A PROOF SYSTEM FOR A SUBSET OF THE
CONCURRENCY SECTION OF ADA

(Preliminary Report)

Rob Gexth

RUU-CS-81-17
November 1981

Rijksuniversiteit Utrecht

Vakgroep informatica

Princetonplein 5
Postbus 80.002

3508 TA Utrecht
Telefoon 030—531454
The Netheriands

)

vakgroep informatica R.U, Utrechr

A PROOF SYSTEM FOR A SUBSET OF THE
CONCURRENCY SECTION OF ADA

(Preliminary Report)

Rob Gerth

Technical Report RUU-CS-81-17

November 1981

Department of Computer Science
University of Utrecht
P.O. Box 80.002, 3508 TA Utrecht
the Netherlands

A PROOF SYSTEM FOR A SUBSET OF THE
CONCURRENCY SECTION OF ADA

(Preliminary Report)
Rob Gerth

Department of Computer Science, University of Utrecht

P.O. Box 80.002, 3508 TA Utrecht, the Netherlands

Keywords: ADA concurrency, rendezvous, cooperation test, partial

correctness, proofsystem, soundness and completeness.

CR Categories: 5.24, 4.22.

1. Introduction.

This pbaper concerns the concurrency section of the programming language
ADA [ARMS1]. We study the basic ADA-synchronization primitive, the rendezvous
and construct a proof system (for partial correctness properties) for a
subset, ADA-CS, of the concurrency section.

As CSP [H78] is one of the languages which influenced the design of ADA,
it should come as no surprise that the resulting proof system is similar
to proof systems for CSP; especially to the one in [aFder80].

Within the latter system, the (CSP-)synchronization is captured by a
general invariant and a cooperation test. The main result of this paper,
is the formulation of the cooperation test for an ADA-rendezvous. Such a
rendezvous is more complicated than a CSP-synchronization activity, which
results in the transmission of a value between the two synchronized pro-
cesses. An ADA-rendezvous is more properly characterized as something akin
to a procedure-call and hence is related to process-communication as in

Distributed Processes [BH78].

In this preliminary report, we first describe the subset, ADA-CS. Next,
in section 3, a proof system for ADA-CS is constructed that closely follows
the example of the CSP-proof system in [AFdeR80]. In the same section some
of the semantic distinctions between ADA-CS and ADA are discussed. In section
4 the proof system is applied to prove a producer-consumer program in ADA-CS
correct. An appendix contains the complete list of axioms and proof rules,
of the proof system.

The full paper will contain the soundness and completeness proofs of
the proof system: we show that each ADA-CS-program can be translated
into an equivalent CSP-program and that our new cooperétion test can
be derived by applying the CSP-proof rules to the translation. (The CSP-
proofsystem has been proven sound and complete in [A81la]).

For the exposition of the proofsystem, the reader is assumed to be familiar

with the CSP-system in [AFdeR80C].

2. The subset, ADA-CS.

The syntax of the subset of ADA is described by the following augmented
BNF-grammar. The conventions used are similar to those of [ARM81]:
italicized prefixes in the nonterminals are irrelevant, "[...]" denotes
an optional part,"{...}" denotes repetition, zero or more times. Notice

that we have taken some liberties with the ADA~syntax, which is somewhat

verbose.

program -.= begin task {task} end

task ‘= task task id decl begin stats end

decl = {entry decl}{var decl}

entry decl ‘= entry entry id (formal part)
var_decl ‘= var_id list:int | var id list:bool
var id list ‘= var id{,var_ id}

formal part ‘= [var_id list][# var id list]

stats ‘= stat{;stat}

stat .= null | ass_st | if st | while st | call st | acc_st | sel st
ass_st = var id := expr

if st -*= if bool expr then stats else stats end if

while st -'= while bool expr do stats end while

call st -= call task id.entry id (actual part)

actual part = {expr}[# var_id list]

acc_st :i= accept entry id (formal part) do stats end accept

sel_st --= select sel br {| sel br} end select
sel br = bool_expr : acc_st[;stats]

expr --= "expression"

bool expr :'= "boolean expression"

id = "identifier"

Thus an ADA-CS program consists of a fixed set of tasks. These tasks
are all activated simultaneously. The declarations within each of the
tasks are then elaborated, after which the statements constituting
the task-body are executed. When execution reaches the end of the task-
body, the task terminates. There are no global variables. Each task
can have entry-declarations. Such an entry may be called by other tasks.
The actions to be performed when such an entry is called, are specified
by corresponding accept-statements.

