FANLAN GUIDE

AND REFERENCE MANUAL

FANCY Inc.
(S.G. van der Meulen
A.A. Brouwer, editors)

RUU-CS-82-3
voorjaar 1982

RV

;
‘esat ©

ALV

- Rijksuniversiteit Utrecht

Vakgroep informatica

Princetonplein 5
Postbus 80.002

3508 TA Utrecht
Telefoon 030-53 1454
The Netheriands

-

o TN .Y eyt
VRLIYOSY fosismiges
< i im e aed

2 5.7, Urecht

FANLAN GUIDE

AND REFERENCE MANUAL

FANCY Inc.
(S.G. van der Meulen
A.A. Brouwer, editors)

Technical Report RUU-CS-82-3
voorjaar 1982

Tell me, where is FANCY bred,
Or in the heart, or in the head?
How begot, how nourishéd?

(Shakespeare, Merchant of Venice)

Department of Computer Science
University of Utrecht
P.0. Box 80.002, 3508 TA Utrecht
the Netherlands

~.

\v)

FANLAN GUIDE
AND REFERENCE

PREFACE
INTRODUCTION

GLOBAL FANLAN STRUCTURE

The Assembler
Syntax
Semantics

CONCRETE MACHINE STRUCTURE

The FANCY processor
Syntax
Semantics

OPERAND STRUCTURE

Syntax
Semantics

ALPHABETIC INDEX

MANUAL

17

31

31
37
51

69

69
83

87

Utrecht, april 1982

PREFACE

FANLAN and the FANCY processor originated from an introductory course

on Computer Architecture. Not having our own computer available for
teaching purposes of this kind, we invented one that should also be
appropriate for compiler- and operating-system courses. We named this
machine "FANCY" for obvious reasons, and its assembler language "FANLAN".
A preliminary report on FANLAN was issued for limited circulation in
spring 1981.

The main characteristics of our (simpler) FANCY were present in the
MOTOROLA-68000, which we adopted (and adapted) as a more realistic FANCY
machine. From the design of a FANLAN, also suitable as a language for
programming the MOTOROLA-68000, emerged the idea to aim at a 'machine-
independent' assembler.

In FANLAN as it stands now, the machine-independent features (such as
block-structure, conditional assembly and macro-processing) are care-
fully separated from the inevitable machine-bound aspects. This, together
with a new approach to the use and meaning of identifiers, and the ex-
pression of the various addressing modes, makes FANLAN an assembler-
language in its own rights, highly independent of the concrete underly-
ing machine (still the MOROROLA-68000 in this publication).

This Report can be considered as a (semi-formal) defining document for
the language. Anticipating the production of the here described assem-
bler, the Report has the status of a draft report. Small changes and
improvements to syntax and semantics can be expected, as also the clari-
fication of certain novel feautures.

The “FANCY Inc." on the cover- and title page consists of (in order of
their participation) the following persons (colleagues and students):

S.G. van der Meulen
A.P.W. Bohm
R. Gerth
J.H. Geels
H. Jensen
A.A. Brouwer
S.G. van der Meulen

11

GLOBAL F ANLAN STRUCTURE

1.0 THE ASSEMBLER

Spoo-autyoew |euty

430v0
ONIANITT

K ap0o-AJeulq

s31qog
-3INILNOYANS

401vdIN3d
-3009

burgsi] 3x93 _NVINYd 19A3|-

MO |

40SS3J0Ud

Y3IANVdX3
-0ddVNW

JIVNONYT
-INIHOVW

[}
P!
£

43717041INOD

AT8W3SSY

sourc

moxu

sabessauw

D

>

sourcetext-1isting

A

SPJOM ‘SsAay “s|aqe| S9AL3I3J4LP

-

S31009-04IVW

SISIT3WYN

ApOQ-0Joeull

S papuedxs

N
|~

dINNVIS
WIIX3AT

1X93924N0S

A FANLAN ASSEMBLER, as presupposed in this report, consists conceptually
of six processing modules:

LEXICAL SCANNER MACHINE-LANGUAGE PROCESSOR o

machine- _ machine-
ASSEMBLY CONTROLLER independent CODE-GENERATOR dependent
MACRO PROCESSOR LINKING LOADER

and three (partly permanent) information-stores:

NAMELISTS partly machine-dependent (the machine-language keys)
MACRO-BODIES partly machine-independent
SUBROUTINE-BODIES machine-dependent

We give a brief functional description of these nine components which should
be understood in relation to the sections on syntax and semantics in (mainly)
this chapter. Unless otherwise stated, numbers refer to subsections.

LEXICAL SCANNER:

- provides for the sourcetext-listing, adding logical-1ine numbers and insert-
ing messages from the ASSEMBLY CONTROLLER at the right place;

- compresses the sourcetext, eliminating superfluous blanks and all comments;

- recognizes directives; |

- builds up the NAMELISTS passing unique namelist-entries to the ASSEMBLER-
CONTROLLER instead of identifiers (labels, keys, names, operands etc.).

ASSEMBLY CONTROLLER: -

- governs the overall assemblage process as steered by the assembler-directives
and assembly-control (see 1,4,19,20);

- establishes the NAMELISTS store, following the blockstructure directives
(see, 1,4); :

- sends macro-body's to the MACRO-BODIES store, for later expansion;

- sends macro-insertion's to the MACRO-PROCESSOR;

- sends byte's to the MACHINE-LANGUAGE PROCESSOR;

- interweaves the assembly-report (an implementation-dependent feature) with
the (possibly optional) low-level FANLAN text listing (another implementa-
tion dependent feature);

- sends message's to be weaved into the low-level FANLAN text listing.

MACRO-PROCESSOR:

derives not-parametrized sourcetext (see 16) from the given macrobody(s)
(designated by the given key) as modified by the given actuals, passing this
new sourcetext back to the ASSEMBLY CONTROLLER (possibly again through the
LEXICAL SCANNER) for further processing;

can be activated in several lexical- and dynamic depths, including recursive
incarnations - it is tacitly assumed that the interrelation between the
ASSEMBLY CONTROLLER and the MACRO-PROCESSOR is such that all possible layers
of activation will be well distinguished, including their scope-requirements.

MACHINE-LANGUAGE PROCESSOR:

determines from the opcode/size or type/size of the given 'bytes', and the
given operands and the condition-option, the binary components of machine-
code for the given concrete machine;

attaches the thus formed machine-words to the proper namelist-chain{s), in
case of forward-references;

provides (if required) for an adequate low-level FANLAN text listing;

the CODE-GENERATOR belongs to the MACHINE-LANGUAGE PROCESSOR and supplies

the prefabricated bitpatterns for the final machine-words.

LINKING LOADER:

derives the final machine-code from the binary-code as obtained from the
MACHINE-LANGUAGE PROCESSOR, by modifying (if necessary) operand-addresses
for their final allocation - the precise function of the LINKING LOADER is
implementation-dependent and may also heavily depend on the concrete machine
addressing regime.

NAMELISTS:

contains a table of assembler-directives:

machine independent;
contains a table of machine-language keys:

machine-dependent;
contains a table of standard subroutine-names:

machine-independent;

contains a table of standard macro-names:

machine-independent;
contains table(s) of subroutine- and macro-names which may be

machine-dependent;

contains stacks and chains for program-defined labels (operands), subroutine-
and macro-names, and assemblytime-values:

these stacks, chains and trees reflect the FANLAN block-structure, and all
local entries disappear at their time - some entries (names of standard
callable-blocks) may survive an assemblage and will then be subjoined to one
of the tables above.

MACRO-BODIES:

contains standard-macrobody's, some of which may be machine-independent;
contains program-defined macro-body's which disappear at their time - some
of them, however, may survive an assemblage (if presented as a standard
callable-block).

SUBROUTINES:

contains the binary-code of standard-subroutines;

contains the binary-code of program-defined subroutines which disappear at
their time - some of them, however, may survive an assemblage (if presented
as a standard callable-block).

GLOBAL FANLAN STRUCTURE

1.1 SYNTAX

@ <FANLAN-assemblage>
NP <tum‘ng—opt1’on>__——]

o <e01> ¢

N—¢ <program-block> N\

_BEGIN| < > <block-name> <eol>

<program-body> <eol>

<block-name> ___Q

\—p<callable-block> L ;<eo]>_<

N—» <subroutine>

L—} .SUBRT{
<program-body> <eol>

<subroutine-name> ——_Q
L} <macro> N Q

WMo

<subroutine-name> <eol>

Iy
\Y

A
v

A
\%

<macro-key> <fp-option> <eol>

<macro~-body> <eol>

<macro-key> _—<]

A
v

@ <fp-option> @ <block-name>

<subroutine-name>
?—-}dorma] -name> |

l <macro-key>
<atv>—-—<]

|\——-><'identif1'er>___<|
K——— < > 4——

@ <program-body>

N—p <atv-option>

<eol>
<assemblytime-values> ___.4

Y <eol> ¢

N—p <data-space-option>

.DATA <eol>
<FANLAN-statements> —_<)

———— <e0l> ¢

\—>p<program-space>

Lo <eol>

<callable-blocks>

<FANLAN-statements> ____.q

<eol> ¢
L»<exter‘na1 -labels-option>

EXTERNAL < > <externa1 Tabel- hst>——-<]

tdabel:j_q

10

@ <FANLAN-statement>

\-——><assemb1y -unit> .

