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ABSTRACT

One of the customary ways to introduce process—communication in parallel programming
languages, is by means of procedure-calls: each process has a fixed set of entry-
procedures and other process may issue external requests for one of these procedures.
The calling process then waits until the process being called, after accepting the
request, has finished executing the body of the entry-procedure.

This form of communication was first advocated in [Brinch Hansen, 1975] and has been
incorporated in many languages since. Notably in Concurrent Pascal [Brinch Hansen,
1975], Distributed Processes [Brinch Hansen, 1978], Mesa [Lampson et al, 1980], Modula2
[(Wirth, 1980] and ADA {Ichbiah et al, 1979].

Up to now, there has been no attempt to construct a proof theory for languages based
on this form of communication, which not only is sound, but also (relatively) complete.
The current paper is a first attempt at such a theory.

We have chosen Distributed Processes (DP) as a vehicle for our study, because it
is the simplest of the above languages, exhibiting the essential characteristics. More-
over, DP is one of the languages which directly influenced the design of ADA.

Technically, one might view DP as an intermediate between CSP [Hoare, 1978] and
Owicki's language in [Owicki et al, 1976]: the external request mechanism in DP can
be seen as a CSP-handshake; each DP-process however, can logically be divided into
a (varying) number of sub-processes which are working in a shared variable environment.
These similarities are reflected in the proof system by the introduction, from [Apt
et al, 1980], of a general invariant and a cooperation test to describe the process-—
interactions, and, from [Owicki et al, 1976], of a process invariant for each of the
DP-processes and an interference freedom test (IFT) to describe the execution within
each of the processes.

These notions needed however adaption; especially in the case of the IFT, because the
number of sub-processes within each DP-process varies dynamically, due to communication
with the process. To capture this, the novel notion of calling chain assertion is intro-~
duced , which characterizes the processes which are waiting for some specific communica-
tion -activity to finish.

In the paper we present a proof system for partial correctness properties for DP and

use it to prove correct a complicated algorithm which is a solution to a problem in-
spired by the Dutch national flag [Dijkstra, 1977].

1 This author 1s supported by the Netherlands Organization for the Advancement of
Pure Research (ZWO).

2 The research reported in this paper benefitted from several visits of the second

author to academic institutions in Israel, sponsored by the Netherlands organization
for the Advancement of Pure Research (2.W.0.).






1. INTRODUCTION

We present an overview of a Hoare-like proof system for the language
Distributed Processes (DP). DP has been introduced in [Brinch Hansen, 1978] and
is a generalisation of the Concurrent-Pascal-Monitor concept. In the context of
DP, we study the proof theory of concurrently executing processes which communi-
cate in a monitor-based fashion.

Communication between two processes is established when one process accepts a
call to one of its entry—procedures (common procedure in DP), issued by the other
process. Issuing such a call, raises the (monitor—) lock of the caller until the
call is processed, thus 1inhibiting other communication-activities to be esta-
blished. Accepting such a call, raises the lock of the callee until either the
operation, which has been started by the call finishes or the lock is released
voluntarily.

Previous papers dealing with the subject, [Hoare, 1974; Howard, 1976], were
limited to a discussion of proof-methodologies and heuristics. The current
research aims at a relatively complete proof system 1in the sense that we want to
be able to prove any operationally meaningfull assertion about the computation of
a concurrent program. The soundness and completeness proofs for the proof system
are projected to be the subject of the first author's dissertatiom.

This requirement leads to the essential notion of calling-chain-assertions.
These assertions may be interpreted as characterizing thé fact that a process (or
a chain of processes, as execution of a call may cause other calls to be issued)
is waiting for some communication activity to finish.