Entry-call and accept-statement are the primary means of communication
between tasks and synchronization of tasks: the rendezvous.

Within the body of a task, each of its entries can be némed by the corre-
sponding identifier. Outside the declaring task, the entry-name must also
specify the task in which the entry is declared (see the syntax).

Apart from the synchronization, an entry-call executes as an ordinary
procedure-call. An entry-declaration may specify a formal part. Only
parameters of type int are allowed. The first set of parameters, closed

off by the '#'-sign, is of mode in, the second set is of mode in out.

Hence, in the actual part of a corresponding call, the first set of
actual parameters may be expressions, the second set must be variables.
An accept-statement specifies the actions to be performed at a call
of the named entry. The formal part given in the accept-statement must
match that given in the corresponding entry-declaration. A task may

only contain accept-statements for one of its own entries, but it may

contain more than one accept-statement for the same entry.

Execution of an accept-statement is synchronized with the exe-
cution of a corresponding entry-call. Consequently, a task executing
an accept or entry-call-statement, will be suspended until another
process reaches a corresponding entry-call or accept-statement. When
this is the case, the statements of the accept-body are executed by
the called task, while the calling task remains suspended. This action
is called a rendezvous. Thereafter, the two tasks can continue their
execution in parallel.

The select-statement allows a task to wait for synchronization with
one of a set of alternatives. First, all boolean expressions are evaluated
to determine which branches of the select-statement are open. If all
are closed, the statement is equivalent with the null-statement (i.e.,
it does nothing). Otherwise, the task (if necessary) waits until a
rendezvous corresponding with one of the open branches is possible.
(Notice that each branch starts with an accept-statement.) If more
than one rendezvous is possible, one is selected arbitrarily.

Notice that we have defined the ADA subset to be just large enough to
study the rendezvous. If-, while- and select-statements are included only

for the purpose of proving an example program correct.

3. The proof system.

A characteristic tendency in proof systems for concurrent languages

is the reduction to sequential reasoning. Of course there is a price

to pay for this: in [0G76] an interference freedom test has to be intro-
duced and in [AFdeR80] a cooperation test.

In the CSP proof system, this reduction is brought about by the
introduction of the two axioms for local reasoning about processes

in isclation:
(1) {p} Pi!a {gq} ana (2) {p} Pj?x {q}.

The actual test whether these pre and post-assertions are compatible
with the communication action, is deferred to a second global stage:
that of the cooperation test. To express this test, a general invariant,
GI, is introduced to tie the local reasonings, within ®ach of the pro-
cesses, globally together. (In particular GI is used to distinguish
among all potential communication-actions, i.e., the syntactically matching
ones, the ones which may actually occur, i.e., the semantically matching
ones.) Also, auxiliary variables have to be introduced to express the
necessary assertions. As the variables appearing in GI have to be
updated tc model synchronization, GI cannot hold throughout the whole
program. Hence the introduction of bracketed sections (each associated

with a unique communication action) inside of which GI need not hold.

An ADA-rendezvous may be viewed as a double CSP-communication, as the

(1)

following translation shows

(2)

ADA : CSP:
le call entry(e # x) T2!(e,x); T2?x
- ? . . 1
T2. accept entry{(u # v) do S end accept Tl.(u,V), S; Tl-V

(1} For this translation, we have assumed a specific parameter-passing
mechanism, which is not implied by the ADA-standard [ARM81]. This assumption
will be discussed at the end of this section, together with the other assump-
tions to be made in sequel.

