculate hig calculate
pred - this < succ
(n-pred) | (n~this) !
by means of:
= = |
EIthis <athis,pred # O_’athis,pred (apred,this)) A

(#0-a Y,

asucc,this succ,this= (athis,succ
in analogy with the above.

Again we expect the correctness argument to amount to little more than
superposition of a chain of trivialities on top of the correctness proof for
the well-known sequential recursive procedure faculty(n, y), from which this

exercise in distributed programming originates anyhow.

31

6. CORRECTNESS OF A DISTRIBUTED IMPLEMENTATION OF A PRIORITY QUEUE

In this section we give a proof for the following sorting program, which

was first described by Brinch Hansen in [4].

process sort[n];
here : §ggﬂ2]int; rest, temp : int
gzgg_put(c:int)ﬂhgg_here.length <2 : here.put(c) end
proc get(#v:int)when here.length= 1 : here.get(v) end
begin here := [1; rest := 0;
here.length = 2:
if herel1] < here[2] : temp := here[2]; here := [here[1]]
| here[1]> here[2] : temp := here[1]; here := [here[2]]

end;

call sortl[succl.put(temp); rest :=rest+1
| here.length= 0A rest>0:

Egii_sort[succ].get(temp); rest :=rest-1;

here := [temp]
end
Brinch Hansen claims the program could be used as a priority scheduling
queue as well, but when trying to prove it, we discovered an error. This is
mended by substituting the guard here.length < 2 in proc put by here.length =
= 1 v (here.length = 0 A rest = 0).

In the following proof outline kept and away are auxiliary variables,
denoting the bag of elements in the current process and of those sent to the

following process, respectively.

For the union of bags we use the symbol L. The notation con(here), in the

assertions, stands for the bag of contents of here.

process sort{n]';

here : seg[2]int; rest, temp : int

proc put(c : int)
{PIAGI} begin {PIA GI}> {PI}
when here.length=1vVv (here.length= 0A rest=0):
{PIA (here.length= 1V (here.length=0A rest=0))}
here.put(c) {post p}
end; {post p}

32

<{GI A postp}
kept := kept u{c} {PIA outp}
end {PIA outp}
proc get(#v:int)
{PIAGI} begin {PIAGI}> {PI}
when here.length=1: {PIA here.length= 1}
here.get(v) {postg}
end; {postg}
<{GIA postg}
kept := kept - {v} {PIA outg}
end {PIA outg}
begin {kept = away = @}
here :=[]; rest := 0 {cyinv}
cycle here.length= 2 : {PIA here.length= 2}
if herel[1] < here[2] : temp := here[2]; here := [here[1]]
| here[1]>here[2] : temp := here[1]; here := [here[2]]
end; {prel}
<call sort[succ]'.put(temp); rest := rest+ 1;
away := away iL{temp}; kept := kept - {temp}>
{cyinv}
| here.length= 0A rest>0: {PIA here.length= 0A rest> 0O}
<call sort[succ]" .get (temp); rest := rest-1;
away := away - {temp}; kept := kept LL{temp}>; {post2}
here := [temp]
{cyinv}
end

end

where PI = 0< here.length< 2A rest2 0A rest= laway! A kept = con (here)

A (here.length> OA rest> 0-here[1] < min(away)),

n-1 :
GI = away[i] = away[i+1]u kept[i+1],
l:
postp = O<here.lengths< 2A rest 2 0A rest = |away! A keptu {c} = con (here)
A (rest> O-here[1] < min(away)) ,
outp = awaylpred] u{c}=awayl[thislu kept{this]
n-1
A (1 # pred— awayli] = away[i+1]u kept[i+1],
l=
postg = here.length = 0A rest2 0A rest= |lawayl A kept = {v}

