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THE BOUNDED ASPECT RATIO PROBLEM FOR VLSI-
LAYOUTS OF PERFECT BINARY TREES

J. van Leeuwen

Department of Computer Science, University of Utrecht

P.O. Box 80.002, 3508 TA Utrecht, the Netherlands

Abstract. Let Tk be the perfect binary tree of depth k and n = 2k leaves.
It has been shown that there is a smallest constant Y such that all

Tk have a VLSI-embedding of area yn + o(n) for k - o. We prove that

this, asymptotically best bound on area can be achieved using layouts

with an aspect ratio converging to 1.

1. Introduction.

With current VLSI-technology it has become feasible to design large
switching circuits that can be integrated on a single chip of silicon
(Mead and Conway [2]). Taking many specific constraints of the technology
into account, Thompson [4] has formulated a simple model of the surface
of a chip that allows for a mathematical analysis of the basic questions
concerning layout and performance of the integrated circuits. The model
provides a surface that consists of a rectangular grid of unit size
cells which can contain either a "node" (a transistor) or a wire. In
one cell at most two wires are allowed to cross. For our purposes the
area of an embedded circuit will be the size of the smallest enclosing
rectangle.

Using Thompson's model the guestion of determining good or minimum
area embeddings often leads to geometric and combinatorial considerations
concerning the specific circuit structures. (See Leiserson [1] for a
survey.) In this paper we shall study a detailed question concerning
optimum area embeddings of perfect binary trees (see also van Leeuwen,
Overmars and Wood [6]). Given an embedding for which the smallest en-
closing rectangle has a shortest side of length s and a longest of

length £, we introduce the following notion.

Defenition. The aspect ratio of an embedding is 0 = %.



For embeddings of large circuits there are practical reasons (cf. [1])
for requiring that the aspect ratio remains bounded away from 0. We
shall consider the question of whether optimum area embeddings of perfect
binary trees have a uniformly bounded aspect ratio.

Let Tk denote the perfect binary tree cf depth k and n = 2k leaves.
A well-known construction (the "H-pattern") due to Mead and Rem [3]

proves that every T can be embedded in 4n + o(n) area and an aspect

ratio bounded by %zk(Leiserson [1] and valiant [5] proved that all
trees with n leaves can be embedded in O(n) area and a uniformly bounded
aspect ratio.) Let Aopt(k) denote the minimum area required for an
embedding of Tk' The following result was proved by van Leeuwen, Overmars

and Wood [6].

Theorem 1.1. There is a constant Y such that Aopt(k) = yn + o(n) for

k = oo,

They show that 2 < vy < 2.74306.

In section 2 we shall prove that there are liqear area embeddings
for Tk with aspect ratioc converging to O for k = . Thus there seems
to be no a priori reason to believe that optimum embeddings must have
a uniformly bounded aspect ratio. Some geometric considerations enable
us to prove that in all embeddings with a "small" aspect ratio the
nodes of a same level of Tk must be rather widely distributed over
the occupied area (i.e., they cannot cluster).

In section 3 we shall prove a number of results, leading up to the
conclusion that the Tk's can all be embedded in such a manner that
area converges to yn (the optimum) while the aspect ratios remain uniform-
ly bounded and, in fact, converge to 1 for k - «. It follows that in
determining asymptotically optimal layouts for perfect binary trees
one can restrict attention to rather "square" embeddings. We shall

use the following terminology.

Definition. A design consists of (i) an infinite sequence 0 £ kO < k1 < ...

(the base of the design) and (ii) for each j 2 0 an embedding of Tkj°

Definition. A layout is a design with base 0, 1, 2,

Definition. A design (layout) is said to be asymptotically optimal

if A(kj) =yn + o(n) for j » e (n = ij), where A(kj) denotes the area



of the embedding of a Tkj provided by the design. (y is the constant

referred to in theorem 1.1.)

2. Linear area embeddings for Tk with a small aspect ratio.

Let the short side of a rectangle enclosing the embedding of some
Tk have length s(k), the long side length £ (k). The following result
provides a lower bound on s (k) irrespective of the area cf the bounding
rectangle. The result is stated in Leiserson [1] (p. 21), but not proved
there in detail. -

-

Theorem 2.1. s(k) 2 %k - o(k).