(2) If no confusion can arise, references to the task containin the entry

are omitted.

Correspondingly in the proof system, the following axioms are adopted (1):

A3. call {p} call entry(e # x) {q}
A4. accept {p} accept entry(u # v) do S end accept {q}

A general invariant, GI, is introduced and also the concept of bracketed

sections:

Definition. A task T is bracketed if the brackets "<" and ">" are
interspersed in its text, so that for each program section <S> (to
be called a bracketed section), S is of one of the following forms:

(1) S,; call entry(e # x); S

1’ 2

(2) accept entry(u # v) do S,

(3) s, end accept

1
where 81 and 52 do not contain any call or accept-statements and may

be empty.

Notice that we cannot replace (2) and (3) together by a single clause
like

(2') accept entry(u # v) do §,i Si 8, end accept.
The idea is that GI must hold when a communication-action is executed;
that is, upon entry to and exit from the associated bracketed section.
But as the "body", S, of an accept-statement may contain other call or
accept-statements, the validity of GI would not have been assured

at these points were clause (2') to be used in the above definition,

since that would have implied that GI would not be required to hold

in S.

(1) The numbering of the axioms and the proof rules refers to the complete
list in the appendix.

Although a rendezvous is modelled by two CSP-like communications,
it makes sense not to separate them entirely, because, disregarding
the synchronization involved, a rendezvous is no more than an ordinary
procedure call, which we want to treat as a meaningful whole. With

this in mind, a cooperation test can be formulated:

Definition. Let <Sl> and <52> be a communication pair:

= ', . 1]
<Sl> = <sl’ call entryl(e # x); Sl>

<SZ> <accept entryz(u # v) do Sé;> S <;S, end accept>

2

m

(<Sl> and <52> contained in different tasks).

We say that <Sl> and <S2> match if 'entryl' and 'entryz' are the

same name.

Definition. Consider (a proof of) an ADA-CS program begin task Tl;...;

task T end. The proofs of {pi} T, {qi} (1<ifn) cooperate if

(1) the assertions used in the proof of {pi} Ti {qi} have no free
variables subject to change in Tj (j # 1),

(2) {pre(<Sl>) A pre(<82>)} <s,> I <5,> post(<Sl>) A post(<52>)

holds for all matching communications pairs <Sl> and <S.>. within the

2
(1)
program .

As is the case in the CSP-proof system, we need an additional rule
to establish cooperation. This rule basically expresses the value-
transfer at execution of a rendezvous. In CSP this is simple, as the
execution of two matching io-commands, Pi!a and Pj?x, is equivalent
with executing the assignment x := a. In ADA however, a rendezvous
results in a procedure call. In order to render the semantics of this

procedure call simple, a few restrictions are placed on the actual

(1) Notice that, because of the one-side-naming in ADA we have more
matching pairs to check than in CSP.

parameters of a call. (After all, we are not interested in the purely

sequential aspects of ADA.) Hence:

For any entry-call call entry(el,e2...,em # xl,x2,...,xn)
to an entry declared as entry entry(ul,uz,...,um # Vl’v2""'vn)

the following three assumptions are made about the actual parameters,

- -
e and x:

(1) the X, are pairwise disjoint
- -
(2) free(e) Nx = ¢
(1)
(3) (s € free(g) UXAs Z 3 U 3) - s £ free("bodies of entry")
Under these restrictions, the parameter-transfer at the execution

of an entry call may be simulated by a substitution:

- -
S[g / 3, % / 3] = begin new 3, 3; q := g; T := 2; S; X := v end
The rule which is immediately suggested by this result (cfr. [A81Db,

6.1.1]) however, is too simple, as we have also the bracketed sections

to consider. Hence the following rule:

R10. Formation
. ! . S 5 3
{p, A p, A GI} S/; S 0«1 {py A p,l+1 A GI}
{p2} s {qz}

{p, n a1 ncr} syl sy {g, A q, A crl

{plAp2}<S£;call a(g#z);sf>"<accept a(G#?)gg S';>S<;S§ end accept>{q1Aq2}

2

where (1) the call is contained in the task Ti and the accept in Tj (1 = 3)

2) [+]1=1[28/73, %X /7]

(1) With "bodies of entry" is meant, the bodies of the accept-statements
for this particular entry.

