A BASIS FOR DATAFLOW COMPUTING

A.P.W. BShm and J. van Leeuwen

RUU-CS-81-6
March 1981

Rijksuniversiteit Utrecht

Vakgroep informatica

Princetonplein 6
Postbus 80.002

3508 TA Utrecht
Telefoon 030-53 1454
The Netherlands






vakgroep informatica R.U, Utrecht

A BASIS FOR DATAFLOW COMPUTING

A.P.W. BShm and J. van Leeuwen

Technical Report RUU-CS-81-6

March 1981

Department of Computer Science
University of Utrecht
P.0O. Box 80.002, 3508 TA Utrecht

the Netherlands






A BASIS FOR DATAFLOW COMPUTING*

A.P.W. BShm and J. van Leeuwen

Department of Computer Science, University of Utrecht

P.O. Box 80.002, 3508 TA Utrecht, the Netherlands

Abstract. Current models cof computation primarily are abstractions of
traditional machine architectures. As recent advances in technology are
leading to new principles for building machines, new principles for per-
forming computations are recognized with it. Expanding on recent studies
of Dennis et.al., we present a purified model of computation by data-
flow as it appears on a lowest level of specification. Several connections
to VSLI systems are indicated. We prove that for every partial recursive
function f there is a dataflow net N that computes f and that has the
additional property that it can be used for pipelining the computation

of f-values on any sequence of inputs.

1. Introduction

Models of computation (see e.g. Minsky [10]) enable one to prove funda-
mental results about the power and limitations of real or proposed machine
architectures. Much of the present theory of computation has resulted from
the detailed analyses and abstractions of "von Neumann" architectures. As
modern technology seems to be moving away from such traditional architec-
tures, we need to revise our ideas about computation and the way it is
performed accordingly. In this paper we shall explore the notion of compu-
tation by dataflow.

A dataflow computation is specified by a directed graph (a dataflow net)

in which the nodes represent processing elements and the arcs represent
data paths. A processing element can be a single instruction or a sub-
program. There is no sequential flow of control in executing a dataflow
computation. Instead, processing elements are activated by the arrival of
their operands. Since many "instructions" may be activated by data at the
same time, a high degree of parallellism can be achieved.

Using dataflow nets as "programs", a very different form of computer is

* A preliminary version of this paper was presented at the first meeting

of the Working Community on Programming and Computer Architecture, Amsterdam,
Nov. 6, 1980.



required to realize the intrinsic parallellism of execution in a suitable
hardware organisation. Experimental dataflow computers are currently under
construction at a number of institutions (including e.g. MIT, the University
of Utah and Manchester University). Viewed from a different angle, there is
nothing against letting processing elements be actual processors and arcs

be wires. A dataflow net thus becomes the specification of an asynchronous
design that may well be suited for implementation on a chip by means of
current VLSI technology.

Dennis [4] has proposed a set of simple processing elements which he
considers primitive to all dataflow computing. Fosseen [5] reportedly proved
that these primitives indeed provide universal computing power. Recently
Jaffe [7] extended the analysis of the framework proposed by Dennis, ex-
plored the connections with the theory of program schemata and proved the
universality by simulating Turing machine computations in dataflow.

In Dennis' model a distinction is made between "control"-data and "data"-
data, as two separate flows through the dataflow net. Corresponding to it,
the primitive processing elements used have separate "gates" for control-
data and data-data. In this paper we shall present a model in which this
distinction is removed and only one, uniform type of data is used to drive
all computation. The primitives we use are more elementary than those of
Dennis and provide a very simple basis for dataflow computing. In sections
2 and 3 we shall introduce and explain the details of our model.

In Sections 3 and 4 we shall prove that our simplified model again has
universal computing power in the sense of computability theory. Our proof
is very different from Jaffe's [ 7 ] and shows direct constructions of
dataflow nets for the primitive functions and standard operations from
recursive function theory (see e.g. Rogers [111). The constructions are of
interest in view of the relation between dataflow computing and Backus'
noticn of functional programming ([2]), which derives much of its formalism
from recursive function theory as well. Our main result will be that for each
partial recursive function f there is a dataflow net to compute f that can
be used for pipelining, i.e., for producing a continuous stream of outputs
(f-values) corresponding to a continuous stream of inputs (argument values)
without the need to ever reinitialize the net in between. Several applica-

tions of this result will be given in section 5.