Proofs of the individual processes, which make up a DP-program, depend on each
other because communication between the processes will in general affect the
validity of these proofs. Therefore a gemeral invariant, GI, is introduced which
expresses this interdependence by keeping track of these communication
activities. Moreover, a process invariant, PI, is introduced separately for each
process; this invariant generalizes the known notion of monitor invariant, e.g.
[Hoare, 1974], and characterizes the state of a process when synchronisation

actions, like process-communication, occur within that process. To prove the
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invariance of PI and GI we have to combine (and adapt) (1) the notion of interfe-
rence freedom test introduced in [Owicki and Gries, 1976] in their proof.system
for languages in which processes communicate by sharing variables, with (2) the
notion of cooperation test introduced in [Apt et al, 1980] in their proof system
for CSP [Hoare, 1978] in which processes have disjoint state-spaces and communi-
cate through handshaking.

The major difficulty in applying Owicki”s interference freedom test is, that
contrary to Owicki”s case, in DP the interference conditions which have to be
checked are not determined syntactically but rather semantically. The calling
-chain—assertions, referred to above, are used to determine which conditions need
to be checked.

The remainder of this summary is organized as follows. Section 2 contains the
proof-theoretical description of the interplay between process—communication and
the execution of an individual DP-process. In section 3 some proof rules are

presented; only the when-rule and the call-rule are discussed in some depth,

because these are the essential rules of DP. Section 4 contains a small example
proof. Section 5 introduces the various consistency-checks which must be imposed
upon the separate process-proofs. Finally in section 6 the use of the complete
proof system is illustrated by proving correct a subtle algorithm of Dijkstra's.
This algorithm is a solution of a problem inspired by the Dutch national flag
[Dijkstra, 1977]. For ease of reference, two appendices contain respectively a
brief (but complete) description of Brinch Hansen's language, and a summary of
the proof rules and terms. In the sequel we will assume the reader to be familiar

with the basic ideas of DP.

2. THE PROOF SYSTEM

One of the milestones in the theory of program proving is undoubtedly the
axiomatic proof method using Hoare-assertions [Hoare, 1969]. His method has
received much attention, and for most of the sequential programming language con-
structs, proof rules have been proposed [de Bakker, 1980]. Parallelism however
proved be more evasive. The first break-through was achieved in [Owicki and

Gries, 1976] who contrived a proof system for languages in which process—communi-
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cation takes place by sharing variables and the only non-interruptable (i.e.
atomic) action within a process is the memory reference. On the other side of
the language-spectrum, one finds CSP [Hoare, 1978] in which processes have
disjoint state-spaces, where communication is established through an explicit
handshaking-mechanism and in which, consequently, atomic actions extend from one
handshake to another. A proof system for CSP is presented in [Apt et al, 19807].
DP occupies a midway position, in that it incorporates aspects of both of the
above languages: the external request mechanism of DP may be thought of as a CSP-
handshake; within each process however, one can envisage the initial statement
together with the procedure incarnatioms, activated by external requests, as a
set of sub-processes working in a shared variable environment and whose opera-
tions are interleaved.
These similarities are reflected in the proof system by the introduction of Apt~’s

cooperation test and Owicki’s interference freedom test.

2.1. Partial correctness and concurrency

At the moment, the proof system deals with partial correctness proofs.

In order to get a meaningfull application of Hoare”s {p}S{q}-formalism, termina-
tion of a DP-program must be defined:

A DP-program has terminated iff all processes making up the program have

terminated their initial statements.
Notice that by this definition, a program which deadlocks, has not terminated.
However in a concurrent context, termination is not always what we want. Some
buffer-process between a disk and a lineprinter, for instance, may be required to
be active all the time and we should be able to prove that this process always
functions correctly. For such properties, Hoare”s method has to be extended along
the lines of [Lamport, 1980] so that so called safety properties may be proved
which state that something bad cannot happen. In this context, partial
correctness is a safety property, stating that the program cannot terminate with
incorrect output.