(3) free(pl, ql) c free(Ti)
(4) free(p,)= free(T,) \ (X U free(?))

(5) free(pz, Eé, Coy Eé) [free(Tj)

In this rule, the first and third premiss (above the line) express

the invariance checks of GI over the bracketed sections. Notice that
the second premiss does not refer to the actual parameters. This means
that a proof of the body, S, of the select-statement need only be given
once and that this canonical proof suffices for the cooperation test
for all matching communication pairs containing this select-statement.
In the first premiss, we must show that the input is "legal" by deriving
52[-]. If the input is legal,laz[-] specifies the output of the body

S. The intermediate assertion, 5&, is used to retain information about
the variables of Ti which do not appear in the actual parameter list

of the call. Such information cannot be placed in Py because Bé is

an assertion belonging to Tj (and hence may not be subject to change

in T,).

i
After having formulated the new cooperation test, the (usual) parallel
composition rule can be stated:

R9. parallel composition

proofs of {pi} T, {qi}, i=l...n cooperate

{plA...ApnAGI} begin task T

1
,--- task T end {qlA...AanGI}

provided no variable free in GI is subject to change outside a

bracketed section.

10.

The last rule we will discuss, is the rule for the select-statement.
This is in fact quite simple, once one remembers that possible waiting,

in case no immediate rendezvous is possible, is not a partial correct-

ness notion. Hence

R3. select

{p A bl} s, {q}, ..., {p A bn} S, {q}

{p} select b S, | ... | b_: s, end select {q}

1" n
The other rules and axioms are the usual ones, for assigmment, if,

while~-statements etc. A complete list of all axioms and proof rules can

be found in the appendix.

The proof system, sketched above, is sound and (relatively) complete
w.r.t partial correctness properties. This is intuitivily clear, given
the close relationship with the CSP-proof system in [AFdeR80]. In fact
we will prove this result (in the full paper) by an actual translation
into CSP. It is interesting to see the rather smooth way in which proce-
dures and concurrency have been combined here. The relevant rule, the
formation rule, is a straightforward combination of the CSP-cooperation

test and a simple procedure-call rule.

We conclude this section by discussing some of the differences between

the ADA-CS semantics and the ADA semantics of the corresponding constructs.

Parameter passing.

We have explicitely assumed, that parameter-passing is done by
‘call-by-value-result'. Moreover, additional constraints were imposed
upon the actual parameters of a call. None of this is implied by the

ADA-standard. However, the ADA-standard explicitly defines a program

11.

as being erroneous ([ARMB1, 6.2])
(a) if it relies on a specific parameter-mechanism (i.e., call-by-
reference or call-by-value-result in our subset) and

(b) if it "uses" aliasing.

Restrictions (1) and (3) on the actual parameters (p. 8), are precisely
the conditions under which the two parameter-mechanism give the same
results: (1) disallows aliasing between two parameters and (3) might

be interpreted as disallowing aliasing between a parameter and a global
variable (notice that within a proof system, we work with variable
names not with locations). Otherwise, none of the restrictions limit

the concurrency features of the language; only the formation rule

is simplified.

Entry queues.

Contrary to the ADA-standard ([ARM81, 9.5]), which specifically
states that entry-calls are processed strictly in order of arrival,
we do not impose any order on the acceptance of entry-calls. These
queues, are a somewhat difficult concept, because of racing con-
ditions involved. For instance, the fact that there are no entry
calls for a particular entry (i.e., the corresponding gqueue 1s empty)
at a certain time, may just be a reflection of the difference in
execution speed of the processors executing the tasks and hence
is not a logical necessity of the state of the computation. A possible

solution is to disregard this real time aspect completely and concentrate

12.

on those events which are a logical consequence of the computation

(for instance, there is no rendezvous possible because all entry call
statements are within the then-part of the if-statement whose condition
is false). However, this is still a subject of further research. In any

case, incorporating entry-queues will not alter the cooperation test.