Let the columns along the long side of the enclosing rectangle be
numbered 1, 2, ... . We shall inductively define a finite sequence of
pairs dj, ej (3 =0, ...) such that (i) do < d1 $ ..., (41) e 2 e 2 ...
(iii) dj < ej, (iv) every vertical line positioned between columns
dj and ej cuts through 2j independent paths in Tk and (v) there is
a subtree Tk—2j which does not contain any of these paths and whose

leaves are all located in columns 4. through ej.

0
ej are defined, the next pair is obtained as follows. Consider the

Taking do =1 and e, = (k) gives a correct start. Assuming dj and

Tk—2j that was identified with the jth

pair and split it in four T S.

k-23-2

Let dj+ be the first column 2dj which

1
contains a leaf of one of these subtrees

j+1
contains a leaf from a different one

and let e, be the last column §ej which

of these subtrees. Assuming dj+ and

1
- i <
ej+1 are well-defined and dj+1 ej+1'

Figure 1. the path connecting the two leaves through

the root of Tk-2j (see figure 1) will be

a (j+1)St path independent of the previous j and any one of the two
Tk—2j—2's that do not contain one of these leaves will do to satisfy
clause (v). Let J be the largest index for which a pair is obtained.
A next pair can always be obtained as long as (i) j S %k - 1 and
(ii) the leaves of the Tk_2j do not all lie in o;e2§ingle column. The
latter is certainly the case as long as s(k) < 2% “J. It follows that

1
J 2 Ek - %log s (k). Observing that a vertical line can only cut 2J



independent paths when there are 2J squares in either column imme-

1 1
diately bordering the line, we conclude that s(k) 2 Ek --Elog s (k)

and (hence) that s (k) 2 %k - o{k) for k = o,

An embedding with s (k) AIEk is easily obtained by arranging the nodes

2
of every level at equidistant positions in a separate row and collapsing
the even-numbered rows (after the first) into the open "middle" positions

of the odd-numbered rows (see figure 2). With the n leaves in row 1,

O— « = =

row 3
row 2 '*"jl
row 1 l o

Figure 2.

the embedding uses area ~ n.%k = 0(n log n). It is interesting that

essentially for every f(k) > %k there in an O(n) area embedding for

Tk with £(k) as the length of the short side.

Theorem 2.2. Let f(k) 2 ck for some (arbitrary) c >-% but f(k) £ E§%75 vn.
Then 'I‘k can be embedded in a rectangle of size f(k) by E%%%;.n/f(k),
for all k > —a—
c-1/2 °
Proof

We shall make use of the following facts:
j+1

(a) every Tj can be embedded in a rectangle of size [ 2 ] by 23,

with all leaves appearing in the bottom row and the root appearing

in the top row (as suggested above), Fll
(?) every Tj can be embedded in a square of size 2.2 2l _ 1 by
2.2[5-| - 1, with access to the root (using the H-pattern).
Let g = %%1 - E%J f(k). It is easily verified that 1 < g £ Vyn. Determine
0 £j < k such that 2j p n/g2 = 2k/g2< 2j+1. Imagine that Tk is cut
i+ 1

t ity j
at the j h level. Lay out the complete tree by having a [ 2 ] by 2j



-0
-0
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Figure 3.

embedding for the upper part, with the base line stretched by a factor
k-3
2.2[ z

to each of the nodes in the jth level as they appear in the bottom
row (see figure 3). Note that 1 & 2k_J/g2 < 2, hence 2! 2 SVv2.2 2 < 2g.

] - 1, and a square embedding of a subtree of 2k_J leaves appended

The length of the short side can now be estimated as follows:

= i

j+1 2 ' < J+1 1 _
[—2]+2.2 1=-——2 t5 o+ 2.2 1 <
bl k <
< > + 4g < > + 4g =
1 1
S5 £(k) + (1 - =) £(k) = f(k)
2c 2c

The length of the long side can be bounded by

. [E:i] .
B 2 ] <
2°.(2.2 1) < 4.2°.g
< g B = g R _ _léc
< 4.g2 .g=4 3~ o-1/3 .n/f (k)

To obtain embeddings with s = s (k) small, it seems that the lower
level nodes must be rather evenly spread over the "length" of the chip.
To make this statement precise, we shall estimate the number of nodes
of a same level that can occur in a single (narrow) slice.

