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WIRE-ROUTING IS NP-COMPLETE

Mark R. Kramer and Jan van Leeuwen

Department of Computer Science, University of Utrecht

P.0. Box 80.002, 3508 TA Utrecht, the Netherlands

Abstract. We prove the following problem to be NP-complete: given N
pairs of points on a rectangular grid, can wires be routed to connect
paired points such that (i) the wires run along gridlines only and (ii)
the wires do not overlap or cross. The problem remains NP-complete if
wires are allowed to cross. The result shows that the general routing
problem in VLSI-design is NP-complete, even in the absence of further

optimality constraints.
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1. Introduction.

The problem of finding a suitable VLSI-design is normally split in
two tasks: (i) placement and (ii) routing. This leads to the following
question: suppose components have been placed, how hard is it to compute
a routing for the necessary conneciing wires over the chip. Normally
a placement of the components is not fixed unless a routing is known
to exist and an effort has been made to minimize the total length of
the wires used and/or the total area occupied by the design. In this
note we shall prove that even the question to determine whether a routing
exists at all, is NP-complete.

In 1980 C.D. Thompson [4] formulated a simple VLSI-model in which
the surface of a chip is viewed as a rectangular grid of unit size cells.
Cells may ‘contain at most one processing element (point) each. Circﬁits
are formed by connecting points by wires as required. Wires are constrained
to run through the "lanes" (the columns and rows) of the grid only.
Also, wires are not allowed to overlap. It follows that wires can only
have orthogonal intersections (crossings) which, in reality, would corre-
spond to passages through distinct layers of the chip surface. If wires
do not cross, then a design is called "cross free". (In a cross free
design no two wires can make use of a same cell.) Given a set of points
and a set of prescribed connections, any admissable (cross free) drawing

of the necessary wires is called a (cross free) routing.



Thompson's model has been used to study a large variety of VLSI design
problems and their intrinsic complexity in general (see e.g. [3]). using
the same conventions we can now formulate the problem that we prove

to be NP-complete.

ROUTING
Instance: N pairs of points on a grid.
Question: Is there a routing of the N wires connecting the pairs

of points.

ROUTING is proved NP-complete by means of a polynomial transformation
from 3-SAT (cf. [2]). The problem remains NP-complete if wires are not
allowed to cross (CROSS FREE ROUTING). Both problems remain NP-complete
if the pairs of points are required to be fully disjoint. The notations
and terminology pertaining to the theory of NP-completeness closely

follow Garey & Johnson [2].

2. The NP-completeness of (cross free) wire routing.

The NP-completéness proof is facilitated by considering a useful
intermediate problem. Let an "obstacle" be any (connected) rectangular

domain of cells.

OBSTACLE ROUTING

Instance: N pairs of points and M (rectangular) obstacles on a grid.

Question: Is there a routing of N wires connecting the pairs of points
such that no wire intersects an obstacle (i.e., no wire is routed through

an obstructed cell).

For technical reasons we must assume that obstacles are given by an
explicit listing of the cells they cover. (We will rid ourselves of
this assumption later, when we construct instances of OBSTACLE ROUTING
in which the obstacles have a size that is polynomially bounded in N.)
We shall prove that both OBSTACLE ROUTING and its cross free version,
CROSS FREE OBSTACLE ROUTING are NP-complete.

Lemma A. (CROSS FREE) OBSTACLE ROUTING polynomially transforms to (CROSS
FREE) ROUTING.



a known NP-complete problem can be polynomially transformed to them.
We will transform from 3-SAT (cf. [2]).

Let an instance of 3-SAT be given. It consists of a collection C
of clauses in disjunctive form that must be simultaneously satisfied,
with 3 literals per clause and variables (and their negations) chosen
from Xy to X,- To construct an equivalent instance of OBSTACLE ROUTING
we need some intuitive terminology first. An "i-street" (i21) consists
of two parallel lanes (rows or columns) of the grid, bordered by blocked

cells and separated by i fully blocked lanes (see fig. 1). Only where
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a side-street begins (a junction) or another street intersects it (a
crossing), the regular lane-structure will be modified somewhat (within
the boundaries of the street though). When a wire must be routed from

a point x at one end of the street to a point y at the other end (see
figure 1), there essentially are only two possibilities: either through
the first lane, or through the second. We will identify these options
with "false" and "true" and label one lane with xO and the other with
x1 to distinguish them for our purposes. In a number of cases it will
be necessary to let lanes switch roles. This is achieved by redirecting
the wire to an intermediate point and forcing the continuation from
another, such that the role-switching is effectuated. Figure 2 shows

the basic inverter that can be inserted in an i-street. Inversion makes
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Fig. 2. An inverter.