Tasking and select errors.

In ADA, execution of a task is aborted in the following two situations:
(1) in case an entry of a terminated task is called,
(2) in case all boolean guards of a select-statement evaluate to false.
In ADA-CS, the task deadlocks in the first situation and ignores the
select-statement in the second case. These decisions are not essential

and are made to simplify the proof system.

4. Example.

In this section, we prove correct (a slightly adapted version of)
the buffer-example in [ARMS81, 9.12]. A producer-task generates values
that are read in by a consumer-task. A buffer-task is used to smooth
out the variations between the speed of the two other tasks. The buffer-
task terminates when both the consumer and the producer have signalled
that they are ready (terms = 2).
The text is as follows (we take the usual liberties with the data-

types in our subset and the operations on them):

13.

begin
task producer
vecl:array(l..n) of int;

i:int
begin
i:=1;

while i#n+1 do
call buffer.put(vecl (i));
i:=1i+1
end while
call buffer.term()
end

task consumer
vec2:arrax(1..n) of int;

j:=int
begin
j:=1

while j#n+1 do
call buffer.get (#vec2(j));
Ji=j+1
end while
call buffer.term()
end

task buffer
entry put(x)
entry get (#x)
entry term()
pool:array(0..99) of int
in,out,count,terms:ig&
begin
in:=0; out:=0; count:=0; terms:=0;
while terms# 2 do
select
count<100:
accept put(x) do
pool(in mod 100):=x
end accept;
in:=in+1;
count :=count+1
|count>0:

accept get (#x) do
x:=pool (out mod 100)
end accept;
out:=out+l;
count :=count-1
ftrue:
accept term() do null end accept;
terms:=terms+1
end select
end while
end

end

14.

As a shorthand, we denote 'producer', 'consumer' and 'buffer' by

1 1 1 1] 1] 3
T1 ’ T2 and T3 , respectively.

We will prove that

{n20} begin task T, task T, task Ty end {Vi=1l..n vecl (i)=vec2 (i)}

As is usual in proofs for concurrent programs, we will make use
of a proof-outline, in which the program is given with the assertions
interleaved at the appropriate places. The outline corresponding to

the task Ti will be denoted by Ti.

In the proof, we use the following auxiliary variables:

h1 - recording in the producer, the sequence of values that has been
sent off,

h2 - recording in the consumer, the sequence of values that has been
read in,

El - corresponds with hl' records in the buffer, the values received,

E2 - corresponds with h2. records in the buffer, the values removed.

The variables h1, h2’ Ei and‘fl—2 are tuples. In the proof-outline,

'a“b' is used to denote the concatenation of the tuples 'a' and 'b'

{or of the tuple 'a' and the element 'b'). In the assertions, arrays

(or array-slices) will occasionally be used as tuples.

In the outline of the buffer task, the following invariant, I, for

the while~loop is used:

= count=in-outAOsScount£100A

=
[

outgin O h1=h “pool (out mod 100 .. (in-1) mod 100)A

2

out>in > h1=h2“pool(out mod 100 .. 99) pool(0 .. (in-1) mod 100)

15.

The proof-outline is as follows (note that the Program text is already

bracketed):

begin
task producer'
vecl:array(l..n) of int;

i:int; h,:tuple of int

1
{h1=A} begin

i:=1;
{h =vecl (1..i-1)} while ifn+l do
<hy:=h;“vecl(i); call buffer.put(vecl(i))>; {h =vecl(l..i)}
i:=i+l {h =vec(l..i~-1)}
end while {h =vec(l..n)}
<call buffer.term()>

end {h1=vec(1..n)}

task consumer'
vec2:§££gz(1..n) QE_EEE;
j:=int; hzzEEElS.QE.igE
{h,=A} begin
3:=1
{h,=vec2(1..3-1)} while j#n+1 do

<call buffer.get (#vec2(j)); h
j:=j+1 {h,=vec2(l..j-1)}

2

end while {h2=vec2(1..n)}
<call buffer.term()>

end {h2=vec2(1..n)}

task buffer'

entry put (x)

entry get (#x)

entry termf()

pool:array (0..99) of int;
in, out, count, terms:int; Ei, Eé:tuple of int;

{Ei=AKH2=A} begin

in:=0; out:=0; count:=0; terms:=0;

:=h2‘vec2(j)>{h2=vec2(1..'