Consider an arbitrary, i.e., not necessarily linear area embedding
of Tk which fits in a rectangle with a shortest side of length s. Choose
a vertical slice of width w somewhere in the rectangle (see figure 4)
and pick a p with 1 < p < k. Suppose the slice contains at least [6.ZP]
of the nodes at level p (some & with 0 < § < 1). It requires that



"

Figure 4.

w.s 2 [6.2p]. It follows that the slice has only w.s - [6.2p] room
left for nodes from other levels and thus, in particular, at least
2k - W.s + [6.2p] leaves of Tk definitely lie outside of the slice.
Let all leaves outside of the slice be marked red. Suppose the slice
contains r nodes of depth p whose subtree contains a red leaf. Note
that outside of the slice there are at most 2F - [B.ZP] S (1 - 6)2P

nodes of depth p. Estimating the number of red leaves from above and

from below, we obtain:

r.25P (1 - )P KRy ok L oy [6.2P] =

»>r.25P 280K ys s 5. =

=1z 6.22 - (w.s - 6.2P)2P 0K,

Lemma 2.3. Suppose there is a vertical slice of width w which contains

at least a fraction & of the 2P nodes at level p of T
k k—p+1)

X (1 <p <k).

Then s 2 6. (2% + 2P)/(w + 2

Proof

We have identified r nodes among the 2P at level p which must be
connected to a red leaf outside of the slice. The connecting paths
are independent and must cross the boundaries of the slice either to
the left or to the right. Thus the 2.s squares along the boundaries

of the slice must be sufficient to let 2r independent paths go through

and we conclude that

1

s2or 262870 o us - §.2P) P71 oK

= 2k—p+1 s 2 6.2k - w.s + 6.2 =

= s 26025+ 2Py + KPP



Theorem 2.4.kConsider any embedding of Tk with a shortest side of length
E—h £+h

s = s{k) £ 2 (some h 2 0). Then no slice of width <£§.2 can

contain more than a fraction & of the nodes at level p, for all

3 1 1 1 1
p>zk——2-h+§+§log3-(andp<k).

Suppose there was a slice of width w £ §.22 which contained more

than a fraction & of the ﬁodes at level p. By lemma 2.3 it follows

k-p+1

k P E'{'h
that s 2 6. (27 + 25)/(6.2 + 2 ). A contradiction can now be

derived as followsi 3
—X-p~ <h+l P-log %-— —k+ lh

We have 2% 2 < 2 4 2 (using the assumption for

p) and hence

l-k+ %h ék—p— lh+1 l-k+ lh P~ é-k+ l-h
5.24 + 24 2 <824 27 4 5.2 4 2
3
S>k-p-h+1
= 5.25 + 22

=

<6.25 4+ 6.2P o

k k
2h 7 th k . P

= 2 (6.2 + 2 ) € 6.(27 + 28y =
k k

— +h _
=22 <5.(2% 4 2P)/(5.22 4 kPFL

k-p+1

This contradicts the assumption on s.

Theorem 2.4. shows that the "lower level" nodes of Tk cannot cluster
in slices of bounded width when s(k) is "small". Note that the theorem

applies to slices of area up to about 6.2k.

3. Designs and layouts with uniformly bounded aspect ratios.

It was argued that there is no reason to believe that optimal em-
beddings for Tk all have a gniformly bounded aspect ratio for k - .
Leiserson [1] proved that every embedding with area A can be "folded"
to fit into a rectangle with aspect ratio 1 (i.e., a square) and area
S3A. We shall give a number of ways to alter embeddings so as to bring
their aspect ratio closer to 1, while inducing only a negligible amount
of extra area. The first result (theorem 3.1.) is not restricted to

embeddings for T and applies to other "convergent" sequences as well.

kl
Recall the distinction made in Section 1 between designs and layouts.



Theorem 3.1. Given an asymptotically optimal design D with base B in
which the embeddings do not have a uniformly bounded aspect ratio,

and an arbitrary u with 0 < u < 1, one can construct an asymptotically
optimal design D' with base B' ¢ B in which the embeddings all have

an aspect ratio 2u.

|+

\/52 + 425].

Some purely arithmetic facts first. Let t = [— % +

-

—_ N

1 /2 ' 2
It follows that t2 + st 2 s and also that t2 + 2st < -‘g + 1 + 5 s + 44s) +
+ 2s (- §~+ 1 +-%Vs2 + 48s) = s + (- %52 + s+ 1+ (% + 1) s2 + 4£s.)'$

< 9s + s.vzstz + 4), provided s 2 2. When s £ «.{, then s £ V&.V/{s and
t2 + 2st £ (1 + Val(o + 4)0M)8s.
Let D be as given. Use s = s(k) and § = (k) to denote the length

of the short and long sides, respectively, of the embeddings of Tk

for k € B. We may assume that s(k)/Q(k) - O for k - o and k € B, perhaps
after identifying B with a suitable infinite subsequence. Let ¢ £ 1
be such that 1 + \ou(g + 4) §-% (as'% > 1 such an ¢ exists) and let

NO be initialized such that for all kX 2 N. and k € B s(k)/L(k) S a.