<]abe1 -option> < > ———p <bytes- opt1on>

<] abe1> <bytes>

<empty> <empty>

\—3) <assembly-compound>

@ <bytes>

<key> < > » <words>
<1'den1:1'f1'er>j <empty>
lﬁl <] <word>
< >

N—> <machine-language>

@ <instruction>

L‘><opcode/size> < > <operands> < > <cond1't1'on-opt1’on>_<]

@ <data~definition>

L><type/size> < > <datava1ue-speciﬁcation>—ﬁ

—3p <macro-insertion>

<

<macro-calls>

<macro-key> < > <actual-parameters> —<]

<macro-actual> 4
L__) ACTUAL| < > <macro-key> < > <forma1—name>_.<]

11

@ <assemblytime-values>

<atv> El< > <machine-language>] <I

<e0l> ¢

<FANLAN-statements> @ <1‘abe1>

<FANLAN-sta te:njib_j——q <atv>
<eol>

L—»<1’dent1’f1‘er> —
<callable-blocks>

NP <empty> l
$—+<caﬂab1e-b1ock> <eol> <]

)

N\

Gy < >

>
a

<ASCII-space-symbol> —j—q
@ <eol>

N> <comment-option> \

L—? <comment-symbol> ——————P <comment> <]

LL e
<continue-symbol> l—q <printable-ASCII-character>

L—

-

e

<word> <syllable>

<syllable> »—p <sylchar>
N—- <underscore> L—-} ,:;;r“ 1- n- t-a-b—l-e- 2\5(:— I_I-c_ h—a;a.c—tgr;-, -g
;but not a <comment-symbol> , |
1
l__;] <] ' the <ASCII-space-symbol>, or
Ea single <underscore> —<]
N <

<formal-parameter>

N—p [<]<ordinal>{>]
L—><1 nt-expression> ——4 ‘l

— [<]<formal-name> [>]

<macro-body>

N—p <parametrized-FANLAN-statements>

.
<FANLAN-statements> in which each <label>, <key>, <word> or |
<syllable> may be preceded or replaced by a <formal- parameter>L<

a <program-block>in which each <label>, <key>, <word>, or §
<syllable> in <data-space-option>, <program-space>, and |
<external-label-1ist> may be preceded or replaced by a i

1 <formal-parameter> ,———<}

e - A e = - — S - - - - — -

<actual-parameter> <actual-parameters>

<empty> 1
<defau1t symbo]>‘L—<] <actual- parameter> <]

<assembly-compound>

N—p <assemblytime-control>

13

N—y <assemblytime-assignment> \
L———|.ASSIGN| < > <atv> Bt:<machine-1anguage>
<int-expression>‘1_Q
N—> <conditional-assembly> N
- JIF
JIFNOT | < > <assemblytime-conjunction> <eol>
.THEN <eol>
<FANLAN-statements> <eol>
.ELSE <eol>
<FANLAN-statements> <eol>
Q.FI] —
., IF
JIFNOT | < > <assemblytime-conjunction> <eol>
. THEN <gol>
<FANLAN-statements> <eol>
LF1] —
N—p <repetitional-assembly> N
WHILE
WHILENOT | < > <assemblytime-conjunction> <eol>
<eol>
<FANLAN-statements> <eol>

—)><assemblytime-message>

.FATAL
.WARNING
.SOURCE

\—p <program-block>

< > <string-denotation> %

14

<assemblytime-conjunction>

>—p<assemblytime-condition>
L_;<.NOT-opt1'on> —~> . SAME
.HEAD
! .TAIL
<empty> .CONT| < > <text-comparison>——
N—p{.EQ
AT
.GT < > <value-comparison>—
1. TYPE| < > <type-comparison> -
~—{.SIZE} < > <size-comparison>———L—-<]
N <assemblytime-and-operation> ¢

<eol> _—Q

{21) <text-comparison>

<formal-text> < > <forma1-text>ﬁ
<formal-text> < > <word> <]

L-><1°<>r‘ma1 -parameter>———ﬁ

@ <value-comparison>

N—p <int-expression> < > <int-expression>

NP <real-expression> < > <real-expression>

—p <address-expression> < > <address-expression>

@ <type-comparison>
<formal-parameter> < > <forma1-parameter>————1

<formal-parameter> < > <type-key>

BIN
ocT
HEX
N—>1BCD —
INT
REAL
STRING
REF

SKIP

NOTYPE

[|

IDENT|———
INSTR

{

SUBRT

<size-comparison>

<formal-parameter> < > <forma1-parameter>—j
<formal-parameter> < > <int-expression>

MACRO S

<]

15

16

GLOBAL

1.2 SEMANTICS

FANLAN

STRUCTURE

17

18

©

The initial contents of the namelists, together with the textual informa-
tion of the predefined macros and the binary code of the preassembled sub-
routines, determines the standard environment of a FANLAN-assembly. Normally,
all standard-identifiers will be in capital-letters, and all program-defined
identifiers in small letters. However, it must be possible to translate a
FANLAN-program from a 64~ASCII-character keyboard, and therefore all different
identifiers should remain different if small letters are read as capitals, or

vice versa.

A FANLAN-assemblage may begin with a tuning-option (such as temporary rena-
ming of standard identifiers and mnemonics, particular selection from avail-
able files etc.), if desired. The precise syntax and semantics of this option-
al feature is implementation dependent.

A1l standard-identifiers, immediately preceded by a period - 1like ".BEGIN",
“.END" etcetera -, are assembler-directives: they steer the ASSEMBLER CONTROL-
LER and should not be confused with identifiers proper such as labels, keys, -

subroutine-names and macro-names.

The directives ".BEGIN" - ".END", ".SUBRT" - ".EXIT" and ".MACRO" - ".ENDM"
demarcate blocks of Jocal identification: the scope of an identifier defined

as a label or subroutine- or macro name within a block, is local to that block
(see, however, 4)

A program-block is a FANLAN-program in the usual sense of the word: after
being translated successfully, it may be loaded and executed immediately -

or stored in binary code for later loading and execution.

A callable-block, after successful translation, becomes part of the standard-
environment (of the assembler itself, so to say): its code or text will be
stored with the assembler, and its name or key becomes a standard-identifier.

A block-name and a subroutine-name may be conceived as a label just in
front of the directive ".BEGIN" or ".SUBRT" respectively. A macro-key follows
the scope of a subroutine-name, both are local to the block in which they are
declared. A subroutine-name and a macro-key are always distinguishable by their
use, and may therefore have the same identifier (which is a useful feature for
subroutine-calling macros).

19

<_T_ continued

The ".END" directive, closing a program-block, generates (if necessary) an
unconditional "GOTO" to the (first instruction of the) textually following
program-block, thus linking program-spaces (see 4) and separating them from

data-spaces.

The ".EXIT" directive, closing a subroutine, generates an unconditional
“RETURN" (see chapter 2, table 9) in order to prevent a not intended ‘running

out' a subroutine.

A macro, essentially, will be stored as (compressed) sourcetext (possibly in
some intermediate code), to be expanded through a macro-insertion (see 6) in
which actual-parameters can be provided to replace the corresponding formal-
parameters (see 13--18).

@

In the fp-option the programmer may define names (identifiers) for the for-
mal-parameters of the macro - these identifiers have the status of an 'atv'
(see 4,7). The formal-parameter regime of FANLAN is such that this formal-
parameter naming is optional.

®

See 1

O

The minimal constituent of a program-body is is the program-space in which

the whole gamut of machine-language and macro-insertion (see 6) can be speci-
fied.

In the atv-option the programmer can specify assemblytime-values for assembly-
control (see 19) and immediate-operands (see chapters 2 and 3). If formal-names
are used in a macro definition (see 2: fp-option), then they are treated as
(implicitly declared) atv's.

The data-space-option provides for the structuring (and naming) of (alterable)
data-space, which may be allocated by the assembler in complete separation from
program-space. The underlying concrete machine may have (hardware-)provisions
which prevent the execution of data-space bytes or use program-space bytes as
'alterable data'. The FANLAN assembler will at least give warnings for such
not-normal memory-accesses.

20

@ continued

The name of the block to which the program-body belongs is supposed to act
as a label in front of the first FANLAN-statement in program-space, following
the possible (local) callable-blocks. The scope of this block-name-'label’ is
that of the immediately surrounding program-block.

atv-option, runtime variables (FANLAN-statements) in the data-space-option, and
instructions (FANLAN-statements) in program-space:
- assemblytime-values are known and exist only at assemblytime, they have dis-

appeared completely at.runtime (though some of them may be hidden somewhere
as an immediate operand in an instruction),
- runtime variables are known and exist at runtime, their value is irrelevant

at assemblytime; they can be used as destination-operands (alterable data),
- instructions and data in program-space are known and exist only at runtime;

they may be used as (non-alterable) operands - the instructions proper are

meant to be executed.

Assemblytime-values and runtime-variables have a type and a size which may
play a role at assemblytime, labels in program-space have (in principle) no
type- or size-attribute.

A label occurring in the external-label-list (following the directive ".EX-
TERNAL") becomes thereby global in the entire FANLAN-assemblage. Its addressing
mode cannot be defined by the programmer (is implementation-dependent).

If, and only if, the assemblage is a callable-block dnd a subroutine, the
external-label becomes also a standard-identifier (in order to provide for the
possibility of different entry-points of a standard-subroutine)

&)

A FANLAN-statement is either an assembly-unit or an assembly-compound (through

which the FANLAN block-structure can be nested and assembly-control can be spe-
cified).