{1} while terms#2 do
select
count<100: {IAcount<100}

<accept put (x) ggyﬁi:iﬁl“x>

{count=out-inAO<count<100A
$in D h.=h
(outsin h1 h2

>i h, =
(out>in o h1 h2

“pool (out mod

“pocl (out mod

pool (in med 100):=x

{count=out-inA0scount <100A

(outsin O ﬁi=h2“pool(out mod

16.

100.. (in-1) mod 100)°x)A
100..99) "

pool (0.. (in-1) mod 100) “x)}

100..in mod 100))A

(out in > Ei=ﬂé‘pool(out mod 100..99)"

<end accept>;
in:=in+1;
count:=count+1 {I}

lcount>0: {IAcount>0}

<accept get (#x) do> {Iacount>0}
x:=pool {out mod 100)

<h2:¥E2“x; end accept>;
{count=out-inAa0<count<100a

(out<in O K1¥Kz‘pool((out+1)

(out>in D'Hliﬁz‘pool((out+l)

mod

mod

out:=out+l;
count :=count-1 {I}
Jtrue: {1}

<accept term() do>null<end accept>;

terms:=terms+1
end select {1}
end while {IAterms=2}
end

end {1}

pool(0..in mod 100))}

100.. (in-1) mod 100))A
100..99) -

pool(0.. (in-1) mod 100))}

17.

Before the parallel-execution-rule can be applied, the proofs must
be checked for cooperation.
We only prove cooperation for the 'put'-entry. The test for the 'get'-
entry is analogous to the first one, while the test for the 'term'-

entry is trivial.

There is only one matching communication pair to consider. Hence, by

applying the formation-rule, the following formulas should be proved:

(1) {h1=vec1(1..i—1)AIAcount<1OOAGI}
h1:=h1 vecl (1) ; h1:=h1 vecl (i)
{h1=vec1(1..i)Acount=out—inAO§count<lOOA

outsin Diﬁl¥52“pool(out mod 100.. (in-1) mod 100)“vecl (i)A

out>in > Hliﬂz“pool(out mod 100..99) pool(0..(in-1) mod 100) “vecl (i)AGI}

(2) {count=out-inAOScount<100A
(outSin > h,=h,"pool (out mod 100.. (in-1) mod 100) x)A
(out>in > h, =h,"pool (out mod 100..99) "pool (0.. (in-1) mod 100)"x)}
pool(in mod 100} :=x
{count=out-inAOScount<100A (cutS<in 3‘51¥K2‘pool(out mod 100..in mod 100)A
(out>in > h,=h,"pool (out mod 100..99) "pool (0..in mod 100))}

(3) {h1=vecl(1..i)A...AGI} null {h1=vecl(1..i)A...AGI},

where '...' denotes the post-assertion of clause (2).

Clearly, clause (3) is proven trivially and clause (2) follows by appli-
cation of the assignment axiom. Clause (1) also follows by applying
this axiom (twice); GI is invariant, because the same element (vecl (i))

is appended to both 'hl', and 'h2'.

Now we may apply the formation-rule and establish cooperation.

18.

After having dealt with the other communication pairs in a similar

way, the parallel execution rule may be applied to yield:

{h,=AAh,=AAh, =AAh.=AAnzo0Aa GI}

begin task T, task T, task T, end

1 2 3

{h1 = vecl A h, = vec2 A I A GI}

Remembering that vecl and vec2 have the same length, we can apply the

consequence2-rule (R12), to get the required post-assertion "vecl = vec2".