0

We shall construct a design D' with base B' consisting of suitably

selected k € B with k 2 NO and suitable embeddings for the Tk with

k € B'. The ith element of B' (i = 0, 1, ...) will be selected depending
on a threshold Ni and tolerance ei S o as defined below. Let NO be as
determined and 80 any real number with 0 < 80 S 0. We use A(k) (or

A'(k)) to denote the area of the embedding of Tk according to D (D').

Starting with i = 0, the i'" element of B' will be the first k € B

[

with k 2 Ni such that s(k)/2(k) £ ¢ and (Y - g¢)n < A(k) £ (Y + €)n,
with g = T§%§ ei.(As s(kk)/&(k) » 0 and D is asymptotically optimal,
such a k exists.) Tk will be embedded as follows. Cut its embedding
according to D in at most L%J + 1 blocks of width t and fold it as

suggested in figure 5, allowing an extra width of s on both sides of

the embedding to route the existing wires between consecutive blocks
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Figure 5.

around (t as above). The new layout has size (L%J + 1)s by t + 2s.

Observe that t + 2s is the length of the longer side:

t2 + 2st 2 s + st =

- t + 2s (%+ 1)s 2 ([%J + 1)s.

[\

For the aspect ratio g of the embedding we obtain:

g = (L%J + 1)s/(t + 2s) g-%.s/(t + 2s) =

g5/ (% + 25t) 2 dos/(L + ETE T I Los =

=0 2
=02 1/(1 + Voala + 4)) 2 u,

as desired. It remains to estimate the area of the new

a lower bound we get:

A' (k)

(L&J + 1).s.(t + 2s) Z-&.s.(t + 2s) =
t t
= A'(k) 2 %.s = A(k) 2 (’Y - &)n =

= A' (k)

v

{y = ei)n

Before deriving an upper bound, we shall estimate 2s and

t
Note that

3% < 2s/ (- % + -1;/52 + 48s) = 4/(-1 + 1+ 4%) -

=22 cu/c1 e VLo 3 S aVE/@2 - Vo) £ 4

embedding.

t
7

As
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and that (use that ¢ £ Veg)

— + S ¢ +~1V£2 + 4 =

2 2

0
N
aN
=l

et
IA
ol
N
<

13
|t
IA
w
=N

The area of the new embedding can now be bounded as follows:

ks (1 + 2% + 2% + %) =

A(k) (1 + 2¢ + 7Ve) =

A' (k) = G% + 1).s.(t + 2s)

= A'(k) £ 2s(1 + 2€ + 7Ve)

= A'(k) (Y + €)(1 + 26 + 7VE)n £ (Y + 37Ve)n =

A

= A'(k) £ (y + Si)n

(where we have used that Y £ 3). To select the next element of B',

€.
i

N

set N, =k + 1 (k the ith index just determined) and €, =
i+l i+l

The use of thresholds Ni guarantees that the elements of B' are
chosen in numerically increasing order. As €i = 0 for i = % the embeddings

in D' have area converging to yn and (hence) D' is asymptotically optimal.

=]

Theorem 3.1. shows that we may restrict to asymptotically optimal designs
with a uniformly bounded aspect ratio. (Note that designs do not give

an embedding for every Tk yet.) A stronger result can be obtained that
shows that even designs with a uniformly bounded aspect ratio can be

improved, whenever the uniform bound is less than %Vﬁ,

Theorem 3.2. Given an asymptotically optimal design D and an arbitrary
u with-% Su <-%V5, one can construct an asymptotically optimal design

D' in which the embeddings all have an aspect ratio zu.