An assembly-unit is, normally, what is written on a line in program- or data-
space, if not preceded by a directive. If the label-option is empty, we have
an unlabeled bytes; an empty bytes-option provides for placing more than one
label in front of the same bytes; if both constituents of an assembly-unit hap-
pen to be empty, we have an empty line. An assembly-unit may be extended over
several physical lines (see 12).

21

(&)

A1l bytes have the syntactic structure of a key followed by zero, one or
more words (see 13). The "&" character renews (repeats) the lastly written

key, as a convenience for lazy writers.

We distinguish two kinds of bytes:

- machine-language, whereby we address the concrete machine (see chapter 2,
Syntax at table-index for "I" and RAH

- macro-insertions, whereby we address the MACRO PROCESSOR.

Bytes generate (directly or indirectly) machine-code ('bytes') to be Toaded
in random access memory and, ultimately, to be executed as instruction-code
or to be manipulated as (alterable or non-alterable) data by the instructions.

The MACHINE-LANGUAGE PROCESSOR keeps and updates a bytes-counter (PLC or
Program Location Counter) which represents, at assemblytime, the PC (runtime
Program Counter). Only the memory address relative to the FANLAN assemblage
zero-point (the physical address of the first assembled bytes) may be of oc-
casional importance to the FANLAN pkogrammer: the PLC always contains this
effective address of the bytes to be assembled. Conceptually, the assembled

code will be loaded with these effective addresses - the physical zero-point
address will be loaded in a runtime base-address register (see chapter 2.0).

It is, however, immaterial whether the concrete machine has a hardware runtime
base-address register or not (in which case the loading and Tinking process
becomes a bit more complicated).

FANLAN knows two kinds of macro-insertion:

- The macro-call is the normal, convential, way of expanding a particular
macro: zero, one or more actual-parameters are provided to be substituted
for the corresponding formal-parameters (see also 13--18).

- The macro-actual can only originate from a macro-body: it signals that at
a certain position in the actual-parameters, a macro-key was encountered,
and that this (or possibly another) macro must now be expanded with the
already given actuals (!) - the zero-position is given in the formal-name
provided by the macro-actual.

@

In the definition of assemblytime-values, only machine-language (and not a
macro-insertion) can specify the value.

22

See 5

&

Both labels and atv's are denoted by identifiers. Being program-defined
entities, their identifier should be written in small letters. There is one
exception: an external label in a subroutine as standard callable-block
must be written in capital letters (see also 4).

The (local) callable-blocks in the beginning of program-space are optional
(i.e. the program-space may begin with the FANLAN-statements proper).

@)

Blank space (at least one ASCII-space-symbol) separates label-declarations,
keys and words. There is no semantic difference between one or more space-
symbols.

(2

The eol (end-of-line) consists of an ASCII-CR (Carriage Return) immediately
followed by an ASCII-LF (Line Feed) - or vice versa - (in the syntax diagram
denoted by the symbol "Q") possibly preceded by a comment.

The continue-symbol "\" acts as a special comment-symbol, indicating that
the logical (sourcetext-)line is to be continued on the following physical
1ine. With the aid of the continue-symbol, macro-insertions with many actual-
parameters can be given a nice (i.e. 'functional') lay-out, and also long
string-denotations can be written out. Note that "Q" is not a printable ASCII-
character.

Any comment will be disregarded by the assembler.

A1l eol's have the side-effect of a blank (see 11). A not to be continued
eol (i.e. an eol not introduced by "\"), moreover, separates FANLAN-statements
- the continue-symbol annihilates precisely that important function.

We thus have:

- Blanks separate words on a logical line.

- Eol's separate logical lines (and a fortiori words), unless the continue-
symbol is used (in which case the word-separating function remains).

23

O,

A logical sourcetext-line (carrying assembly-information) consists of words
separated by blanks (see also 11) - Tabel-declarations and keys are also
words. Any word can be split arbitrarily into syllables, separated by under-
scores " ". This word-splitting makes it possible to specify a syllable (an
arbitrary part of a word) as actual-parameter in a macro-insertion, an to
‘formalize' it in a macro-body (see also 13--18). Some assemblers, however,
may forbid the splitting of labels and keys.

In order to maintain the possibility of writing underscores in a string-

- - -

ing of two consecutive underscores " " (see also chapter 3).

Underscores in the syntactic position of a syllable-separator disappear
completely from the sourcetext (or its intermediate code) when passed to the
MACHINE-LANGUAGE PROCESSOR.

See 13.

(15

A formal-parameter, essentially, is an ordinal number designating directly
the actual-parameter (by its position). As an option, formal-names may be de-
clared instead of, or even in addition to, the (implicit) formal ordinals

(see also 2). The assembler will treat formal-names as supposititious assembly-
time-values - their implicit initial value is their position number in the
fp-option [see 2).

Note that the formal ordinal is defined as an int-expression and, sonsequent-
ly, can be altered at assembly time (though in many cases the int-expression
will be as simple as an int-denotation).

In the beginning of program-space, one or more macro's may be defined. Conse-
quently, a program-block (not yet a macro-body) may (in these inner blocks)
already contain formal-parameters. A program-block as such, may be used as the
body of a parameterless macro.

24

<i§ continued

The difference between the two forms of macro-body (parametrized-FANLAN-
statements and parametrized-program-block) is pure syntactical - the simpler
form of the parametrized-FANLAN-statements may allow a simpler kind of storage
of the macro-body.

FANLAN-statements or program-block may be transformed into a macro-body as
described in the syntax. Note that FANLAN-statements or program-block as such
may be used as the macro-body of a macro without parameters. Note also that
neither an assembler-directive, nor a comment can be replaced by a formal-
parameter.

A formal-parameter (easily identifiable from its syntactic structure) will
be recognized as such only if it stands in front of ('against'), or 'in the
place of, a label, key, word or syllable. Consequently, a formal-parameter
always follows a blank or a (single) underscore and may be immediately fol-
Towed by a label, key, word or syllable, or it may stand alone.

The label, key, word or syllable immediately following a formal-parameter
(that is without a blank or a single underscore between the two), is hereby
the default-value of that formal-parameter. A formal-parameter followed by

a blank has an empty default-value.

A FANLAN-assembler may require a slightly more restricted syntax for a macro-
body in which a formal-parameter must always have an acceptable (possibly
empty) default-value. With this requirement the assembler can perform a syn-
tactic check on the macro-body (as called without parameters) at its declar-
ation.

Both forms of macro-body follow for their label-declarations and other
names the scope-rules of a program-block (i.e. the directives ".MACRO" and
".ENDM" act as block-begin and block-end). However, if a label at its declar-
ation is formalized and actualized at the macro-insertion, then that label
has the scope of the calling environment. Labels in a parametrized program-
block, occurring in an external-label-list, get at the macro-insertion the
scope of the entire assemblage (see also 4).

)

Logically, we must distinguish three kinds of actual-parameter: the default-
symbol "=", any word other than the default-symbol, and no actual-parameter
in a position where one might be (i.e. incomplete actual-parameter specifi-
cation),

25

<zz continued

default-actual. We shall see that an overcomplete actual-parameter specifi-

cation is syntactically allowed, though usually meaningless (overcomplete
actual-parameters will have the same effect as a comment, but should not be
abused as such).

Actual-parameters serve to specify the value of formal-parameters during
the expansion of a macro as defined by the macro-insertion.

Note that no actual-parameters at all may be specified (the 'empty ' -produc-
tion), even if the macro-body has formal-parameters. In that case the actual
values of all formal-parameters are their default-values (see also 16).

For overcomplete actual-parameters see 17 - it may be the consequence of
certain actual-parameter specification in particular macro-bodies.

XXX Y1)

At a macro-insertion ('macro-call' or 'macro-actual', see also 5), the MACRO
PROCESSOR takes over the function of the LEXICAL SCANNER: the sourcetext de-
noted by the macro-key is now read from the MACRO BODIES file.

The process of macro-expansion proceeds as follows:

1. Until a formal-parameter is recognized, the sourcetext (as obtained
from the MACRO BODIES file) is passed on to the ASSEMBLY CONTROLLER
without change.

2. If a formal-parameter is recognized, its actual-value is determined

in the following manner:

- the actual-parameter corresponding to the formal-parameter is des-
ignated by the current ordinal value of the formal-parameter;

- if the actual-parameter is a default-actual (see also 17), then the
actual value is the default-value of the formal-parameter (see also
16);

- otherwise, the actual value of the formal-parameter is (the literal
text of) the actual-parameter.

3. The actual-value is passed on instead of the formal-parameter, and the
default-value (if any) is (further) skipped. Step 1 is taken again.

26

@j -—@ continued

Observe that the MACRO PROCESSOR performs only textual substitution of actual

parameters for formal-parameters. The further evaluation (if any) of words is
a task of the ASSEMBLY CONTROLLER and/or the MACHINE-LANGUAGE PROCESSOR.

Note that the (additional) requirement that a macro be syntactically check-
able at its declaration, is fully equivalent to the requirement that each macro
expands to a syntactically correct program-block, even if the insertion without
actual-parameters.

Note that actual-parameters which are not 'reached' in the expansion process,
do not contribute to the final assemblage in any way. Whether an actual-param-
eter 'is reached' or not, may heavily depend on the evaluation of the int-
expression of its formal ordinal (see also 15).

Note that a macro may 'go in recursion' ('self-insertion') either directly
('call itself'), or indirectly ('come back to itself' through other macro-
insertions).

An assembly-compound is either assembly-control or a program-block - both
address the ASSEMBLER CONTROLLER for either conditioned assembly of FANLAN-
statements or for the establishment of nested program-blocks.