With the auxiliary variable rule, all auxiliary variables are removed

(note that the post-assertion does not contain hi' Ei anymore) .

Finally using the substitution2-rule (R11), the auxiliary variables

in the pre-assertion are removed, thus completing the proof.

Acknowledgements.
I would like to thank Adrie van Bloois, Marly Roncken and Job Zwiers
for some fruitful discussions and especially Willem P. de Roever for

his stimulating guidance during the past year.

5. References.

[a81a] Apt, K.: Formal Justification of a proofsystem for Communi-

cating Sequential Processes, to appear.

[a81b] Apt, K.: Ten Years of Hoare's Logic: A survey - Part 1,

TOPLAS 3-4, p. 431-484, 1981.

[AaFdeR80] Apt, K., N. Francez, W.P. de Roever: A Proof System for
Communicating Sequential Processes. TOPLAS 2-3, p. 359-385,

1980.

[ARMB1]

[BH78]

[H78]

foc76]

The programming language ADA. Reference Manual. LNCS 106,

Springer Verlag, New York 1981.

Brinch Hansen, P.: Distributed Processes: A Concurrent

Programming Concept. CACM 21-11, p. 934-941, 1978.

Hoare, C.A.R.: Communicating Sequential Processes. CACM

21-8, p. 666-677, 1978.

Owicki, S., D. Gries: An Axiomatic Proof Technique for

Parallel Programs I. Acta Inf.6, p. 319-340, 1976.

19.

Appendix.

For completeness sake, we provide a list of all axioms and rules of

the proof system presented in this paper.

Axioms:
Al. assignment
A2. null
A3. call
A4, accept
Rules:
R1. if
R2. while
R3. select
R4. composition
R5. consequence
" R6. conjunction
R7. substitution

ple/x]}x := e {p}

{p} null {p}

{p} call entry (@ #)

{p} accept entry (@ # V) do S end accept {q}

® A b} S, {atde ATTb} s, {q}
{p} if b then s

1 else S

, end if {q}
{p'A b} s {p}

{p} while b do S end while {p A Ib}

{fpAaby} s {akieooi{p A b } s {g}
{p} select b, :s,|.

1°71

-« Ib :5_end select {q}
{P} Sl {q},{q} S2 {r}

{p} 817 52 {r}

p - Plr {pl} S {ql}l q1 > q
{p} s {q}

{p} s {a},{p} s {r}
{p} s {q A r}

{p} s {a} provided z € free(S,q)
{plt/z]} s {q}

R8.

R9.

R10.

RI11.

R12.

auxvar

tp} s' {q} provided free (q)Nav=g

1pF S {qF and S is obtained from
S' by deleting all
assignments to variables
of AV.

Here, AV is the set of (auxiliary) variables such that x € AV

implies that x appears in S' only in assignments of the form

y = t with y € AV.

parcom

formation

substitution?2

consequencel

proofs of {pi} Ti {qi}, i = 1..n cooperate

{plA..ApnAGI}begln task T,..task T end {qlA..AanGI}

{p, AP, AGT) s1; Sé[i]f§1A§2[~]AGI}
{52} s {Eé}
{p1K52[°]AGI} SE[']; sy {qlquAGI}
{plAp2}<sl>n<sz> {qlqu}

- -
where (1) <Sl>a<si; call a(e#x);SI> in Ti

-,
= [. " >
(2) <5,>=<accept a(u#v) do §:>5<; s5 end accept
in Tj(jfi)

e e

(3) [+l=le/u, x/v]

(4) free(pl,ql) c free(Ti)

-y
e

(5) free(p,) < free(T,)\(x U free(e))

(6) free (p2,§2,q2,52) < free (Tj)

{p} begin task T,... task Tn end {q}

1
{plt/z]} begin task T

Rk task Tn end {q}

provided z ¢ free(Tl,...,Tn,q)

p- pl,{pl}begin task T,... task T end {ql}, q * g

{p} begin task T.... task Tn end {q}

1