Given an instance I of OBSTACLE ROUTING, we construct an equivalent
instance I' of ROUTING. Take the same N pairs of points, but replace
each of the M obstacles by an additional set of pairs (called "obstruction

pairs") as follows. Put a point in each cell of the obstacle and combine
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adjacent points into pairs. This can be done in such a manner that all
pairs are disjoint. Only when an obstacle consists of an odd number

of cells there will be one point that cannot be paired to a buddy and
thus must be paired to itself. (We shall see later that this can be
avoided in the application of the transformation in lemma B.) Clearly
I' can be constructed in polynomial time.

To prove that I and I' are equivalent, we observe the following.
Clearly obstruction pairs can be connected by drawing the "straight"
wire of unit length through the common boundary of the two cells con-
taining the pair. Thus any solution to I immediately translates into
a solution of I'. (The wires connecting the obstruction pairs do not
interfere with any other wires and leave a routing cross free if the
given one was.) Conversely, consider any solution to I'. As the two
points of any obstruction pair necessarily are in adjacent cells, we
may assume that their connecting wire runs directly through the common
cell boundary. (If it didn't, we could change the wiring so it does.)
It means that in I' the obstruction pairs together block out certain
regions (the original obstacles!) for use by other wires and leave the
remaining area completely free and open. It follows that the solution
to I' translates back immediately into a solution of I. (Again, if the

solution to I' was cross free, then so is the solution to I.)

Lemma B. (CROSS FREE) OBSTACLE ROUTING is NP-complete.

It should be clear that both OBSTACLE ROUTING and its cross free

variant are in NP. Thus, for the NP-completeness proof it suffices that



it possible to switch to the truth-value assignment for X (the negation
of x) when necessary. But inverters also allow for the possibility to
block both lanes of a street for routing alien wires. By placing onev
inverter (or two, to neutralize the effect on the lane interpretation)
between any two consecutive sites where a special construction has taken
place, one can assure that wires can only be routed through the streets

we want them to use.

Given a collection of clauses C as specified, we construct an equiva-
lent instance of OBSTACLE ROUTING as follows. In brief, the instance
will consist of n vertical 5-streets representing the n variables and
3|c| horizontal 2-streets that connect, in couples of 3 corresponding

to the literals of a clause, to "plazas" representing the individual

n 5-streets
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Fig. 3. Outline of the routing problem.

clauses. Horizontal streets begin at a junction with the vertical street
corresponding to the proper variable x contributed to the clause. If
X is to be contributed, then an inverter is put in the vertical street
just before the junction to get the desired effect and another one imme-
diately after it is used to reenact the ocriginal interpretation of the
lanes. Note that horizontal streets must cross vertical ones to their
right, and we shall need a special interrupt construction to let wires
"cross over" while preserving the interpretation of the lanes.

A junction should be constructed such that the truth-value assignment

of the corresponding variable x (as reflected by the wiring down the



street) is copied into the horizontal street consistently, while a down-

ward routing is re-established afterwards. Figure 4 shows how this can
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Fig. 4. A junction (x=y=2).

be done using only three extra points. Observe that the routing

in the junction is completely determined, depending on whether the

"x-wire comes in through the left (xo) or through the rigth (xl) lane.

It correctly splits off the 0-1 interpretation into the horizontal street,
but in the process the wire down the vertical street has switched lanes.
Thus an inverter must be put in immediately afterwards, to bring the

wire back into its original lane. Note that wires cannot (and do not)
cross in a junction.