In the ASSEMBLY CONTROLLER assemblytime-values can be computed, inspected
and altered, FANLAN-statements can be forwarded depending on an assemblytime-
conjunction, assemblytime-messages can be specified, and the NAMELISTS can
be set up in accordance to the required block-structure.

In an assemblytime-assignment a new value is assigned to an assemblytime-
value. Assemblytime-values can be used (inspected) in assemblytime-conjunc-
tions, and in the operand specification of machine language ('immediate oper-
ands'). In all these actions the ASSEMBLY CONTROLLER will perform all feasible
type- and size-checks but, in the last instance, try always to follow the
wishes of the programmer - an assemblytime-value, essentially, is a typeless
(and, if necessary, truncated) bitpattern, just as runtime-data are.

In a conditional-assembly, the assemblytime-conjunction after the directive
“,IF" or ".IFNOT" is determined (on the ground of the current assemblytime-
value(s) involved). If the conjunction yields true, then the FANLAN-statements
between ".THEN" and ".ELSE" (or ".FI") will be elaborated and all further
sourcetext until the directive ".FI" will be skipped; otherwise, all source-

27

<€§ continued

text until the directive ".ELSE" (or ".FI" if there is no else-part) will be
skipped and, if the directive ".ELSE" is present, the FANLAN-statements from
this ".ELSE" until the corresponding directive ".FI" will be elaborated.

In a repetitional-assembly, the assemblytime-conjunction after the directive
" WHILE" or ".WHILENOT" is determined (on the ground of the current assembly-
time-values(s) involved). If the conjunction yields true, then the FANLAN-
statements between the directives ".D0" and its corresponding ".0D" will be
elaborated. This process will be repeated until the conjunction becomes false.

There are three kinds of assemblytime-messages:

- a ".FATAL" message: the given string will be written in the assembly-report,
and the assembler terminates the assemblage process;

- a ".WARNING" message: the given string will be written in the assembly-
report, and the event is counted - after a certain number of warnings (a
tunable number), the message may become 'fatal';

- a ".SOURCE" message: the given string will be written (on the spot) in the
sourcetext-1isting.

An assemblytime-conjunction is either an assemblytime-condition, or the
syntactic position, the eol (unless it begins with the continue-symbol "\")
acts as an assemblytime logical operator '.AND' (which does not exist as such
in FANLAN). It will be clear that and how (by De Morgans law) an assemblytime
Togical operator '.0OR' can be expressed with the aid of the directives ".IFNOT"
(or ".WHILENOT"), ".NOT" and eol (acting as an '.AND').

The assemblytime-condition can use four (entirely different) kinds of predi-
cate:
- the text-comparators ".SAME", ".HEAD", ".TAIL" and ".CONT", by which two

- the value-comparators ".EQ" (=), ".LT" (<) and ".GT" (>), by which assembly-

time-values are compared;
- the type-comparator ".TYPE", by which a type-check can be done;

- the size-comparator ".SIZE", by which a size-check can be done.

28

@

In a text-comparison the first of the two operands must always be a formal-
text. In this syntactic position (i.e. of a 'formal-text'), a formal-parameter
will always be replaced by its actual-parameter, even if the actual-parameter
is "=" or empty - in other words: the default-mechanism (see also 17 and 18)
does not work in this situation of text-comparison.

The predicate ".SAME" requires the first word (the actual text) to be the
same as the second word.

The predicate ".HEAD" requires that the first word (the actual text) begins
as given by the second word (one or more characters).

The predicate ".TAIL" requires that the first word (the actual text) ends
as given by the second word (one or more characters).

The predicate ".CONT" requires that the first word (the actual text) contains
the given second word as a substring.

&

In a value-comparison only expressions of the same type can be compared, and
only if these types are 'int', ‘real' or 'address'. Note that the value of an
address-expression can not be compared with the value of an int-expression -
the 'physical address' is an unknown entity in FANLAN (see also 6).

Predicates '#', '<=' and '>=' can be expressed with the aid of ".NOT" (or
“.IFNOT" or ".WHILENOT") and ".EQ", ".GT" and “.LT" respectively.

(@)

In a type-comparison, the type of the first word (always an actual obtained
from a formal-parameter) is compared with the type given by the second word.

There are four kinds of type:

- types given by the data-keys BIN OCT HEX BCD INT REAL STRING and REF;

- the type of ".SKIP" declared data, which is essentially an 'all-type' - the
type of the FANCY-data-registers DP --- D7 is SKIP,
and NOTYPEs: all forward-references (possibly in most assemblers all labels
declared in program-space) are NOTYPEs ('NOTYPE' should be understood as
‘unknown type', not to be confused with 'all-type' SKIP);

- IDENT being a (second) type of all identifiers (including keys);

- INSTR being the type of all opcode-keys and all data declared through in-

structions, MACRO the type of a macro-key and SUBRT the type of a subroutine-
name.

29

<2__—3 continued

A type-comparison does not compare sizes, i.e. objects of different size
may be of the same type.

Types are essentially attributes of labels, expressions and denotations
(that is to say that virtually all actual-parameters will have a well-defined
type, the only exceptions are certain syllables which are then classified as
NOTYPE).

In a size-comparison the number of bytes are compared.

The sizes of instructions may be undefined (may be not defined by the opcode-
key alone); the sizes of macro's and subroutines is always undefined. Undefined
size results in a false yielded by every size-comparison.

30

CONCRETE MACHINE

2.0 THE FANCY PROCESSOR

STRUCTURE

31

32

SR IR
Control < Lt
ontro
Unit ///,
o .
L 1_4;:___;]
. '+
jL UBAR T ‘;El \; MAR
AR S
1\ S8 > e
AO ! ' RO N
Arithmetic Al T ° 1 R1 /._________/
Logic A2 1 I R2
Unit A3 ! ! R3
Ad ol R4
A5 - : RS 1
A6 L R6
o I I, -1}
s | 77T RT -
— T
- -
) ™
—— R8 MBR
D1 . RO
o2 ‘ ' R10
D3 , { . R11
oL S R12
05 : R13
D6 - R14
D7 R15~

33

The FANCY-processor executes an instruction in a set of small steps
which can be described (in an ALGOL-1ike manner) as:

while processor busy
do MAR := PC;
PC +:= 2;
FETCH2;
IR := MBR2;
if IR requires operands
then FETCH operands required
fi;
execute IR
od;

proc FETCH2 = void: MBR2 := M{MAR];
C where MBRZ identifies the two rightmost bytes of MBR (

proc IR requires operands = bool: <body> ;
C yields true if the opcode requires one or more memory-
operands E

proc FETCH operands required = void: <body> ;
C fetches all operands required in (possibly) hidden registers C

proc execute IR = void: <body> ;
C executes the instruction in IR, as specified by the opcode C

The FANCY-instructions in FANCY-RAM (Random Access Memory) consist of
one or more 2bytes, arranged as follows:

o] o+2 o+d o+6 a+8
L M MM o]
header- — extension-2bytes ————m=
2byte

34

In the header-2byte of the instruction (located at address « in RAM)
the instruction-coding is present and - if possible - the operand-coding.
In many cases, however, this operand-coding requires more information-bits
which are then stored in one or more extension-2bytes.
After the FETCH of the header-2byte the programcounter (PC) points to
the first extension-2byte (or the next instruction if no extra extension-
information is present). For each operand-FETCH the extra extension-
information is fetched first and when fetching this extension-2byte or
-4byte, PC is incremented by 2 or 4 resp.

If an operand is addressed PC-relative, then PC contains at execution-
time the address of the relevant extension-2byte or extension-4byte.
The FANLAN-assembler will take care of the correct <distance>value in
the PC-relative address-coding.

The FANCY-registers

In the FANCY-processor we find the following registers:

SR = Status Register [2 bytes]
IR = Instruction Register [16 bits]
PC = Program Counter [24 bits]
MAR = Memory Address Register {32 bits]
MBR = Memory Buffer Register [4 bytes]
UBAR = User Base Address Register [32 bits]
SBAR = System Base Address Register [32 bits]

R, = ALU-registers [32 bits]

i

The ALU-registers can be subdivided into:

Ay

. Ry,
Dh Data register

Address register 0
0 = Rnig

h
h

/AN /A
/N /A
o

n

The Address Register A7 is in the FANCY always used as the Stack Pointer
(SP) and the FANCY-machine does have two different stack-pointer for
the User (User Stack Pointer, USP) and the operating-system (System Stack
Pointer, SP).

35

The Status Register (SR) is subdivided as follows:

15 13 1098 43210

KB/ ERERR

<— system byte-»<—user byte —%

The meaning of the specified bits in SR is:

= Trace mode 1 =on, 0-=off
S = System state 1 = on (FANCY executes in operating-system-mode),
0 = off (user-mode)
I = Interrupt mask 0gI<?8
X = Extend
N = Negative
Z = Zero 1 = yes (set), 0 = no (clear)
V = Overflow
C = Carry

The user-byte is normally specified with the name Condition Code Regis-
ter (CCR).
The non-specified bits of SR are (currently) not in use by the FANCY-

machine.

36

CONCRETE MACHINE STRUCTURE

2.1 SYNTAX

37

38

<machine-language>

@ <instruction>

TABLE-index

N\ <control-instruction>

\—><system-instruct1’on>

~ (]

N <implementation-primitive>

N\—s <CCR-handling-primitive>

N\—s <trapgenerating-instruction>

\—= <privileged-instruction>

N\—e<data-manipulation>

<transfer-instruction>

<alu-operation>

N <10gical-operation>

N—s <bit-operation>

N—s <address-operation>

N—s <integer-operation>

N—» <extended-integer-operation>

N—p <muitiple-bcd-operation>

L_. <floating-point-operation>

@ <data-definition>

<typed-data-definition>

<untyped-data-definition>

39

Legend o the instruction-tables.