A (rest> 0-v<min(away)),

33

outg = awaylpred] = awaylthis] 1i{v} A kept[this]l =0

A (lTway[this]|> 0-v<min(awayl[this]))
n- .
A (i # pred—- away[i] = away[i+1]u kept[i+1]),

cyinv = PIA | (here.length= 2V (here.length=0A rest>0)).,

prel = here.length= 1A rest2 0A rest= |laway| A kept = con(here) 1L {temp}

A herel[1] € min(awayl {temp}),

post2 = here.length= 0A rest 2 0A rest= laway| A kept = {temp}

A (rest> 0- temp € min(away)) -

We want to prove:
{aux = away[0] = away[1]u kept{1]} call sort[1]'.get(elem) {elem=min(aux)},

i.e., the element output by sort[1]'.get is the least of all elements still
in the sorting process. To prove this we shall have to prove the correctness
of the assertions in sort[1]', and therefore in sort[2]', and so on.

We prove by induction the correctness of the assertions in sort{il]’
for i from n downto 1, assuming sort[n+1]' will not be called (this is the
case iff rest{1] <n-1, which we shall not prove now). The assumption tells
us sort[n]' will never go into the cycle. So, the correctness of the initia-
lization part of sort[n]'is trivial.

To prove the correctness of the procedures we have to know the meaning
of here.put and here.get. Obviously here.put stands for here := here~[c] and
here.get for v := here[1]; here := []. Now {p} here.put(c) {g} and
{p} here.get(v) {q}, with the p and g defined above, follow by Al, R2 and R3.
Note the importance of here[1] < min(away) in PI in the deduction of outg.

Because in both cases the precondition is PI, the first and last premisses
of the when-rule are equivalent and we just proved them; the second premiss
is a mere triviality, so by the when-rule we prove the part between > and <
of the procedures. The parts before > and after < are easy.

Note that in this proof we did not use the induction hypothesis, so the

proof holds for all processes.

Now we shall prove the correctness of the proof outlines for the initial
statements of sort[i]' for i < n,assuming we have a complete proof for sort[i+1]'.

By the usual rules the part before the cycle is correct.

To prove the cycle, we have to prove, by R9':

{PI A here.length 2} if ... > {cyinv},

{PI A here.length = 0 A rest > 0} <call ...[temp]l {cyinv},

34

2} if ... A{cyinv},

{cyinv A here.length

{cyinv A here.length = 0 A rest > 0} <call ...[temp] {cyinv},

cyinv A 1 (here.length = 2 v (here.length = O A rest > 0)) - PI.

Because cyinv - PI it is sufficient to prove the first two clauses. The
difficult parts are the bracketed sections for which we give more elaborated

proof outlines (the other parts are left to the reader):

a) {prel}
<{prel A GI} call sort[succ]'.put(temp) {outl}
rest := rest + 1; away := awayl {temp}; kept := kept - {temp}
{postl A GI} > {postl},

with postl = cyinv,
prel is defined as above,
outl = here.length= 1 A rest 2 OA rest= |away!| A kept = con(here) L {temp} A
Ahere[1] < min(awayl {temp}) A away[this]i {temp}= away[succ]i

n-1
I kept[suce] A igﬁ(i¢ this- awayl[i] = away{i+1]u kept[i+1]).

To prove {prel AGI} call sort[succ]l'.put(temp) {outill}.
We must prove(R12):

{prel A GI A PI } clthis]:=temp {GIA PI A prell,
succ succe
{PIsucc} Body .put {postpsucc} and (i)
{postp A prel AGI} keptlsuccli=keptlsucclu {c[this]} {outla PI }.
succ succ

But this is not strong enough, so we add a new auxiliary variable freeze to

hold the value of temp. The clauses now become:

{pret AGIA PI_ oo N freeze= temp} clthisl:= temp
{GIA PT_oc? clthisl = freeze A prel A freeze = templ,
{p1 A clthis] = freeze} Body.put {postput A clthis] = freezel,
succ succ
{postputSucc A clthis] = freeze A prel A freeze = tempA GI}

kept[succ];= kept[succ].u. {C[thlS]} {Outl A PISUCC}.