2. Dataflow nets

In its most primitive form, a dataflow net is a directed graph in which
the nodes represent processing elements and the edges represent datapaths.

Some datapaths will not explicitly start at a node (the input-lines of the



net) and some will not explicitly end at a node (the output-lines of the
net) .
Data is presented in "tokens". Tokens are indivisible, but can be

distinguished through an interpretation. In this paper we shall assume

that all tokens are natural numbers. Tokens can be transmitted over ex-

isting datapaths. Processing elements digest tokens from their incoming
edges and emit (send) new tokens over their outgoing edges. One cycle
of a processing element normally consists of the consumption of one token
from each incoming edge, followed by the production (and subsequent emis-
sion) of one token on each outgoing edge. The execution of a cycle is very
similar to a "firing" in the terminology of Petri-nets. Processing elements
are operators, i.e., fixed token-mappings of some variety. Except that
cycles and token~transports take finite time, no further assumptions are
made whatsoever about the speeds or relative speeds of the processing
elements (cycle-time) or when processing elements choose to take in a next
batch of tokens (initiate a new cycle). Dataflow computation is completely
asynchronous. It implies that tokens may have to queue up along a data-
path, if the node at the other end is not processing fast enough. In some
models no gueueing is actually permitted and processing elements will not
"fire" unless the outgoing edges are free.

The many options in specifying a dataflow net have led to a number of

different models, as shown in figure 1. Note that in all dataflow models,

INSERT FIGURE 1 ABOUT HERE

except in Kahn's [ 8] and Wadge's [13], the processing elements are assumed
to be "token-level functional". It means that, given the same tokens on its
incoming edges, an operator will always produce the same tokens on its out-
going edges, independent of the relative times of arrival of incoming tokens
and of the state of the computation. Since dataflow computations are asyn-
chronous, no functionality is guaranteed at the "global" (input/output)
level unless proven.

Data is initially presented to a net by sending the appropriate tokens
over the input-lines. From such a moment onwards, the computation is driven
by the "flow of data" rather than by some kind of explicit "flow of control".
Output (as tokens) will eventually be emitted over the output-lines. In the

precise model used in this paper processing elements are allowed to fire



(i.e., execute a next cycle) only when all incoming edges have at least

one token, with one well-defined exception: the JOIN-operator (see section
3) . Tokens may queue, if needed. If they do, then a processing element will
always pick the front element from each queue on its incoming edges, when

it starts up a next cycle. The dataflow nets that will be designed in this
paper actually will operate with queue-sizes restricted to 1.

Definition. A dataflow net is said to compute a (partial) function f : nf(»:m
when for all x,, ..., x, € N the net, upon receiving tokens representing

1 k

3 to X, over distinguished input-lines, will eventually output one token

v if and only if f(xl, ey xk) is defined and f(xl, ey xk) = V.

Given a dataflow net N computing some function £, it is to be expected
that tokens will be left in the net even after the output f(xl, .oy xk)
is produced. It means that N must be "cleaned" or re-initialized when it
is to be used for another computation of an f-value, as otherwise the data
left from the previous computation would foul up the "program" which,

after all, is completely data-driven.

Definition. A dataflow net computing a (partial) function f is said to be
weakly pipelined if the net does not have to be reinitialized (i.e., cleaned)
whenever a next f-value is to be computed after a previous computation has
ended. A dataflow net computing a (partial) function f is said to be pipe-
lined if, upon receiving any continuous stream of k~-tuples 51, 52, ... for

which f is defined, the net will output a stream of values f(xl), f(x2),

... (in this order) without the need to ever reinitialize the net.

While the idea of pipelining computations certainly is not new (see e.q.
[14]), no systematic study has apparently been made of the limits to pipe-
lining in dataflow nets. Note that pipelined nets certainly are weakly pipe-
lined. What functions can be computed (pipelined or not) will depend on the
primitive operators chosen to build dataflow nets from. Traditionally, a
set of primitives due to Dennis [4] is used. As we have simplified the
model and eliminated control-flow signals as a distinguished type of data
(as exploited by Dennis c.s.), a modified and more elementary set of primi-~
tives is required as a basis of dataflow computing. The next section will

introduce and illustrate the primitives we propose.