<opcode> : FANLAN-assembler mnemonic for the operationcode.
: operand-size;

when no size is specified in the FANLAN-instruction,
the defaultvalue - indicated by ¢ - is assumed by the

assembler.
11214 .. 1lbyte, 2byte or 4byte.

<operands>| : <operands>

<destination>
<destinations>< ><source>-——-———q\

<no-operand>

l\y <emptys ————q

XNZVC}: the CCR-bits of the userbyte in the Status-Register.

- = not affected by the operation,

= set according to the result of the operation,
cleared,

= set,

- = O
n

= undefined after the operation.

l<cond-option>|: <cond-option>

IF <condition> -—————-1\
<

<empty>

40

TRANSFER-INSTRUCTION

<opcode> | | <size> <operands> XNZVC
2¢ SR |} -
copy 11214e R <data-source>
<data-variable> - xx00
214¢ <Ak>
214¢ <operand>
<Ak>
copyA VY v A} =" """
4e <address>
a'sP
CLEAR 11214¢ <data~-variabie> -0100
2¢ <Dk> -x%x00
SWAP
4e <R1-> <Rj> -----
a'<Ak>
SAVE <bin-constant>
<control-memloc>
214 | m—m—m—m—m—— — — ™ — ————————— | "~ " " -~
a<Ak>'
REST d<bin-constant>

<control-memloc>

LOGICAL-OPERATION

41

[TaBLE 2[

<opcode> | | <size> <operands> XNZVC
<Dh>
ROL 11214¢ <Dk>
<small=-shift> - xx0 %
ROR
2¢e <memory-variable>
<Dh>
ROXL 1i214¢ <Dk>
<small-shift> * x %0 %
ROXR
2¢ <memory-variable>
NOT 11214¢ <data-variable> -xx00
<hex-constant>
AND <memory-variabie>
OR 11214e <Dy> -x %00
XOR <Dk> <data-source>
<Dh>
LSL 1i214¢ <Dk>
<small-shift> x x % 0 %
LSR
2¢ <memory-variable>

42

BIT-OPERATION [TABLE 3]
<opcode>| | <size> <operands> XNZVC
BITTST le <data-variable> <Dh>
BITCLR - -
BITSET 4e <Dk> <int-constant>
BITINV
ADDRESS-0OPERATION TABLE 4
<opcode> | | <size> <operands> XNZVC
aoA (w1t H....._
SUBA 214¢ <Ak> <operand>
COMPA - X X K X

INTEGER-OPERATION ITABLE 5]

<opcode>| | <size> <operands> X N
<int-constant>
<memory-variable>
<D, >
k
ADD 11214¢ X %
<data-source>
SUB <Dk>
214¢ <Ah>
MUL - x
MULU
2¢ <Dk> <data-source>
DIV -
DIVU
<data-variable> <int-constant>
124
<data-source>
COMP <Dk> - %
214¢ <Ak>
11214¢ a<Ak> a<Ah>
NEG 11214¢ <data-variable> % %
SIGNX 214¢ <Dk> - %
<Dh>
ASL 11214¢ <Dk>
<small-shift> x x
ASR
2¢ <memory-variable>

44

EXTENDED-INTEGER-OPERATION TABLE 6 l

<opcode> | | <size> <operands> XNZVC
<D, > <D, >

ADDX K h

SUBX 11214¢ a'<Ak> a'<Ah> X X X X%

NEGX <data-variable>

MULTIPLE-BCD-OPERATION TABLE 7
<opcode>| | <size> <operands> XNZVC

ADDBCD D> - <Dp>

SUBBCD le a'<Ak> a'<Ah> 7 %27 %

NEGBCD <data-variable>

FLOATING-POINT-OPERATION

[TaBLE 8 |

45

<opcode>|| <size> <operands> XNZV QJ
<real-constant>
ADDF <memory-variable>
4e <D, > 7% % %7
SUBF
<Dk> <data-source>
MULF <memory-variable> <real-constant>
4e ?7 % % %7
DIVF <Dk> <data-source>
<memory-variable> <real-constant>
COMPF 4e <Dk> <data-source> ?2 %% %7
3<Ak>' a<Ah>'
NEGF
4¢ <data-variable> ? x % 7?7
FLOAT
FIXED 4e <data-variable> 7% % %7

46

CONTROL-INSTRUCTION

TABLE 9 |

<opcode> <operands> <cond-option>
GOTO
<memory-location>
CALL IF <condition>
GOCNT <Dk> <named-Tocation>
RETURN
RETRES <no-operand>
NOP

SYSTEM-IMPLEMENTATION-PRIMITIVE

47

ITABLE 10’

| <opcode> [<size> | | <operands> Sl [xNzvc|
LINK <Ak> <distance>
4 | b——bm—m—m"—m—m ———,—,mm—_—_—_l—— - - - -
UNLINK <Ak>
TST 11214¢
<data-variable> -x%xx00
TAS le
CCR-HANDLING-PRIMITIVE TABLE 11
<opcode>| | <size> <operands> XNZVC
SETBYTE le <data-variable> <condition> | f---- -
CorPY 2¢ <data-source>
CCR * X K K X
AND
OR le <hex-constant>
XOR

48

TRAPGENERATING-INSTRUCTION TABLE 12
<opcode> | | <size> <operands> XNZVC

TRAP <vector-number>

TRAPOF prwwesvemmm—

BOUND 2¢ <Dk> <data-source> -% 27?7

PRIVILEGED-INSTRUCTION

[raeLE 13]

<opcode>| {<size> <pperands> XNZVC
CoPY <data-source>
2¢ SR X X % X %
égD <hex-constant>
XOR
Usp <Ak>
COPYA 4 |\ ooroo — @ —_—] - - - = -
<Ak> usp
RESET <no-operand> | -~ =-=--
RETEXC <no-operand> £ 0k ¥ k%
HALT <bin-constant> kX K K K %

TYPED-DATA-DEFINITION

TABLE 14

| <data-key> <data-size> <datavalue-specification>
BIN <rep-option> 11214 <binary-sequence>
0CT <rep-option> 1[214 <octal-sequence>
HEX <rep-option> 11214 <hexa-sequence>
BCD <rep-option> 11214 <decimal-sequence>
INT <rep-option> 11214 <int-expression>
REAL <rep-option> 4e¢ <real-expression>
<string-denotation>
STRING <nat-option>
<int-expression>
REF <rep-opticn> 2¢l4 <address-expression>

UNTYPED-DATA-DEFINITION

TABLE 15

<data-key>

<data-size>

<datavalue-specification>

SKIP

<int-expression>

<empty>

49

50

CONCRETE MACHINE STRUCTURE

2.3 SEMANTICS

51

52

The FANLAN-statusvector consists of (one or more consecutive regions
in) the FANCY Random Access Memory (RAM) together with the visible
registers (REG) in the FANCY-processor. The RAM can be conceived as a
bytes-array: M[0O:upb] in which 'upb' is a machine-constant.

statusvector = RAM U REG
RAM =kglM[1wbk:upbk]
n and 1wb1<upbl<1wb2< v <1wbn<upbn are operating
system dependent: n=1 is possible, as also 1wb1=0 and
upbn=upb.
REG = A0 U Al U A2 u A3 U A4 U A5 U A6 U SP(=A7) U

DOuyDLyD2uD3uyDdiuD5UD6uUDTU
SR U PC (for further details, see 2.0)

In the context of a particular instruction, only a small part P of the
statusvector may be involved. T, normally, is subdivided in two disjunct
regions: T = 4 U Z U RAM U REG.

A consists of those bitpattern(s) that may be changed by the instruction
= the destination.

T consists of the bitpattern(s) that will not be changed, but contribute
to the operation defined by the instruction

= the source.

A and T may be the operands of the instruction, or be subdivided in
operands Ays Bys e and Iys Tgs oo

In some cases an operand is to be considered explicitly as a bit array,
in which cases an index or stice of that array will be specified between

curly brackets '{' and '}' - an operand between curly brackets will

always be interpreted as a natural (unsigned) number. Note that the numbe-
ring in a (machine-) bit-array is always from right to left, although we
follow the notational tradition of writing 'lwb:upb' with Twb<upb.

53

The sequel contains a semantic description of the FANLAN-instructions
as specified in the tables 1 to 13. The operations are specified in an
ALGOL-Tike notation, exploring the convenience of (dyadic) assigning
operators, such as '+:=', 'a:=', etc.

If necessary, the semantics will be clarified by self-explaning pictures.

Special notes are to be found under REMARKS.

54

TRANSFER-INSTRUCTION ITABLE ll

copY

oPY ..

COPYA

CLEAR

w (ap)
=
b=
v
w
=

SAVE
REST

A = z:
COPY data.

[a{15:0} := SR|

COPY Status Register.

COPY Address.

CLEAR operand.
A1l bits of A are set to zero.

Dh{0:15} 1= Dh{16:31}
R. :=: R.

SWAP register halves or registers.

When one operand only is specified the two halves of the
dataregister specified are interchanged.

When two registers are specified the contents of the registers
specified are interchanged.