The first and last clause hold by Al and R3; the second clause without freeze
(as in (1)) was correct by our induction hypothesis. But now a problem occurs
for which we need the addition of at(S) in the when-rule: if we want to
deduce clthis] = freeze we have to know PISUCCA‘b—*c[this]= freeze, but that
would be impossible without the use of at(S). We now use a new PI which is

PIA (at(S) = clpred] = freeze) where S is the when-statement in proc put. By

choosing
pl = PI A clthis] = freeze,
succ
p2 = prel A freeze = temp, and
p3 = postp A clthis] = freeze,

succ

35

in the application of the when-rule we obtain:

{prel A GI A freeze = temp} call sort[succl'.put(temp) {outill}.

By substituting temp for freeze we get the statement to be proved (R6 and R3).

The remainder of this proof outline follows by application of assignment
axiom (Al), consequencerule (R3), compositionrule (R2) and finally bracketed

section rule (R11).

b) The other proof outline is:

{pre2}

<{pre2 A GI} call sort[succ]'.get(temp) {out2}

rest :=rest - 1; away := away - {temp}; kept := keptiu {temp}
{post2A GI}> {post2},

where post2 is defined above,
pre2 = PIA here.length= 0A rest> 0,
out2 = here.length= OA rest> 0A rest= |away| A kept = con (here) A
A temp € min(away) A away[this] = away[succ]i {temp} A

A keptlsuccl = @A I:gul (i# this- away[i] = kept[i+1]u away[i+1]).

To prove {pre2A GI} call sort{succ]'.get(temp) {out2}.,
we have to prove, by R12:

2 .
{pre2 AGIA PIsucc} skip {pre2 A GIA PIsucc}'

{PIsucc} Body.get {postgsucc},
{postgsulcc A pre2 A GI} kept[succ] := keptlsucc] - {vlthis]};

temp := v[this] {out2A PI 1.
succ

The first clause is trivial; the second one was proved (induction hypothesis)
in the proof of sort[succl]', and the third one follows by Al, R2 and R3. By
these same rules one can prove the remainder of the bracketed section. Applica-

tion of the bracketed sectionrule (R11l) yields what we wanted to prove.

Now we have proved the premiss, belonging to this application of R9',

and, thereby, we proved the initial statements of the sorting processes correct.

The proof of
{aux = away[0] = away[1]i kept[1]1} call sort[1].get(elem) {elem= min(aux)}

is analogous to the proof of the second bracketed section, and justifies the

heading of this paragraph.
Q.E.D.

36

7. CONCLUSIONS

We have developed a deductive system for proving properties of DP
programs.

Unfortunately the system up to now is not complete w.r.t. proofs of
properties about programs not free from deadlock w.r.t. external requests.

This will be shown by the following program:

pProcess Pl;

X : int

proc prl begin skip end

begin x := 0; call P,.pr2(x) end

2

process P2;

proc pr2(#y : int) if true : y .prl

37; call P
73

1

| true : vy

end

begin skip end

The program will deadlock, when the first alternative of the if-statement
within the procedure pr2 is chosen on execution of Pl's request (cf. 2.5).
Consequently, after termination of the program x = 73 holds. However we
are not able to prove exactly this post-assertion, because the assertion
depends on information about (durable) suspension. In the present system,
we can prove x = 37 v x = 73. The proof is easy and therefore omitted.

We are still working on this problem and, at present,we are indeed able to
prove the program above w.r.t. the post-condition x = 73. But more study

is needed for the analogous case with guarded regions.

Besides, this phenomenen raises exciting possibilities for the implementation
of recursion within a fixed network of distributed processes.

Namely, by allowing inter-process communication in the requesting

process, during its suspension. Also, in this direction, research is going

on, in order to find the appropriate version of Scott's induction rule.