Let D have base B. Perhaps after omitting some indices from the

beginning of B, we can assume that A(k) £ 3n and s(k) 2 %k for all

k € B. Slice every embedding (of some Tk) in D under (or above) and

right (or left) of the location of the root and insert an extra row

and column, sc room is obtained for a wire to access the root through
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the short side of the rectangle (see figure 6). If the original embedding

splice
>
root
< 23 ;
splice i 4; L'“"’%f“""' access wire
Figure 6.

had size s by £, the new one has size s + 1 by £ + 1 and area is in-

creased by £ + s + 1. As s € V3n and £ £ 3n/s £ 9n/k = O‘IS%"E)' the

added amount is o(n) and the modified design D is still asymptotically
optimal. We will construct a new design D' with base B' elementwise,
with the ith element depending on a threshold Ni and a tolerance si'
Let § = 2u. Let N, be such that 2(k) 2 2652 log 264 (k) for k 2 NO

and let 80 be an arbitrary real number with ¢

0 > 0. We use A(k) (and

A'(k)) to denote the area of the embedding of T according to D(D').

k

t
Starting with i = 0, the i h element of B' will be constructed from

the first k € B with k 2 N, such that log 262(k)/2(k) S € and (Y - €)n £

U= g

A(k) £ (y + €)n, with € = =¢.. Let Tk have an s by % embedding according

1

to D, with access to the root by a wire through the short side. Let

j = j(k) 2 0 be such that 27 £ 6. (2 + log 268)/s < 237!, construct an

\
]

Figure 7.
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embedding of Tk+j by stacking 2j copies of the embedding of Tk with
the long side horizontally, and connecting the Tk on one side of the
stack by means of a simple tree-embedding of depth j (see figure 7).
The resulting embedding has size 2js by 4 + j. When 2js £ 2+ j we

get the following bound for the aspect ratio:

= 25 1 -
g = (259) 2 508 + & log 268)/(% + 3) 2 > = u
(as j = log 0245 iog 208) ¢ log (ééi&) s log 22& S log 264). However,

when we have £ + j £ 27s the aspect ratio can be bounded by u as well:

O= (R +3)/29s 2 R+ 3)/6(0 + log 268) 22 =

o

(because 2§ 2 622 + 6 log 264, hence 2% + 2j 2 §(8% + log 26%)). It
remains to estimate the area of the new embedding. As a lowerbound

we get:

Atk +3) =275 0+ 9) 2 29,08 = 29a(K) =

satk+ ) 220y - 22 (y - e,)n

k+3

(n = 2 ). As an upper bound we get:

Ak o+ ) =295, +9) =29 0s 1 + ) = 2dagg . %o -
SAT(k+3) S (y+e) + 222200 s

= A'(k + j) £ (y + ei)n.

. .t .
We shall let k + j be the i h element of B'. To prepare for selecting
the next element of B', set Ni+1 =k + 3+ 1 (k +3 was the index just
. 1
determined) and €4 = 281'
The use of thresholds Ni guarantees that the elements of B' are
obtained in increasing order. As €, 0 for i -» = the embeddings in

D' have area converging to Yn and (hence) D' is again asymptotically

optimal.
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We shall see momentarily that theorem 3.2. can be improved further,
with the bound for u getting arbitrarily close to 1 (rather than just
to %\/2_) .

For the next result we assume that the root of Tk is accessible
by a wire through the short side of the embedding. Let N 2 3 be such
that s (k) 2 %k for all k 2 N. (By theorem 2.1. such an N must exist.)

Lemma 3.3. Let Tk (some k 2 N) have an embedding with aspect ratio
zu (u 2-%). Then Tk+j has an embedding with area A(k + j) satisfying 23A(k)
. bl 3
$ak +3) £ 29a0K) (1 + 11/22) and aspect ratio 21 - 8/22, for all 60 < 3 S k.
Proof

Let the given embedding of Tk have size s by £ (with s the length

of the shortest side) and aspect ratio of %-g u. Determine the smallest
J

2 . 2
a 2 1 such that [Egj.a > 29, Clearly a £ \[%;22 + 1. Construct an embedding
for Tk+' by arranging 27 copies of T, in a stacks of at most Lgéj copies

J : s

IA

3 k
[1\/E2' [ il < . ‘
og E.Z + 2] = EE-+ 1 + >l =3 extra columns

right of every stack to connect blocks into perfect subtrees and a

high, with [ log L%a ”

layer of [log a.(% + 3)] < [% + log(% + 3)] < j extra rows over the
top of the arrangement to connect the "loose" [2 + %1 subtrees along
every stack together (see figure 8). The embedding has size Léa]s + 3j
by a. (% + j), where [%ajs + j clearly is the length of the shortest

side. For the aspect ratio we get the following bound;

4

a stacks —_————

Figure 8.
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g = ([éajs +3)/(al + aj) 2 (al - s + j)/(al + aj) 2z (al - s)/(al + aj) =
2