The registers specified by the binary-constant are transferred
to (SAVE) or from (REST) memory, starting at the location
specified. The binary-constant, always to be specified as a
row of 16 bits, specifies in its most-significant 8 bits the
address-registers and the least-significant 8 bits specify the
dataregisters to be transferred. Thuys BIN 00001011 00111000
specifies the registers A3, Al, A0, D5, D4 and D3 to be trans-
ferred.

The instructionsize specifies how much of each register is
transferred. A 2byte-size specifies the loworder 2bytes of the
registers.

55

TRANSFER-INSTRUCTION (cont'd) TABLE 1 (cont'd)

The SAVE- and REST-instruction allow three forms of
addressing:

1. a'<Ak> (predecremented)
Only allowed for SAVE. The registers are stored starting at
the specified address minus two (if size=2) or four (size=4)
and down to lower addresses. The order of storing is from
A7 to AO, then from D7 to DO. The decremented addressregis-
ter is updated to contain the address of the last location
stored.

2. a<Ak>' (postincremented)
Only allowed for REST. The values to be reloaded into the
registers are located at the specified address and up through
higher addresses. The order of loading is from DO to D7,
then from A0 to A7. The incremented addressregister is updated
to contain the address of the last Toaded location plus two
(if size=2) or four (size=4).

3. <control-memioc>
The registers are transferred starting at the address
specified and up through higher addresses. The order of trans-
fer is for the SAVE-operation as mentioned under 1. and
for the REST-operation as under 2.

LOGICAL-OPERATION TABLE 2

ROtate Left

C

e
[arorx]

ROtate Right

56

LOGICAL-OPERATION (cont'd)

AND
OR
XOR

LSL

ROtate Left with eXtend.

Logical NOT.

TABLE 2 (cont'd)

o

Each bit of A is replaced by its logical complement.

AND
logical ¢inclusive OR
eXclusive OR

OAO = 0OAl = 1A0 = 0, 1Al = 1 AND
ov0 = 0, Ovl iv0o vl = 1 OR
010 = 0, 011 110 = 1, 111 = 0 XOR

H
it

[
"

Logical Shift Left
c

Logical Shift Right

LI e————

A A
A v:
Al:

Hoonoou
M M M

57

LOGICAL-OPERATION (cont'd) TABLE 2 (cont'd)

REMARKS:
- when shifting or rotating a memory-operand, the shiftcount is
always equal to 1.
- when shifting or rotating a dataregister the shiftcount is speci-
fied by and when this is a dataregister its contents is taken

modulo &4.
BIT-OPERATION TABLE 3
BITTST I := 21{22}
TeST a BIT
B1'tnumber£2 in Zl is tested and the Z-bit in CCR
is set according to the value of the tested bit.
BITCLR 7 = A{Z};
BITSET CLeaR 0
BITINV test a BIT and € SET A{X} := 1
INVert AT}

These instructions perform the same test and
Z-bit setting as the BITTST-instruction. Afterwards
the tested bit is cleared, set or inverted.

REMARK: when A is a dataregister the bitnumbering is modulo 32;

being a memory-location then modulo 8 (due to the lbyte-
operation).

58

ADDRESS-OPERATION iTABLE 4

‘ADDA] ADD Address A +i=E
SUBA SUBtract Address Ak -:=

COMPA COMPare Address CCR := Ak- b3

REMARKS:
- when the size of an address-operation equals 2, the contents

of the a-addressregister as a whole is affected: both operands
are sign-extended to 32 bits before the operation is performed
and this result is stored in the addressregister (if requested
by the operation).

This holds for all operations having an addressregister as the
destination-operand.

- the arithmetic used in the address-operations is signed-integer
arithmetic.

INTEGER-OPERATION TABLE 5

ADD A +:= %
ADD integer.

SUB A -i= X
SUBtract integer.

MUt D, := D {0:15}*5({N:15)

MULtiply integer.
Multiply the signed 2byte-operands yielding a signed
dbyte-result.

. INTEGER-OPERATION(cont'd)

DIV

REMARKS:

59

TABLE 5 (cont'd)

Dk {0:15} :
Dk{16:31} :

D
D

over £{0:15}
mod x{0:15}

k
K

DIVide integer.

Divide the 4byte signed-integer A by the Zbyte
signed-integer £ yielding a 4byte-result as specified

below.
31 1615

remainder quotient
Sr Sq

- the sign of the remainder is always the same as the divident unless

the remainder is equal to zero.

- division by zero causes a trap.

- if overflow is detected, this condition is flagged but the operands

are unaffected.

DIVU

MULtiply Unsigned integer.

D

S Dk{0:15}*z{0:15}

Multiply the unsigned 2byte-operands yielding an unsigned

4byte-result. The operation is performed using unsigned

arithmetic.

Dk {0:15} :
Dk{16:31} :

Dk over x{0:15}
D, mod £{0:15}

k

DIVide Unsigned integer.

Divide the 4byte unsigned A by the 2byte unsigned &

yielding a 4byte unsigned result as specified below.

The operation is performed using unsigned arithmetic.

31 1615

remainder

quotient

60

INTEGER-OPERATION (cont'd) TABLE 5 (cont'd)

REMARKS:
- division by zero causes a trap.

- if overflow is detected, this condition is flagged but the
operands are unaffected.

comp CCR :
COMPare integer.

NEGate integer.

SIGNX] SIGN eXtend.

Extend the signbit of the specified dataregister from a

PINEDS

lbyte to a 2byte or from a 2byte to a 4byte, depending on
size selected. If the size equals 2, Dk{7} is copied to
Dk{8:15}; and if the size equals 4, Dk{lS} is copied to

Dk{16:31}.

ASL Aasls
Arithmetic Shift Left.

Aasr T

REMARKS:
- when shifting a memory-operand the shiftcount is always equal to 1.

- when shifting a dataregister the shiftcount specified by £ is taken
modulo 64 if £ is a dataregister itself.

- the overflowbit V in CCR is set if the most significant bit of A is
changed at any time during the shiftoperation and cleared otherwise.

EXTENDED-INTEGER-OPERATION TABLE 6

ADD eXtended integer.
SUBtract eXtended integer.
NEGate eXtended integer. A = 0-A-X

REMARK: X is the extendbit in CCR.

MULTIPLE-BCD-OPERATION TABLE 7
ADDBCD ADD BCD-integer with extend. A 1= A+THX
SUBtract BCD-integer with extend.
NEGate BCD-integer with extend. [a := 0-a-x
REMARKS:

- these operations are performed using binary-coded-decimal arithmetic,

- the NEGBCD-instruction produces the ten's complement of A if the
X-bit is cleared and the nine's complement of A if the X-bit is set.

FLOATING-POINT-OPERATION TABLE 8
ADDF ADD Floating-point. A +:1= X
SUBtract Floating-point. A -:= %
_NTU_F] MULtiply Floating-point. A x:= %

DIVF DIVide Floating-point. A /=X

62

FLOATING-POINT-OPERATION (cont'd) TABLE 8 (cont'd)
COMPF COMPare Floating-point. CCR := %75,

NEGate Floating-point. A :=0.0-A
FLOAT convert signed-integer to FLOATing-point. A := real(a)

The 4byte signed-integer representation of A

is converted to a floating-point wepresentation.

When the integervalue fits in the mantissepart of the
floating-point-representation no rounding takes place in
the conversion. If it doesn't fit, rounding off takes
place in the conversionprocess.

FIXED convert floating-point to FIXED. A := int(a)
This is the reverse operation of FLOAT.
Given the floating-point value of A, the integervalue
equal to or the nearest integervalue below the floating-
point value is computed and stored as a 4byte signed-integer

in A.

REMARK: all operations of table 8 are performed using floating=-point

arithmetic.
CONTROL~INSTRUCTION TABLE 9
GOTO PC := #A
GOTO location.
Program execution continues at the specified location.
CALL ' Q'SP := PC
CALL subroutine. PC := #A

The address of the instruction immediatly

following the CALL-instruction (the returnaddress) is
pushed onto the stack and execution continues at the
specified location.

63

CONTROL-INSTRUCTION (cont'd) TABLE 9 (cont'd)

REMARK: the PC-value pushed onto the stack is stored into a 4byte

memory-location.

|GOCNT l GOto location if CouNTer is not exhausted.
' The specified dataregister (containing the counter) is
decremented by one. If the result equals -1, the counter
is exhausted and execution continues with the instruction
following the GOCNT. If the result is unequal to -1, execu-
tion continues at the specified location.

The GOTO-, CALL- and GOCNT-instruction may contain a condition.
If the specified condition is met, the instruction is executed the way
as described before; if the specified condition is not met, execution
continues with the next instruction in sequence.
See next page for possible conditions and corresponding tests.

RETURN PC := gSP!
RETURN from subroutine.
The programcounter is popped from the stack and execution

continues at the reloaded location. The previous PC-value

is Tost.
RETRES CCR := gSP!
RETurn from subroutine and REStore CCR. PC := gSP'

First the conditioncodes are popped from the

stack, then the programcounter is popped from the stack
and execution continues at the reloaded location. The
previous PC-value and the previous CCR-values are lost.
The system-byte of SR is not affected.

NOP NO Operation.