This extension however does not alter those parts of the proof system which are

presented here, except for the parallel composition rule.
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2.2. Introduction of general invariant, auxiliary variables, bracketed sections

and process invariant

The main characteristic of DP, upon which the proof system is built, is the
synchronisation-at-waiting-points. In particular it is essential to acquire a
clear picture of the way in which the interplay between external requests and the
interleaving of operations in each of the individual processes (cfr. appendix 1
section 1.1) is described in the proof system. This will be explained using a
picture

Fig. 1 shows the execution of 4 processes, The horizontal lines represent the
time—-axes for each of the respective processes, Pl’ P2, P3 and P4, along which
execution proceeds. During execution of Pl, an external request is made (remember
that this is an atomic action as far as Pl is concerned). Execution of P2 proceeds
until a waiting point 1s encountered, denoted by the (leftmost vertical
wriggles), at which synchronisation takes place. PZ continues by honouring Pl’s
request and starts executing a new incarnation of the procedure-body of pr.
During this execution, other waiting points are encountered and external requests
are made (notice that the first call apparently is not part of this incarmationm,
while the second one 1is). Finally execution arives at the end of the proce-
dure—body, another waiting point, after which P1 and P2 proceed independently
again. (it may be instructive to construct a program (-skeleton) that exhibits
this behaviour).

The very act of honouring an external request will affect P2’s state, because
a fresh procedure incarnation has to be created. Moreover, when parameter-passing
occurs, external information from the caller (Pl) will be injected into the
callee (Pz) by the value—transfer at the beginning of procedure execution and
from P2 to P1 by the assignment to the variables of the call at the end of proce=-
dure execution.

It should be clear that the proof system must somehow capture these
process—interactions, if we want to prove assertions about DP-programs.
Therefore the gemeral invariant, GI, is introduced, which will keep track of the
changes in the process—states, created by these external requests. To be able to

express properties about each of the process-states, a uew class, AV, of
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auxiliary variables is introduced; the need for such a class in proof systems for
paralell programs is a well-known phenomenon.

As the variables wused within GI will have to be updated with every external
request, we cannot expect GI to be valid throughout the whole program, which
contradicts the property of being an invariant. This is remedied by the intro-
duction of bracketed sectioms, <S>, associated with each call, in which GI need
not hold, [Apt et al, 1980]. Assignments to the variables of GI will be confined
to these bracketed sections only (overlay 1). Consequently, we only need to
check whether GI is left invariant by execution of each bracketed section.

There arises however a problem: according to the above discussion each call
should somehow be inside a bracketed section. Consider the call in P1 (fig. 1).
Honouring this call by P2 results in two more calls being made. For these calls,
GI has to hold again before entering the bracketed sections surrounding them. But
these latter calls apparently take place within the bracketed section in Pl’ in
which validity of GI is not assured. This seemingly contradictory situation is
remedied by noticing that the validity of GI is required only when parameter
passing occurs, because it is only at these positions that external information
is 1injected into the processes. Hence updating the variables of GI may be
restricted to these points. For each call, there are at most two places where
parameter—passing occurs: at the beginning and at the end of procedure execution.
So we can refine the notion of bracketed section (as suggested in overlay 2) by

associating with the opening-bracket in P the leftmost closing—bracket in P2,

1°
and with the closing-bracket in P1 the rightmost opening-bracket in Pz(*).
In other words, each procedure body is extended by a pre- and postlude in which
the GI-variables are updated.