3. Primitive processing elements and pipelining

We shall use the following primitive processing elements ("boxes",

operators) as ingredients for dataflow nets:



(1)
0
:
(ii) lf
DUP
o b
(iidi) l
SINK
(iv) I
+1
l x+1
(v) lx
-1
l x=1
X Y
(vi) i l
TES
y if x=0

specification: the 0-box emits a value (token)

"O" once and is silent ever after.

specification: the DUP-box duplicates any in-
coming token (x) and emits a copy over either of

its two outgoing edges.

specification: the SINK-box swallows and destroys

any incoming token.

specification: the "+1"-box increments any in-
coming token (x) by 1 and emits the new value

over its output line.

specification: the "-1"-box decrements any incoming
token (x) by 1, provided x> 0, and emits the re-
sulting value over its output line. If x= 0, then

the O-value is passed on unchanged.

specification: upon receiving two inputs x and
vy on distinguished edges, the TES-box routes y
"left" or "right" (i.e., on distinguished out;

going edges) depending on whether x equals 0 or not.

y if x#0

A very special box we include among the primitives is the following, which

does not require that tokens are available on both its incoming edges

before it actually fires.

In fact quite the opposite is required: never

shall there be a situation in which tokens are presented at both incoming

edges simultaneously.

on the use of this box.)

(vii) (X)-l lX(—)

JOIN

|«

(Note that this is very strict semantic constraint

specification: the JOIN-box lets any incoming token
pass through unchanged, provided it never finds
tokens present on both incoming edges at the same

time.



The constraint on the use of the JOIN-box is needed because, when two
tokens would present themselves simultaneously, some decision would have

to be taken as to what token should pass through first. Since no assump-—
tions about cycle- and transport-times are made, the result of the JOIN-box
would be as unpredictable (read: "non-functional") as the arrival times

of the tokens, if the restricticn were not made. For ease of use we shall
introduce one more box, although it is not strictly independent of the

primitives (i) to (vii):

X y
(viii) é l specification: upon receiving tokens x and y on
PROJ distinguished input-lines, the PROJ-box will
ly swallow x and pass on y over its outgoing edge
unconditionally.

It would seem that the PROJ-box is merely a short-hand for the following

"net":

but here we encounter a first fallacy in designing dataflow nets. When

the JOIN-box is slow and the TES-box latches in pairs, say, (O,yl) and
(1,y2) right after one-another, then the JOIN-box receives tokens y1 and

y, on its incoming edges simultaneously: a clear violation of the constraint
on the use of JOIN-boxes! It is easily verified that the following graph

is a correct net, realizing the task of the PROJ-box:

TES

SINK




Since the TES-box is guaranteed not to receive a value O on its "x-port",
the value y is passed on in the same manner as in the PROJ-box. It can

be shown that the primitives (i) to (vii) are independent, considered as
isclated graphs. In an operating environment one would not need (i) and
could use any input and decrement it down to O to obtain a "one time 0" as
desired, or allow initial values on the lines to start with (marking). In
nets without inputs (generators, see section 5) the O-box is needed, to
start a computation.

The rules for building dataflow nets are straightforward. The notion of
(asynchronous) computation by a dataflow net is identical to that for
dataflow programs as in Dennis [4]. When nets are interpreted as VLSI-
designs, the primitives and their connecting datapaths would have to be
realized by means of transistors and wires, with drivers to transport
signals (tokens) along the wires. In the theory of dataflow computing,
however, the primitives are merely "transformers of data" that belong to
an elementary repertoire, without reference to a specific machine or
software implementation.