64

CONTROL-INSTRUCTION (cont'd)

condition test performed

f e e

IF TRUE "always"

1IF FALSE "never"

IF NOT CORZ t.Z

IF CORZ C+Z

IF NOT CARRY [

IF CARRY C

IF NOT ZERO 7

IF ZERO VA

IF NOT OF v

IF OF v

IF NOT NEG _

IF POS} N

IF NEG N

IF NOT LT

IF GE } N.V+N.V

IF LT N.V+N.V

IF GT N.V.Z+N.V.Z

IF NOT GT } Z+N. V4N,V

IF LE

TABLE 9 (cont'd)

65

SYSTEM-IMPLEMENTATION-PRIMITIVE TABLE 10
LINK Q'SP := Ak
LINK and allocate. A = SP
The current content of the specified SP +:= distance

UNLINK

TST |

TAS

addressregister is pushed onto the

stack. After the push, the addressregister is loaded with
the updated stackpointer. Finally the specified distance
is added to the stackpointer.

UNLINK and de-allocate. Ak 1= QSP!
The stackpointer is loaded with the
content of the specified addressregister. Then this address-
register is loaded with the 4byte-value popped from the
stack.

CCR := %

TeST an operand. .
Test the operand specified and set the N- and Z-bits in
CCR accordingly.

CCR ¢
Test And Set an operand. ISUAT
This instruction performes the same test

and N- and Z-bit setting as the TST-instruction (but only

"
&

"
[

for a lbyte-operand). Afterwards the mostsignificant bit
of A is set.

This operation is indivisible to allow synchronisation to
be implemented.

66

CCR-HANDLING-PRIMITIVE TABLE 11

SETBYTE A := if condition
SET BYTE according to condition. then TRUE
The specified condition is tested; else FALSE
if true then the byte specified by A fi

is set to TRUE (all ones) otherwise
this byte is set to FALSE (all zeroes).

[copy cer ...]

COPY to CCR.
The = is always a 2byte-operand, but only the loworder

byte is used to update the conditioncodes.

AND -
OR PCCR ... CCR & vi= %
XOR AND |:=

logically € inclusive OR » CCR with the
exclusive OR

specified (lbyte-) operand.

TRAPGENERATING-INSTRUCTION ‘TABLE 12

TRAP The processor initiates exception-processing ie.
it enters the operating-system-mode and starts execution

of the traphandling-program specified by the vectornumber.

TRAPOF TRAP on OverFlow.
If the V-bit of CCR is set, the processor enters the opera-

ting-system-mode and initiates the overflowhandling-program.
If the V-bit is cleared, no operation is performed and
execution continues with the next instruction in sequence.

67

TRAPGENERATING-INSTRUCTION (cont'd) TABLE 12 (cont'd)
[BouND ’ check register against BOUNDs.

The content of the loworder-2byte of the dataregister
specified is compared with the (upper)bound specified
by £. If the registervalue is less than zero or greater
than the upperbound, then the processor enters the
operating-system-mode and initiates the out-of-bouds-
handling-program.

PRIVILEGED-INSTRUCTION TABLE 13

The instructions mentioned in this table can only be executed when the
processor is in operating-system-mode. When executed while the processor
is in user-mode, they cause exceptionprocessing (on privilege-violation)

by the processor.

COPY SR ... SR{0:15} := %

COPY to SR.
A11 bits of the Status Register are affected.

AND A
OR PSR ... SR{0:15} := SR{0:15}{ v pX
XOR AND }

logical < inclusive OR »with SR
eXclusive OR

COPYA USP ...
COPYA ... USP COPY Address to/from the User Stack Pointer.

With these instructions the operating-systems programmer
can load an address into/from the stackpointer of the
userprogram under execution.

68

PRIVILEGED-INSTRUCTION (cont'd) TABLE 13 (cont'd)

RESET RESET external devices,

The reset-line is asserted causing all external devices
to be reset. Execution continues with the next instruction

in sequence.

'RETEXC SR := gSP’

RETurn from EXCeption. PC := gSpP!
The Status Register and the programcounter

(in this order) are popped from the stack. The previous
SR- and PC-values are lost and all bits in SR are affec-

ted.

HALT load SR with the 16bit binary-value and HALT execution.

After loading of SR with the binary-value, the program-
counter is advanced to the next instruction and the pro-
cessor stops fetching and executing instructions.
" Execution of instructions resumes when a trace-exception,
an interrupt-request or a reset-exception occurs.
If the bit of the binary-value cooresponding to the S-bit
is cleared, execution of this instruction will cause a
privilege-violation.

OPERAND

3.1 SYNTAX

STRUCTURE

69

70

<operand> :
<variable>
<constant> q\
<special-operands <
<variable>

& <address-register-direct> -—————1\

<data-variable>

<data-variable>
E <data-register-direct> 1
<memory-variable> <]

<memory-variable>

E<a1tered—address-reg1’ster-1ocat1’on> ——-1
<

<control-memloc>

<data-source>

<constant>
<data-variable> 1
<program-counter-relative> <]
<memory-location>
E«ontrol -memloc>
<program-counter-relative> 1 —<
<address>

<memory-location> <]

@,

71

<control-memloc>

<address-register-indirect>

<indexed-address-register-indirect>. ———{

<named-location>

<altered-address-register-location>
<predecremented-address-register-indirect> -
<postincremented-address-register-indi rect:-—q

<named-location>
<A >
: L
N—wm<label> <Dk> <int-expression>
<R1.> a

—{al[(

<label> <int-expression> @-—1

<address-expression>

\

@ <address-expression> l:)}

<program-counter-relative>
W A
\—-><1abe1>...-|PC#| E] <Dk> <distance>-m
<R1.>

——<address-express i on>-

72

<data-register-direct>

~<Dk> ﬂ
<address-register-direct>
<Ak> —_—¥
<address-register-indirect>
<Ak> —

<indexed-address-register-indirect>

&=

<A >
h
<Ak> T{<Dh>h‘ <d1'Stance>
<R.>
1

<predecremented-address-register-indirect>

[—
<postincremented-address-register-indirect>
<Ak> D_____q

<distance>

<int-expression>
B

[f] — <label1>-[-]-<label2>

label>=q L+<1abe1>-<3

i

<D, >

h
l\—o@mcta] ~-digit>

TAk>

<A >

h
L__><octa1 -digit>

<R.>
i

10123456738

L—.E]<r-index>
-

9 10 11 12 13 14 15

<special-operand>

b <status-register> \

SR |—

N— <condition-code-registers> —\

[ceR |——
N— <stackpointer> \
—
N—<user-stackpointers> —_—\
] —

N <small-shift>
N— <vector-number>

N\— <condition>

N— <no-operand>

<empty>———<]

73

74

<opcode/size>

<opcode> < > <size> ——y

[
(2]
(4]

<empty>

<opcode>

ADD ADDA ADDBCD ADDF ADDX AND ASL ASR

BITCLR BITINV BITSET BITTST BOUND

CALL CLEAR COMP COMPA COMPF COPY COPYA

DIV DIVF DIVU

FIXED FLOAT

GOCNT GOTO

| HALT

LINK LSL LSR

MUL MULF MULU

NEG NEGBCD NEGF NEGX NOP NOT

OR

RESET REST RETEXC RETRES RETURN ROL ROR ROXL ROXR
SAVE SETBYTE SIGNX SUB SUBA SUBBCD SUBF SUBX SWAP
TAS TRAP TRAPOF TST

UNLINK

XOR

75

@ <type/size>
L><data-key> < > <data-size> — - -=---p <datavalue-specification>

<rep-option-124> —— - ---b N—> <binary-sequence> ———

> (B1N]

< >
~»[0CT| < > <rep-option-124> —— ----3 N—» <octal-sequence> ———
~»[HEX] < > <rep-option-124> ——..—p [—><hexa-sequence> —————
\> < > <rep-option-124> —— —~-->N—> <decimal-sequences> ———
N INT < > <rep-option-124> — - -3 h—» <int-expression> ————|
> < > <rep-option-4e> ———] -+ -4 NP <real -expression> ————
\;< > <nat-option> ———.,_.‘..\l-> N—> <string-denotation> ——
k-» ~N—» <int-expression> ——-——~&—--<3
~»[REF] < > <rep-option-2e4>—— —- - & > <address-expression> —

<int—expression>—-$—<].,> —p <empty> >~

@ <rep-option-124> <rep-option-4e>
‘\—><rep-opt1'on> L—-» <rep-opt1‘on>xE: —_—
% <empty>__L_4

GG <

v

<rep-option-2ed>

<rep-option>

<empty> —

<TYPE-constant>

<TYPE-denotation>

<TVPE-assemb1ytimem—<]

TYPE :: bin | oct | hex | bed | int | real | string | address

D)

®

76

<labels

L*<1’dent1‘f1‘c_=r> <
<standard-identifier> ————\

<standard-identifier>

<program-identifier>

<program-identifier> —<
l (j-<decima1-digit><——)
<capital> <
L—<cap1’ta]><——)
ABCDEFGHIJKLM {
NOPQRSTUVWXYZ
(-<decima1-digit>-<——)
<letter> <

L-<1etter> 4—)

abcdefghigjklm
nopgrstuvwxyz

<nat-option>

£::<natura1>
<empty>

<natural>

L—a—<decima1-sequence> —]

<b1n denotation>
<b1nary sequence>

[——J:><binary-digit>-—)—————————41

<oct -denotation>
<octa1 ~-sequence>

L—g<octa1-digit> J

<bcd denotation>
<dec1ma1 -sequence>

l-----'Z;<dec1’ma1-d1'g1't>-)-————--——-Q

<hex denotation>
<hexa -sequence>

L—(uhéxadecimﬂ ~digit> -J__<1

<rep-option>

<natura1>

77

<empty>

® & 6 6

®

78

<condition>

NOT

_ CORZ CARRY ZERO OF NEG POS 1

GT GE LT TRUE FALSE

<binary-digit>

0 1 <

<octal-digit>

01234567} q

<decimal-digit>
0123456789 —

<hexadecimal-digit>

(0123456789ABCDETF <

<small-shift>

12345678} <]

<vector-number>

1234567891011 12 13 14 15 16

<string-denotation>

<quote> > <quote> — <]
(—— <str1‘ng-char>4—)

) . .