At a waiting point, external requests may be accepted, resulting in the execu-

tion of some procedure body. In order to characterize the (local) state in which

execution of this procedure body starts, for each process Pi a monitor invariant

(*) By a similar argument one can show that bracketed sections should not

contain when-statements (i.e. possible waiting points) either
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MIi is introduced which is required to hold at each waiting point (such invariants
have initially be introduced in [Hoare, 1974]). The monitor invariant MI, will in
fact be part of a process invariant PIi (overlay 3).
However, PI contains more. Firstly, as with monitor-entries, we associate with
each common procedure a pre- and post-assertion specifying the input-output
behaviour for use in the call-rule (cfr. section 3.2). Secondly, when writing
the proofs for the initial statement and the procedure-bodies of a DP-process,
we would like to construct them as were they proofs in a sequential language
and defer the problems, associated with the fact that interleaving takes place,
to a later stage (as it does in [Owicki and Gries, 1976], this will lead to an
interference freedom test). Interleaving at the when-statements is semantically
determined, so besides the normal sequential assertion, there is a special one
associated with these points, used in case the when-statement serves as a waiting
point and interleaving takes place. Thirdly, the fact that the initial statement
of some process has terminated, is significant; from this time on the process will
not originate communication activities anymore with other processes, i.e. from now
on, if the process issues an external request, it will be because some other process
called one of its common procedures. Hence, to this point, we will attach a special
assertion too. Finally, PI will record the initial state in which execution of the
corresponding process starts.
Thus, each PI consists of four separate parts:

(1) the monitor-invariant (MI),

(2) the pre- and post-assertions of the common procedures,

(3) the (special) assertions associated with the when-statements and the

point after the initial statement,

(4) the assertion associated with the point preceding the initial statement.

The assertions in the last two categories are attached to specific locatioms.
So, to specify PI, a notation is needed to specify syntactical locations. First,
for each svntactical occurence of some statement S, a unique name 'S' is intro-
duced to distinguish between the occurences. These names will not be defined

formally and can be labels, for instance.



The following standard names will be used:

'W' or 'Wi' the name of some occurrence of a when—-statement,

P.pr the body of the procedure pr in process P without its pre- and
postlude,

P.pr.body the body of the procedure pr in process P without its prelude

and

Initi the initial statement of process Pi'

Sometimes we will omit references to the process (and use Init or pr) if

it is clear or immaterial which process is meant.

With this notation, the following location specifiers can be defined
at('s") denoting the point just before 'S' and

after('s') denoting the point immediately following 'S’

Finally, notatiom is introduced to define or refer to "{ocation specific" asser-
tions (loc denotes some location specifier):
loc:p associating the assertion p with the location loc

PI:loc denoting those parts of PI that hold at loc

With this notation, PIk of some process Pk can be specified as:

PIkEp%i((at(pri):prei)A(after(pri):posti))A.wQ.(at('Wi'):piAMIk))A

(at(Inltk):q1)A(after(In1tk):(qZAMIk))
where the first disjunction ranges over all common procedures in Pk and the

second one over all when-statements in Pk'

Then PIk:after(Inltk) denotes MIkqu,

. g ! A
PIk.at( W3 ) denotes MIk Py etc.

PI is written as some formula of a predicate logic, i.e., as an ordinary asser-
tion, although PI is not an assertion; only expressions like PI:at(pr3) can be
(part) of an assertion. As there is small chance of confusion, we prefer this

somewhat inexact notation to a formally correct one.
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Our location specifiers look exactly the same as Lamport's location predicates
({Lamport, 1980]1). Semantically however, they are quite different. Lamport's predi-
cates have an operational meaning; for instance, the location predicate at('S') is
a valid assertion, being true iff control is just before the statement denoted by 'S'.
In contrast, our location specifier at('S') is not part of our assertion language.
It can only be used in terms such as PI:at('S') or at('S"):p and is thus purely a

notational device.

2.3. Free variables and assertions

In DP, each process has its own memory which cannot be accessed directly by
the other processes of the DP~program. Within the proof system we have to work
with variable(-names). So the proof-theoretical pendant of the above restriction
is: Processes have mutually disjoint name-spaces.

However this restriction is slightly too strong and we define:
own(Pi) ~ the set of variables which are subject to change in process Pi'

a variable, x, may appear (free) in process P, or in an assertion belonging

i
to the proof of Pi iff xﬁown(Pj), j#i , i.e. 1iff x is not changed by any
other process.

In the sequel, free(:,-,..., +) will denote the set of all variables appearing

free in the processes, assertions or expressions in the argument list.

3. THE PROOF RULES

Only the rules that are characteristic for DP are discussed in some depth; for

a complete list see appendix 2.