As an example, we will design a dataflow net for computing the function

f(x) =0. Figure 2 shows three possibilities. The net in figure 2.a is

formally correct, but is dead after firing once. The net in figure 2.b is
a better try. It yields an output O whenever another input is presented,
i.e., it is pipelined. But observe that there is no control that will prevent
the continuous duplication of zeroes around the cycle in figure 2.b (even
while no inputs are presented to the net) and, unless further precautions
are taken, large queues of zeroes can form on lines A and B. Note that no
queue of size > 1 would actually be required to let the net function correct-
ly. Finally, figure 2.c shows a dataflow net to compute £(x) =0 in a pipe-
lined fashion, that automatically avoids that there ever is a queue of
size >1 (except, perhaps, on the input line). An important problem in all
later constructions is to actually prevent cycles from running out of control.
Figure 2.a has shown a very simple reason of why a net can fail to be
pipelined. A second reason is that tokens, left behind from the computation
on a previous set of arguments, provide an improper and incorrect "offset"

for the computation on a next set of arguments. And a third reason is that



the next set of inputs may arrive "early" and mess up the entire ongoing
computation. The first two reasons should be handled by a proper design,
but for the third one can give a general construction to avoid it. Note
that for a truly pipelined net one may want just the opposite, with no
measures to actually avoid the opportunities for parallel computation. For
later constructions, however, it will be needed that a net is not entered
before the output from a previous "round" has been emitted.

Consider a dataflow net N computing a function f:

o [

]

and assume that N is weakly pipelined. Our aim is to augment N to a fully

pipelined dataflow net. To achieve it, we could surround N by a "sentinel"
that will only let a next set of inputs through after a message is re-
ceived that the output of thée previous computation has been emitted. An

attempt is made in figure 3. The sentinel construction given there is not

necessarily right. When some input-token X, was not consumed (hence, not
needed) during a particular computation, it i1s not prevented from residing
on the input-line until a next set of inputs arrives. If this happens, then
it may get mixed into other argument sets than originally intended! This
proves that (i) we must make sure that only nets are constructed which do
use all tokens from a given set of inputs (or which ensure that unused
tokens in one computation can only be routed to a safe place without harming
any subsequent computations) and (ii) the sentinel construction abides by
the same principle and forces that one token from every input-line is gated
in with every next "round". (In the latter case, the net N will route the

entire input-tuple consistently in the same manner.) The improved sentinel

INSERT FIGURE 4 ABOUT HERE



is shown in figure 4. Its correctness will be evident. Given a weakly
pipelined dataflow net N, the augmentation with a sentinel construction

as in figure 4 will be denoted as

X ce X
1 n

(LLLL T L L

LLLLLL L L LS

The idea of strictly letting only entire input-tuples into a (sub-)net at

any one time was implemented also by Rumbaugh [12] in his study of looping

in dataflow programs.

Theorem 3.1. Let N be a weakly pipelined dataflow net for some function
f and assume that N uses all input tokens, whenever it computes on a given

set of arguments. The augmentation of N by the sentinel construction yields

a fully pipelined dataflow net for f£.

Consider figure 4. The constructiQn guarantees that a next set of in-
puts is not gated in until the output from the previous computation with
N finally appears on edge A. Since N is weakly pipelined, this forces a
correct use of N, tuple after tuple. The same construction guarantees that,
in order for the output of N to reach edge A, all input-tokens from the current
set of inputs must have been gated in (along edge B, for every xi). Since N

uses all inputs, no input-token can stay behind and get mixed into new argument-

tuples that id did not belong to. O

The sentinel construction is intriguing because, when applied in the
construction of larger nets, it essentially makes that tokens are pulled
through by necessity, if a token is to appear on the output at all. Note
that the net obtained by applying the sentinel construction again uses
all input-tokens from a given set of arguments and thus it is ideally

suited for use in further constructions where this property must be guar-

anteed.

4. Computing the partial recursive functions by dataflow

We assume that the reader is familiar with Kleene's characterization

of the class of partial recursive functions (Kleene [9], Davis [3], Minsky

(101, Rogers [11]) . an inductive proof that every partial recursive function



can be computed by dataflow requires that we immediately prove the stronger
result that every such function can be computed by a pipelined dataflow

net. Por when e.g. F is defined by primitive recursion from g and h:

F(O,xl,...,xk) = g(X11-°°rxk)

F(y+1,x1,...,xk) = h(y,xl,...,x F(y,x .,Xk))

K’ 17"
then a dataflow computation for F would naturally involve the pipelined

use of a dataflow net for h. By theorem 3.1. it is sufficient that a weakly
pipelined net for h(that uses all tokens from every input-tuple) is avail-
able. The problem in designing (weakly) pipelined nets is how one can ensure
that nets are clean and ready for use after each iteration. It will appear
that it does not really matter whether nets are left completely clean

after each use on another tuple of arguments, as long as the values (tokens)

that remain on the various edges do not interfere with any later uses of

the net. Some constructions below are not spelled out in every detail.