1 @ <quote-image> and an <underscore-image>,
|

t but not a single <quote> and not a single
|

L<underscore>

- t cane et e a% - - s " -y . wm p v om ma wm mm an e W e

l

<

}

<int-expression>

int-term>
int-term> L <int-expression>

<int-term>

1N

<int-factor>

<int-factor> E <int-term>

@ <int-factor>
<int-denotation>

<1'nt-express1'on>

<int-assemblytime-value>

<int-denotation>

<sign-option><decimal-sequence> —<]

[l

<empty> <]

<address-expression>

L» <label> -‘[<distance> j
<]

79

80

<real-expression>

<real-term>
<real-term> —— :r <rea1-expression>_l——-<]

<real-term>

<real-factor> \

<real-factor> B <real-term>

<real-factor>

h—»<real-denotation>

L S

\—e<int-denotation>

L-v-<r-ea1-express1'on>
—[(]<int-expression>
N_w<real-assemblytime-value> ——————
L—piint-assemb]ytime-vﬂue> k

<real-denotation>

<sign-option><decimal-sequence><decimal-poi nt><decimal-sequence> —J

»)

-l

C<exponent-opt1‘on> q

<exponent-option>
— <sign-option><decimal-sequence> ———1

<empty> Q

<decimal=-point>

e

<

<quote>

<

n

<underscore>

4

<empty>

ol

o

<quote-image>

nu

<underscaore-image>

81

82

OPERAND

3.2 SEMANTICS

STRUCTURE

83

84

(!, The indexregister used in the address-calculations can be spe-
@ cified in 2 ways:

@ 1. <Ak> or <Dk>

This means the 4byte-content of this register is the index-

value.
2. <Ri>

This means the loworder-2byte content of this register is the
indexvalue and this value is signextended to 4bytes before
being used in the address-calculation.

See 2.0 "the FANCY processor" for the correspondence of <Ri>

with <Ak> and <Dk>.

For the semantics of the address-notators, see INTRODUCTION 4.

The notation 'PC#' enforces the program-counter-relative

®

addressing mode. The precise meaning of 'PC#' is: PC-#here ,
where here = the (possibly hidden) label just in front of the
bytes in which 'PC#' is used.

Predecremented: Ak -:= sjze; operandvalue = aAk

96

Postincremented. | operandvalue = aAk; Ak +:= size

The de(in)crement of the addressregister is always with the
size of the operand. Is the addressregister the stackpointer (A7)
and the operandsize equals 1 (lbyte), then the stackpointer is
de(in)cremented by 2 iso. 1 to keep the stackpointer alined on a
2byte-address. The value loaded/stored from/into memory is -
of coarse - a lbyte-value,

85

The resulting <distance>-value is restricted to the context in
which the <distance> is used.
operand-addressing <distance>-value
with indexregister restriction
no 2byte
yes 1byte
‘!’ The FANLAN-assembler accepts both uppercase (<capital>)
€E’ and lowercase (<letter>) lettersymbols.

The <standard-identifier>s all have a predefined meaning,
see INTRODUCTION, while the <program-identifier>s are defined
in the userprogram and have a userdefined meaning.

€

In case a user only has the uppercase lettersymbols to his
position, the assembler accepts the <capital>s as <letter>s
in a <program-identifier> and then a (re-)definition of a
<standard-identifier> by the userprogram results in over-
riding the standardmeaning of this identifier (in the block
in which the redefinition takes place).

86

ALPHABETIC

SYNTAX-DEFINITIONS
FANLAN-MNEMONICS

INDEX

87

88

Syntax-definitions

definition-item def-tree
FYs [e] & -T2 T R 7
address-expressioni.ieiiiiiiiiiiiiiiiaeaes 53
address-register-direct il 13
address-register-indirectol 14
Ah Ak .. 20
altered-address-register-locationc.coonn 9
bcd-denotation ...ciiiiiiiii ittt es s s 39
binary-digit ..ottt i i e 42
DinNary-SeqUENCEieeiierrenreenrnacnanoacoseneons 37
bin-denotationciiiiiiniieiiriiireaaeoosans 37
o8 - T O 32
oo 1 Te 8 % 2 g PP 41
condition-code-register i it 22
CONSEANE it eiiiieeiieresennnnessossoanccasnsssnnse 30
control-memloC ..iiiniieiir v eeantacoanntonsanns 8
data-key e i, 25
data-register-direct iiiiiiiiiiiiiiiias, 12
data-STZE tiiiiiiiii ittt i it it 25
o o Tkt T o1 - PP 5
datavalue-specificationcciiiiiiiiiiiiiiinan 26
data-variableciiiiiiiii i e e 3
decimal=digituieiiiiiiiiiiiiii it i i 44
decimal-point ... ittt i i i e e 59
decimal-SequUeNnCe ...ttt rerneeennnanennocannnnens 39
Dh Dk .. 19
o R 8 Lo 18
=1 11] 01 64
exponent-optionttt i it 58
hexadecimal-digit ..., 45
NEXA=SEQUENCE L .itivieieetroranoanecnassconannnsany 40

hex=-denotation ...ttt ittt 40

definition=item

Tdentifier vttt
indexed-address-register-indirect
int-denotationciiiiiiiiiiiiieninn
iNt-expression iiciiiiiiiiiiaraaens
INt=faCtor +viverereeetiieenantaraaanaonon
TNE=LOIM o ittt enenenereenannnoanesnssans
111 :7-) E RO
=3 2 =) ol
memory-locationiiiiiiiiiiieaan
memory-variableiiiiiiiiiiiiiet
named-1ocationeeiiiiiiiiriiiaeaaas
nat-option ...iiiiiiiiiiiieiii i
TN AT L - B E SRR
NO-0perandeeeiereeniiieinaaas
octal-digitciiiiiiiiiiiiiiiiiiiin,
0Ctal-SeqUENCE .. eriiiineneanroentannnns
oct-denotationieiiiiiiiieiiiiiaaaann
OPCOAR tiiiiiiiii ittt
OpCOde=-STZe ...iviriiinrirnianniaettennnn
operand ieiiiiiiaiieie e

postincremented-address-register-indirect
predecremented-address-register-indirect

program-counter-relative e
program-identifier iiiiiin,
qUOLE L i e e e
QUOLE=TMAgE v .rverertiiiiiniinncenannenns
real-denotation,
real-expressioniiiiiiiiiiieiaiieaeans
real-factort i
real-term ...iiurineriiinnenenenernennnas
FEP=0PETON vttt

...........

...........

...........

...........

...........

...........

...........

...........

...........

...........

...........

89

def-tree

31
15
52
49
51
50
31
33

10
34
36
22
43
38
38
24
23
1
17
16
11
33
60
61
57
54
56
55
35, 27,28,29
21
21

90

definition-item

SIgN-0ption i it
3 172 = S I

1= = 1 i PO
special-operandiiiiiiiiiiii i it
stackpointer ...t e i e
standard-identifier ittt
status-register ... il i i e ci e
string-char ..ot i i i et e e
string-denotation il it
LYPE=8STZ8 ittt ittt ittt et aen
7] Yo [Ty of o ol - S
UNdersCore=Imagecveeiieienrenesocensenncnnans
user-stackpointerciiiiiiiiiiiiiiiiiiiiia
value-specification ..weiiivniineiininniiinnnnnenn
variable .. i e i e it s e
veCctor-number i it ittt

FANLAN-mnemonics

91

opcode-mnemon. | TABLE ppcode-mnemon. TABLE ppcode-mnemon. | TABLE
ADD 5 DIVU 5 RETRES 9
ADDA 4 FIXED 8 RETURN]
ADDBCD 7 FLOAT 8 ROL 2
ADDF 8 GOCNT 9 ROR 2
ADDX 6 GOTO 9 ROXL 2
AND 2,11,13 HALT 13 ROXR 2
ASL 5 LINK 10 SAVE 1
ASR 5 LSt 2 SETBYTE 11
BITCLR 3 LSR 2 SIGNX 5
BITINV 3 MUL 5 SUB 5
BITSET 3 MULF 8 SUBA 4
BITTST 3 MULU 5 SUBBCD 7
BOUND 12 NEG 5 SUBF 8
CALL 9 NEGBCD 7 SUBX 6
CLEAR 1 NEGF 8 SWAP 1
CoMP 5 NEGX 6 TAS 10
COMPA 4 NOP 9 TRAP 12
COMPF 8 NOT 2 TRAPOF 12
COPY 1,11,13# OR 2,11,13 TST 10
COPYA 1,13 RESET 13 UNLINK 10
DIV 5 REST 1 XOR 2,11,13
DIVF 8 RETEXC 13
type-mnemon. | TABLE | DIAGR type-mnemon. | TABLE| DIAGR
BCD 14 23 NOTYPE -- 23
BIN 14 23 ocT 14 23
HEX 14 23 REAL 14 23
IDENT - 23 REF 14 23
INSTR -- 23 SKIP 15 23
INT 14 23 STRING 14 23
MACRO -- 23 SUBRT -- 23

\—— these numbers ——'

refer to chapter 1