3.1. Rule for guarded regions: the when-rule

1
{pAb1; 5, {q}, ..., {pAbn} S, {a},
. ] 1
p/\‘1i\=/1 bi - Pl:at('S"),

£b1API:at('S')} 8, {q}, ..., {bnAPI:at('S')} s {q}

{p} when b, :S,{.../b S end {q}
This rule is of interest, because the when—statement may serve as a walting
point: when all the guards of this statement evaluate to false, the process may

resume execution at an earlier waiting point, or honour a new external request.

In the discussion in section 2.2 we suggested that at these times PI takes over;
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this is expressed by the second premiss. Here, °S” denotes tﬁis particular
occurence of the when~statement. So PI:at("S”) specializes to that part of PI
applicable to S. Whenever the statement is resumed again, anything may have
happened to the variables in assertion p and, consequently, p need not hold
anymore. However now one of the bi’s is true and we just passed a waiting point,
otherwise control could not have switched back to this when—-statement. Therefore,
the monitor part of PI holds and, assuming that the possible 'special' assertion
attached to 'S' holds too, we have arrived at a situation equivalent to a guarded
conditional with pre-assertion PI:at('S'); whence the third premiss. (Notice, that
to assure the validity of such a special assertion when execution resumes at the
corresponding when-statement, an interference freedom test is needed to show that
the assertions are invariant over operations which can be interleaved.) The first

premiss covers the case that the when-statement does not act as a walting point,

i.e. at least ome boolean guard bi is true on arrival.

3.2. External request rule (%)

{pAMIJ.AGI} s1;'r1[-] {PIj:at(Pj.pr)[-]/\pzAGI},
{PIj:at(Pj.pr)} T {PIj:after(Pj.pr)},
EEZAPIj:after(Pi.pr)[']AGI} Tz[-];S2 {qAMIjAGI}

{p} <8,; call PJ..pr(?,?); s,> {a}

where (1) Pi contains the bracketed section,
(2) Pj the declaration proc pr(u,v) begin T,3> T <3T, end (i#3),
(3) [+1 = [t/u, y/v],
(4) free(p,q)c free(Pi)
(5) free(pz)g free(Pi)\§

(6) free(PIj:at(pr),PIj:after(pr)) — free(Pj)

There are two aspects to an external request: (1) the execution of the proce-
dure-body and, as far as the caller is concerned, there is no difference with a
procedure—call in a sequential language and (2) the process—communication as
embodied in the updating of the GI-variables in the bracketed section surrounding

the call. We discuss the latter aspect first.

(*) The barred parameters and variables in this section denote parameter and

variable lists
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In section 2.2 we have argued that ensuring the invariance of GI over the
bracketed section containing the call is not enough. We had to construct with
every call, two new bracketed sections (in our context <Sl;T1> and <T2;Sz>) and
prove invariance of GI over those. These tests are embodied in the first and
third premiss of the rule(*).

The PI.-terms denote the pre—assertion of the common procedure being called and
the post-assertion as discussed in section 2.2. Notice however, that they are the

pre- and post—assertions of the procedure body without its pre-~ and postlude.

Next the "procedure-call aspect” of an external request.
In order to render the sequential aspects of a call as simple as possible, the
following restrictions are introduced:
(1) at procedure—entry, the variables, y, of the call are assigned to the
output parameters-;,
(2) the yi's are pairwise disjoint,
(3) free(t)m= 0,

(4) (s€ free(t)Ny) A(s€uyv) = s €free("body of Pj.pr")

Restriction (2) is fairly natural for DP because the order in which the variables
of a call are assigned their values at the end of procedure-execution is unde-
fined. Restriction (4) is implied by the constraint on the variables of a
DP-process (cfr. section 2.3).