Theorem 4.1. For every partial recursive function f there is a weakly
pipelined dataflow net N that computes f. Moreover, N uses all input-tokens
whenever it computes on a given set of arguments and automatically keeps

the queue-sizes on its edges bounded by 1.
The proof proceeds by induction on Kleene's formation rules for the
partial recursive functions. In the constructions below several typical

problems in the design of dataflow nets will be highlighted.

(i) the constant-0 function Z(x) = 0.

A net N to compute f according to the specifications of theorem 4.1.

was given in figure 2.c.

(ii) the successor function S(x) = x + 1.

This function is trivially realized as required by just using the

"+1'- box.

(iii) the projections ﬂi(xl,...,xk) = xi (1£igk).
For any i (1<1i<XK), "i is realized as desired for theorem 4.1.

by the following kind of dataflow net N:

le xi Iﬁk

SINK cee ce SINK




N routes all "unused" arguments to sinks, which therefore never interfere

with any other computation.

(iv) composition.

Let g be a partial recursive function of m variables and let

hl' e hm be partial recursive functions of k variables. Let F be defined
by composition from g and hl' caey hm

F(xll"‘lxk) = g(hl(Xlr---er)r c ey hm(xll-"lxk))
Suppose that g and hl’ ceey hm are computed by dataflow nets G and Hl' e

’ Hm respectively, which satisfy the requirements of theorem 4.1. It will

be obvious that the net N shown in figure 5 satisfies the requirements

INSERT FIGURE 5 ABOUT HERE

as well and computes F.

(v) primitive recursion.
Let g be a partial recursive function of k variables and let h
be a partial recursive function of k+ 2 variables. Let F be defined by

primitive recursion from g and h:

F(O,xl,...,xk) = g(xl,...,xk)

F(y+1,x1,...,xk) = h(y,xl,...,xk, F(y,xl,...,xk))
Suppose that g and h are computed by dataflow nets G and H, respectively,
which satisfy the requirements of theorem 4.1. It is much more involved
this time to obtain a valid dataflow net N for F. We shall approach the

construction in three stages.

value of y.
The part of the construction that takes care of this is shown in figure

6 for the case k = 2. (For k = 1 or k > 2 the construction is adjusted in

INSERT FIGURE 6 ABOUT HERE



an obvious manner.) The R-graph will be specified later; it is the part

of the net where the actual recursion for y > 0 will take place. For y = 0
all input-tokens will be gated to G, for y > 0 they will all be gated to
the R-graph. It follows that for y = 0 the net N (as known up to this point)
functions as desired, while for y > 0 there is no way the arguments can end
up in this same part of the net. Note that the JOIN-box is used properly,
since it can never occur that tokens come in from both directions (G and R)
simultaneouly, before the net would be used again. (This demonstrates that
the sentinel construction of section 3 would actually be needed to preserve
the wellformedness of this dataflow net in case it is pipelined, apart from
the reasons we saw until now!) The difficulties all accumulate in the design

of the R-graph.

Stage 2: implement the recursion in subnet R.

R will receive data only when y > 0. Its task is to compute and emit

the value F(y,xl,...,xk). The obvious idea is to compute it by generating

the values F(j,x .,xk) for j from 0 to y, through the pipelined use of

17"
H. The main part of the construction is shown in figure 7. Since H is weakly
pipelined but used in a fully pipelined manner, it is surrounded by the
sentinel-construction {(cf. section 3). This will guarantee that it "pulls in"
a full set of arguments for every next j. Some care must be exercised that
the various "cycles" (the unspecified subnets in figure 7) do not run wild

in generating next tuples of arguments for the recursion. In figure 7 this

is arranged by letting H generate a signal whenever another F(j+1,x1,...,xk)
is produced. The signal is 1 or 0, depending on whether the final j-value
(i=y) has been reached or not. The signal is gated to the various cycles.