To enable a horizontal street and a vertical street to cross while
preserving their "value", we need a cross-over construction that inter-
rupts (when necessary) and re-establishes the wire routing in the various
intersecting lanes. In fact we need two separate cross-over constructions:
one in case wires are allowed to cross (figure 5) and one in case they
are not (figure 6). In figure 5 the wires are, in fact, forced to run
straight on, as conveniently located pairs (s,t) and (u,v) would be
blocked otherwise. While it seems that we could have let the wires cross
without further steps, these two pairs are necessary to prevent oOne
of the wires to switch lanes. One easily verifies that the routing in
a cross-over is uniquely determined by the lanes through which the x-
wire and the y-wire enter. Note that the cross-over makes essential
use of the fact that wire-crossings are permitted. Figure 6 is more

complicated and does require that the routing in one direction (down
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Fig. 5. A cross-over.

the vertical street, for example) is interrupted. There is no other
way if wires are not allowed to cross. The extra points and the modified
pairing not only guarantee that a cross free "passage" can be effectuated
but force it to be as shown in the various instances of figure 6, which
differ depending on where the x- and y-wire enter. Note that the x-wire
(essentially turned into the z-wire) is forced to switch lanes and thus
an inverter must be inserted in the vertical street, just below the
cross-over. Note that figure 6 is correct by virtue of the condition
that wires should not cross.

Finally plazas must be designed that property reflect the evaluation
of the clauses. Thus they should allow for a (internal) routing if and

only if at least one of three incoming streets brings in a wire through
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wire intersections are allowed (x=2z).
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Figure 7 shows a suitable plaza for clauses xvyvz.
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Note that the horizontal street corresponding to y must include an in-

verter just before entering the plaza, and that the horizontal street

corresponding to z must be led around to enter the plaza at the required

right side.

(This requires an inverter in the z-street as well, as in

bending around the lanes switch position.) It is necessary to put an

inverter in the x-street as well, to prevent a wire that should be routed

on the plaza from running into an unblocked lane.

While we left it open
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exactly by what distance horizontal streets are to be separated (a distance
of 12 blocked lanes would certginly do), figure 7 assumed rather arbitrarily
a distance of 4. This can always be achieved by bending streets closer
to one another. The pairs (s,t) and (u,v) are strategically chosen so
as to let a routing through the narrow "gorge" of the plaza exist in
case there is some room either at the s-u or at the v-t end to lead
a wire around. Just in case xsy=z=false(0) all this room is taken by
the x-, y- and z-wires (and necessarily so, for otherwise the chances
for a routing on the plaza are nil anyway) and no routing for the pairs
exists, unless the overlap constraint of the model is violated.
We conclude that the instance of (CROSS FREE) OBSTACLE ROUTING is
a consistent image of the instance of 3-SAT, and that the clauses of

C are simultaneously satisfied if and only if a complete (cross—-free)

routing exists. The transformation requires the construction of O(n. C[)
special elements (streets, junctions, cross-overs, inverters and plazas)
which have size O(n), O(|C|) or O(1). The entire construction is easily
completed in time polynomial in the size of the given instance of 3-SAT.
Thus 3-SAT polynomially transforms to (CROSS~FREE) OBSTACLE ROUTING.

O

Observe in the proof of lemma B that the instance of (CROSS FREE) OBSTACLE
ROUTING obtained from the instance of 3-SAT fits in only O(n.

c|) area,

which means in particular that the size of the obstacles needed remains

bounded by a fixed polynomial in n (as‘C\§8n3) agd thus in the number

of pairs N actually constructed. The proof of Lemma B carries some simi-

larities to a construction in [1].

Theorem. (CROSS FREE) ROUTING is NP-complete.
Clearly both ROUTING and CROSS FREE ROUTING belong to NP. The result

now follows by combining lemmas A and B.

Note that OBSTACLE ROUTING only served as a useful intermediate problem,
and that the proofs together give an immediate polynomial transformation
of 3-SAT to (CROSS FREE) ROUTING. By being a bit more careful one can
make sure that all intermediate obstacles have an even number of cells,
which means that pairs not only are disjoint but may be assumed to consist
of distinct points only. Note also that CROSS FREE ROUTING is a special

case of the DISJOINT CONNECTING PATHS problem discussed in [2], which
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thus appears to be NP-complete even for the very restricted class of

(planar) graphs that underly Thompson's model.
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