If (2), (3) and (4) hold, one can show that

S[t/u, y/v] = begin new u,v; ui=t; v:=y

w
<
1]
13
[=]
[a¥

(*) Connaisseurs of the CSP-proof system in [Apt et al, 1980] will notice the
similarity of these premisses with the cooperation test of matching bracketed

sections. This similarity will be expounded upon in section 5
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Hence, because of (1), the value—assignments to the formal parameters on a proce-
dure-call can be replaced by a substitution of variable—names as in the premisses
of the external-request-rule (*%),
The further workings of the rule are simple now:

The procedure-~body is proven correct only once and this gives the input—output
behaviour of the common procedure for any legal input; this is the second
premiss, {pl} T {ql} , of the rule. In the first premiss we must show that the
input is legal by deriving the post—assertion pl[']. If the input is legal, ql[']
specifies the procedure—output. The intermediate assertion, Py is needed to
retain information about variables in Pi other than the actual parameters (these
variables cannot be changed by the call). This information cannot be placed in
P, because 1 is an assertion from the proof of the procedure-body within the

other process.

3.3. Parallel composition rule

{PIi:at(Initi)}Initi{PIi:after(Initi)} and PI. is interference free, i=1..n

1
pol ] n .
{344 PIi:at(Inlti)/\GI} (Pyp.--1Pd {524 PIi:after(Inlti)/\GI}

where (1) PI, denotes the process invariant of process Pi’

i
(2) Initi is the initial statement of process Pi

This rule should be clear, except for the interference freedom which is

explained in section 4.

(**) The above restrictions can be removed, resulting in a more complicated
external-request-rule. However, the other parts of the proof system are not

affected; i.e. these restrictions do not influence the concurrency features of DP
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4. EXAMPLE
We now give an example proof, illustrating the use of the procof system, In the

course of the proof, it will be seen that the system, as presented up to now, is

still incomplete.

Two monkeys are obliged to write the word 'HUMBUG' in order to get a banana. They
can do this by requesting process writer' to type one of the syllables 'HUM' or 'BUG'
which in cooperation and depending on the typing order may lead to the desired result.
The two monkeys are represented by a so-called process-array monkey[2], which is

nothing but a short-hand notation for having 2 identical processes in the DP-program.

process monkey(2]
proc eat(x) begin "eat x" end

begin call writer.type end

process writer

b : bool; x : int; word : segl2lseq[3]char; message : seqli6]char

proc type begin

if true : word := word"<HUM>; b := false
| true : word := word“<BUG>; b := "1b
end; x := x+ 1
end
begin
b := false; x := 0; word := <<, <5>>; message := <P

when x = 2 : if b : call monkey[1].eat(banana);
call monkey{2].eat (banana)
| Tb : message = NO_BANANA'S_TODAY
ena .
end

end

This example exhibits synchronization by means of a when-statement. The single

guard X = 2 of the when-statement in process 'writer', is initially made false; this
implies that the when-statement will act as a waiting point. As a consequence, the
outstanding requests for procedure 'type' will be honoured. As each execution of
procedure 'type' increases the value of x by 1, both requests must be honoured before

execution of the when-statement can be resumed.
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Let the processes be numbered as follows:

P, = monkeyl[1], p_ = monkey[2], P_ = writer. We will prove:

3

{true}lp, I », | p ]{word = <HUMBUG> v message = <NO_BANANA'S_TODAY>},

where 'V' denotes the exclusive-OR operator.

For this purpose we choose the following invariants and proof-outlines:

hi =1 for i = 1,2 and

PI, = MI_. A (at(ﬂl) : message = <>) A (at(Init3):h3=O) A (after(Init3):POST)

PI, = MI,
1 1

A (at(type):MI3) A (after(type):MIé A X = h3+1 A len{word) = h3+1)
MI3 = MIé A h3 =X A h3 = len(word), where 'len' denotes the syllable-length
MI' = (x = 0= Tlb v word = <>} A (x =1 = (b A <BUG> € word) v (T1b A <HUM> € word))
o]