As long as the signal is 0, a next tuple of arguments is generated and gated
towards H; this will involve incrementing j by 1 and reproducing every X -
Whenever the signal becomes 1, the current j-value and the xi's are gated
towards a sink. The signaling guarantees that the recursion is carried out

a proper number of times. More importantly, it guarantees that no unneces-

sary tokens are generated (like j-values larger than y), that queue-sizes

remain bounded by 1 and that all tokens are removed from the active parts



of the net (gated towards a sink) when the recursion is at an end. Provided
the remaining parts of the net are correctly specified, R satisfies all
requirements for being weakly pipelined! Note that R uses all its arguments

by virtue of the fact that the G- and (pipelined) H-graphs do so.

It is intriguing to note in figure 7 that the JOIN-boxes are correctly
used. In particular, there can be no delayed queueing on the incoming edges
of the JOIN-box in the lower right corner, because the "signal” will be
"pulled out" by all places that need it (which, in turn, are pulled by the
H-graph which needs a complete set of arguments) every time through the
recursion. All we need to do is supply the correct dataflow-logic for the

unspecified subgraphs in figure 7. The constructions are all rather immediatec

and shown in figure 8.a through e. The easy verifications are left to the
reader. Note that nowhere queue-sizes > 1 can occur ({except perhaps at

slow sinks).

(vi) minimization.

Let g be a function of k+ 1 variables. Let F be defined by minimiza-

tion from g:

F(xl,...,xk) = My[g(y,xlr-.-,xk) = o]

(The p-operator is to be interpreted as "the smallest such that".) Suppose
that g is computed by a dataflow net G that satisfies the requirements of

theorem 4.1. Again we shall construct a proper, weakly pipelined dataflow

net for F in stages.

To compute F, we shall implement the straightforward idea of computing
the values g(j,xl,...,xk) for j from 0, until a value "0O" is encountered.
The construction of a dataflow net for it is shown in figure 9. Since G

is obviously used in a pipelined fashion, it is surrounded by the sentinel



INSERT FIGURE 9 ABOUT HERE

construction (cf. section 3). This will guarantee that it swallows a full
tuple of arguments every time around. As long as the g-value remains non-
zero, a next j-value will be generated and gated to G, together with a
next set of copies of x1 to xk. To keep the cycles in the net from running
wild, we again use a signalling mechanism. After another g-value is gener-
ated it is tested. A signal will be set to 1 or 0, depending on whether
the g-value is 0 or not. The signal is gated to all places that need it
(using DUP-~boxes, which are not shown in figure 9). When the signal is O,
it will trigger the generation of a next set of arguments ot G. When the
signal is 1, it will direct the current j-value and the cycling xi—values
to sinks and, thus, remove them from the net. At the same time, the
current j-value is sent down the output line of the net as the result of

the computation.

Stage 2: wind up the usual details.

It can be noticed that the ingredients to the current construction
are very similar to that of (v). In barticular, the unspecified subgraphs
in figure 9 are identical to the corresponding graphs shown in figure 8.
Observe again that queues remain bounded by 1 in size and that all tokens
are directed to safe parts of the net (i.e., towards the sinks) when a
current computation ends. N uses all arguments by virtue of the fact that
(the pipelined version of) G does. Hence N is a weakly pipelined dataflow

net for F as required for theorem 4.1.

This completes the proof of theorem 4.1. Together with 3.1. we can use

immediately conclude our main result:

Theorem 4.2. ("the pipeline theorem") For every partial recursive function
f there is a pipelined dataflow net N that computes f. Moreover, no queues

in N need tc have size greater than 1.

We note that, conversely, every dataflow net can easily be simulated by
a nondeterministic Turing machine. The nondeterminism of the machine is
needed to "guess" which boxes will fire at any particular moment (viz.

which boxes will fire simultaneously). It follows that dataflow nets, as



defined in this paper, provide yet another basis for general computability
theory. (Compare Jaffe [7], where this conclusion was proved for the dataflow

primitives of Dennis [4].)

5. Some applications of the pipeline theorem.

From theorem 4.2. one can immediately derive a great many undecidability

results for dataflow computing. We shall only mention one.

Definition. A dataflow net is said to be well-formed when (1) it is correct
as a graphical structure and (ii) no occurring JOIN-boxes will ever receive

tokens on both their incoming edges simultaneously in any computation.

Theorem 5.1. Well-formedness of dataflow nets is undecidable.