Another complication concerns the index mechanism of an array of processes.
With the proof system, so far, we cannot handle cases in which the existence
of requested processes in the array, i.e., their index being between the

array bounds, is of importance to the proof.

37

The "germ" of our proof system is the separation of proofs of the various
processes. The proof of a single process, i.e., program module in the
terminology of [7], depends on assertions that cannot be modified by the
concurrent actions of other processes. To this end, private auxiliary variables
(to store the history of the process, as far as concerned), process invariants,
a global invariant, and bracketed sections (to indicate elementary, i.e.,
atomic actions) are introduced.

Faith in this method was gained, in particular, through Owicki's paper [71.
In this paper, Owicki presents an analogous (w.r.t. auxiliary variables)
method for proving shared data types, which are similar to the common procedures
in DP. For each program module, so called, "private" variables are included, to
store its sharing history w.r.t. a particular data type. To each data type a,
so called, "global" variable is added, to store its sharing history w.r.t.
the program modules. In this way, "private" and "global" variables can be
charged only when sharing of this particular data type takes place. Thus, our
auxiliary variables (AV) are similar to Owicki's "global" and '"private"
variables. '
Our particular set-up is motivated by our wish to prove at a later stage
relative completeness of our proof system,using techniques from K.R. Apt's

manuscript of a completeness proof for the CSP-proof system of [2].

In this paper global program control is reproduced with the help of
auxiliary variables and the global invariant, GI, while local process control
is modelled by the use of variables and auxiliary variables private to the
process and by the process invariant PI. While GI registers the communi-
cations between the processes, PI functions as go-between for the variables
of the process and the variables in GI. In section 4.1, we showed that PI
alone was not sufficient, whereas certainly GI cannot take the role of PI in
itself, because we want to keep the proofs of the processes private w.r.t.
the variables used in them; besides, their extensions do not coincide (e.g.
PI need not hold at the beginning of a process). The arguments leading to

the present system have all been motivated within the article.

Finally we want to thank Krzysztof Apt for the opportunity to present
and discuss this proof system in its various stages, and, especially, Nissim
Francez for the discussion of this material during his visit at the Uni-
versity of Utrecht in August 1980, during which the outline of the system
came in sight. We are grateful to various members of the Department of
Computer Science of the Mathematical Centre in Amsterdam for the opportu-

nity to present and discuss an earlier stage of the system.

38

[1]

[2]

[3]

[4]

[5]

[7]

[8]

(9]

[10]

REFERENCES

Apt, K.R., Recursive assertions and parallel programs,

to be published in Acta Informatica.

Apt, K.R., N. Francez and W.P. de Roever, A Proof System for
Communicating Sequential Processes. ACM Trans. Program.

Lang.-syst. 2, 3(July 1980),359-385.

Bakker, J.W. de, Mathematical Theory of Program Correctness, Series

in Computer Science, Prentice-Hall International, 1980.

Brinch Hansen, P., Distributed Processes: A Concurrent Programming

Concept., Comm. ACM 21, 11 (November 1978), 934-941.

Lamport, L., The Hoare's Logic of Concurrent Programs. Acta Inf.

14 (1980), 21-37.

Levin, G.M., A Proof Technique for Communicating Sequential Processes
(with an example), Techn. Rep., Computer Science Dep., Cornell

University, 1979.

Owicki, S., Specifications and proofs for abstract data types in

concurrent programs, Rep. TR 133, CRC Stanford University, 1977.

Owicki, S. and D. Gries, Verifying properties of parallel programs:

An Axiomatic Approach, Comm. ACM 19, § (May 1976) 279-285.

Owicki, S. and D. Gries, An axiomatic Proof Technique for Parallel
Programs I. Acta Inf. 6 (1976) 319-340.
Welsh, J., A.M. Lister and E.J. Salzman, A comparison of two notations

for Process Communication. Department of Computer Science, University

of Queensland, St. Lucia, Q1ld 4067.