=021~ (aj +s)/(@l + aj) 21 - Pl
J
= -3
=>0z1-1/22
i bl i, i
S,2 2 2 2 .
where we have used that a 2 %Q -1 2u2” -1 22 and aj £ (27 + 1)3j =

k
22 < § for j £k - 3 log k and k sufficiently large. The embedding uses

27 copies of Tk and thus A(k + j) 2 ZJA(k). It remains to bound the area

of the new embedding from above. By the choice of a we have

[éaJ.a <29 4 {[éaj,a - [é{a - 1)J.(a -1} =
= [éaj.a <29y f%.az - Oé(a -1) -1).(a- 1)} =
> lfallasad s E2ena-%o 1 <oy

S S 5

For A(k + j) we obtain:

Ak + 3) = ([éajs + j)(al + aj) = [éaJa.Qs + [%aja.sj + ajf + aj2 =

. . . . .2
2es (1 + §3-+ 1, 23] + 2 a o

= A(k + j) S . .
27 i. % 27s 2798 \
. 2 . bl 1 .
= Ak +3) £27a@) (1 + (9.2% + 3)/27 + (5.22 4 6)/2° + (2° + 1)52/23.2.2%) »
b 2.k J
. i 2 3 2 3 2
= Ak +3) S 2am) (1 + 10/2° + 27 2% < 29am) 4 + 11729

» provided j is large enough (e.g., j 2 60) and j s %k.

Lemma 3.4. Let Tk (some k 2 N) have an embedding with aspect ratio 2u.
Then Tk+j has an embedding with area A(k + j) satisfying ZJA(k) S Ak + 3)

S 2JA(k)(1 +‘%) and aspect ratio zu, for all j 2 0 and j even.

have size s by %, with = 2 u. Construct

Let the given embedding of Tk 7 <

an embedding of T (j even) by means of the H-pattern of Mead and

k+j

Rem [3] (with access to the root through the short side all through

the recursion), starting with the embedding of Tk‘ It is easily verified
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that for the length of the short and long sides, respectively, one

has
3
. 2
sk +3) =2 (s +1) -1
3
. 2
Lk +3) =270 +1) -1
Note that indeed s(k + j) £ &(k + j) and that the aspect ratio can
only have improved:
bl 3

o= 2%+ 1) - D/(2°@ + 1) - 1) ;-% 2 u

K+3 uses exactly 27 copies of the

As the H-pattern construction for T

embedding for Tk one has A(k + j) 2 23A(k). On the other hand:
i3

Ak + j) = 270 + 22(22 - 1) + s) + (22 - 1)2 =

J.

(L + s + 1)

N,
>ak+3) £27a) (1 + = ,

y s29am) 1+ (2 + %)/s) -

sak+9) s 2dama + %)

Note that the H-pattern (in lemma 3.4) cannot be used for j odd, as
it only guarantees an aspect ratio z% in this case.

We can now prove the main result relating optimal area embeddings
and aspect ratios. Note that a complete layout (not just a design)

is obtained.

Theorem 3.5. Given an asymptotically optimal design D and an arbitrary
€ > 0, one can construct an asymptotically optimal layout L in which

all embeddings have aspect ratio 21 - g.

Given D, one can construct an asymptotically optimal design D' in

which all embeddings have an aspect ratio 2% (theorem 3.2.). Perhaps

after omitting an initial segment of D' (so we can choose j approximately

equal to % while j 2 max {60, 2 log %}), lemma 3.3. can be used to

obtain two asymptotically optimal designs D" and D"' with bases B"
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and B"' respectively, such that B" (B"') contains only even (odd) indices
and the embeddings in both designs have aspect ratios 21 - g. Now construct
a full layout L of the Tk (k 2 0) as follows. Use an arbitrary embedding

of aspect ratio 1 for all even (odd) k up to the first element of B"

(B"'). From there, take the embeddings as given by D" and D"', using

lemma 3.4. to generate embeddings for all Tk with even (odd) index

k in between every two consecutive elements of B" (B"'). L is again

asymptotically optimal and all aspect ratios are 21 - ¢.

Using theorem 1.1. (which asserts the existence of an asymptotically
optimal layout, namely the sequence of optimal embeddings) it follows
that for every € > 0 there is an asymptotically optimal layout with
all aspect ratios 21 - ¢. By a straightforward diagonal construction

one obtains the following result:

Theorem 3.6. There is an asymptotically optimal layout for the Tk with

aspect ratio converging to 1 for k - co.
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