Suppose well-formedness were decidable. Consider dataflow nets of the

sort as displayed in figure 10, where we allow f to be any partial recursive

function. A net of this sort is well-formed if and only if £ is everywhere
undefined. Since the latter property is known to be undecidable, our

assumption is contradicted. O

An immediate conclusion is that wellformedness, like correctness, can only
be ensured through a precise and disciplined construction-procedure for
dataflow nets. There is a second conclusion to be drawn from 5.1. It can
be argued that wellformedness and functionality of a dataflow net are, in
a certain sense, equivalent concepts. Hence the functionality of a data-
flow net is undecidable just like, as a matter of fact, the functionality
of a nondeterministic Turing machine is undecidable.

Several further applications of the pipeline theorem relate to the
generation of sets. Hitherto only a few examples were known (c.qg. given)
of dataflow nets which would emit "sequences of numbers of a specified kind
(Like prime numbers), in a specified order". Very generally we can now

state the following theorem:



Theorem 5.2. For any recursively enumerable set S there is a dataflow

net that generates and outputs the members of S in enumeration order. More-

over, the net does not need any queue-sizes to be larger than 1.

It is well-known that any non-empty rec. enumerable set S is the range
of a total recursive function F (cf. Rogers [11], § 5.2.). Thus, to enu-
merate S by dataflow, all we need to do is feed the arguments O, 1, 2,

© o o

into a pipelined dataflow net for F. The construction is shown in figure 11

INSERT FIGURE 11 ABOUT HERE

and explicitly shows the sentinel construction, to emphasize that the
net for F is pipelined. A next argument j is gated into the net whenever
another element of S has been generated. The construction avoids that

j-values queue up in quantities larger than 1 on the input-line of F.

Another well-known result (cf. Rogers [11), § 5.1.) states that non-empty
rec. enumerable sets can be effectively enumerated in non-decreasing order.
The result obviously carries over to the generation of sets by dataflow.

Finally, we formulate the existence of "universal"” dataflow nets in a
rather strong sense. Let {w(z)} be a Gddel-numbering of the partial re-
cursive functions of k variables.

Theorem 5.3. For every k there exists a dataflow net N(k) with k+ 1 input-

(k)

lines, such that on input z, x the output is © 2 (Xl""'xk)'

oo a X
1’ " Tk
N(k)

Moreover, can be pipelined and does not need internal queues of size

greater than 1.

By Rogers [11], § 1.8., Thm IV there is a partial recursive function F
of k+ 1 variables that is a universal partial function for the class of
partial recursive functions of k variables, i.e., for all z and x, to x :

1 k
(k)

F(z,xl,...,xk) = ” (xl,...,xk)

(where both sides of the =- sign are defined or undefined simﬁltaneously),



k
N( ) is the dataflow net for F, as it is implied by the pipeline theorem. o

N(k) may be termed a "general purpose dataflow computer'". As a net, N(k)
may not be practical for a number of reasons, including the lack of

"optimum" parallellism resulting from the straightforward simulating of
sequential computation and the prohibitive size of the numbers that can
accumulate on the edges. Yet it shows the universality of dataflow com-

puting at the lowest possible level.

6. References.

[1] Arvind and K. Gostelow, Some relationship between asynchronous
interpreters of a dataflow language, in: E.J. Neuhold (ed.),
Formal descriptions of Programming Concepts, North-Holland

Publ. Comp., Amsterdam, 1978, pp. 95-119.

[2] Backus, J., Can programming be liberated from the von Neumann
style? A functional style and its algebra of programs, C. ACM
21 (1978) 613-641.

{3] pavis, M., Computability and unsolvability, McGraw-Hill, New York,
NY, 1958.

[4] Dennis, J.B., First version of a data flow procedure language, in:
Programming Symposium, Springer Lecture Notes in Computer

Science 19, Springer Verlag, Berlin, 1974, pp. 362-276.
[5] Fosseen, J.B., referred to in [4].

[6] Gurd, J., I. Watson and J. Glauert, A multilayered data flow computer

architecture, draft rep., University of Manchester, 1978.

[7] Jaffe, J.M., The equivalence of r.e. program schemes and dataflow

schemes, J. Comp. Syst. Sci. 21 (1980) 92-109.

[8] Kahn, G., The semantics of a simple language for parallel programming,
in: Information Processing 74, North Holland Publ. Comp.,

Amsterdam, 1974, pp. 471-475.

[9] Kleene, S.C., General recursive functions of natural numbers, Math.

Ann. 112 (1936) 727-742.

[10] Minsky, M.L., Computation: finite and infinite machines, Prentice-Hall

Inc., Englewood Cliffs, NJ, 1967.

[11] Rogers Jr., H., Theory of recursive functions and effective computa-

bility, McGraw-Hill, New York, NY, 1967.



[12] Rumbaugh, J., A data flow multiprocessor, IEEE Trans. Comp., C-26
(1977) 138-146.

{13] Wadge, W., An extensional treatment of dataflow deadlock, in: G. Kahn
(ed.), Semantics of concurrent computation, Springer Lecture
Notes in Computer Science 70, Springer Verlag, Berlin, 1979,

pp. 285-299.

[14] Weng, K.-S., Stream-oriented computation in recursive data flow schemas,

Techn. Memo 68, Lab. for Computer Science, MIT, Cambridge, Mass.,

1975.



fire only when tokens on all incoming edges?

history-level dataflow {8], [13]
operators may have memory

fire only when all outgoing edges token-free?

yes

no
simplest form of
dataflow [4],

[12] tokens form queues?

QI dataflow UI dataflow
[1] token-coloring

(11, [el

Figure 1. Choices in existing dataflow models



PROJ

(a)

Figure 2.

L
C

JOIN

DUP

PROJ

Computing f (x) =

(b)

PROJ

DUP




message from output

JOIN %3
... PROJ ...
N
DUP

duplicate and transmit :
output token as a message

to all input gates

Figure 3. A failing sentinel construction.



message from output

I

JOIN *y
PROJ
DUP
send token as signal A J lB ith

N

compine signals from
all input gates through X ’
a chain of PROJ-boxes

PROJ

DUP
duplicate and transmit output ‘«— A
token as a message to all input
gates

Figure 4. A valid sentinel construction



ST [’

duplicate tokens to all Hj-nets

Figure 5. Composition



DUP

TES

DUP

DUP

TES

SINK

JOIN

Figure 6. First design-step for N.

(R still needs to be specified.)



J

I_ signal

| emit x ; —i
G | again when |
i signal is O
S P |
JOIN
_—
F(J,~)
— i )
o 777777
| oy sending |
= oo ]
I__signal
e o0 ////////////

emit a next
j=-value whe
ever signal

is O

F(j+1,~

vyl (y>0)

send y-1;
emit next
lower wvalue
whenever
signal O
comes in

n-

§
J L
i R

Figure 7.

_J pass token: pass token !
, on and { (on, but (
signal 1 + isignal O
LI L.?-_L__J
R L
JOIN
 /
output signal

The R-graph



. 3 l
JOIN signal JOIN signa
= e
DUP TES -1 TES
1 l l
Y : 9
SINK DUP lSINK

(a) emit Xl; again when
signal is O.

(b) send y-1; send next lower value

whenever signal 0 comes in.

I-----————-——-- duplicate xl
i Rl

O—functionl JOIN
+1 DUP
(c) start up by sending 0. )
signal
TES
SINK

(d) emit j=0; emit a next j-value

whenever signal is O.

Figure 8. Details of the R-graph.



DUP

4

DUP

O-function

'

signal O

(d) pass token on and

signal O

Figure 8.

Details of the R-graph (cont'd).

signal 1

¥

1-function

l

signal 1

(e) pass token on, but




*1

IT——signal
r' TTTTTT
|emit X, :
jagain when
|

]

! start up |
i by sending'

L2 ] || -
f——signal ////l/// //

-

emit j=0;

emit a next

ever signal

00000

i
]
i
i
i
j-value when- |
i
f
!
!
|

e e —

is O
. (1~)
3 g\j
l TES
DUP

0 B B

e

! pass token | ipass token!
I on, but ! {on, and
''signal 1 ! 'signal 0 |
T S
JOIN SINK
l v
signal output

Figure 9. Global dataflow net for minimization.



dataflow net for

function £

JOIN

Figure 10. Well-formedness is undecidable.



l JOIN

PROJ

G722

F

000

DUP