A (x = 2 > T1b vV word = <HUMBUG>)
POST = word = <HUMBUG> v message = <NO_BANANA'S_TODAY>
= = £1 h, 1
GI h3 hl + h2 A hl A h,
process monkey[3]'
h, : int
J
proc eat (x) {MIj} begin >"eat x"< end {MIj}

{hj= 0} begin {hj = 0} <call writer'.type; hj = 1> {hj=1} end {PIj:after('Initf)}
- - J

process writer'
. h3 : int
proc type; {MI,} begin>
{MIB} if true : {MIB} word := word <HUM>; b := false
{MI%A h, = xAlen(word) = ho+ 1A “Tb A <HUM> € word}
| true : {MI3} word := word"<BUG>; b :=Ib;
{len(word) = h3+ tAx = h_ A
(x = 0 » b A <BUG> € word) A

(x =1 > ("1b A word = <BUGBUG>) Vv (b A word = <HUMBUG>))

end;
X 1= X+ 1; {MIéA ¥ = hy+ 1A len(word) = h3+ 1}
<h, := +
3 h3 1 end {MI3}
{h3 = 0} begin b := false; x := 0; message := <>;word := <<>,<>>;{MI3Ax#2Amessage=<>}
{PIE:at(Kl)} Zl: when x = 2; {(Tlbv word = <HUMBUG>) A message = <>}

if b : {word = <HUMBUG>} <call monkey[!].eat(banana)>;
<call monkey[2].eat (banana)> {word = <HUMBUG> A message = <>}
I "1b : {word # <HUMBUG>! message := <NO_BANANA'S TODAY>
{word # <HUMBUG>A message = <NO_BANANA'S TODAY>}
end {POST}
end {POST}

end {913 :after(Init3)}
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We only prove the call to procedure 'type' and the when-statement in 'writer'. The rest
is trivial or follows directly from the proqf-outline (psing the assignment and
skip-axioms, composition, consequence and conjunction-rules).

Consider the call in P;. We have to prove {hl = 0} <call writer.type; h, := 1> {h1=1}

By the external request-rule we have to prove

{hl = 0OAMI_AGI} skip {hl

3 O/\MIBAGI}

{MI3} "body of type" {MIéA X = h3+ 1A len(word) = h3+ 1}

' = 1} = = e= +1; h, =1
{MIBA x hy+ 1 A len (word) h3+ 1A h1 OAGI} h3 h3 1 1

= - < =
{h2 h3 1/\h2_1/\h1 lAMI3}.

All this follows readily from the definitions, the proof-outline of Pé and the

assignment and skip-axioms.
We next consider the when-statement.

As (PI, : at(ll) A X # 2Ax=2)¢false and PI

3¢ : at(Ql)A X # 2->PI3, we cbtain by the

3¢
usual rules the validity of the first two premisses of the when-rule. As to the third

premiss, this is shown in the procf-outline, whence application of the when-rule is

allowed. Thus we proved {hj = 0} Initj {PIj A after('Initj')} for § = 1,2,3

Application of the parallel-composition-rule, consequence and conjunction-rules

3
i = = = v pr ' ' 3
gives {hl h2 h3 OAGI} [P1 P21|P3] %él(PIjA after ( Inltj'))A GI}.

Finally, using the AV-rule and substituting O for h h, and h_ delivers the

1h 72 3

desired formula {true} [p P, I p,1 {wora = <HUMBUG> v message = <NO_BANANA'S_ TODAY>}.
In this proof, we have essentially used the validity of the PIj's at all waiting
points, because PIj is attached to each of them.

The validity of PIj:after('Initg) for j=1,2 is guaranteed, because its variables

are not used in procedure 'eat’.

As for the first waiting point 21 in process P the additional assertion, message=<,

3'

attached to it contains no variables used in the procedure-body of 'type' and

the rest of PI3, MI3' is shown invariant in the proof outline of procedure 'type'.

:after ('Init!)

The other waiting point, after('Init!), is not so easy. In fact, PI3 3

3

1

will be violated by the execution of (an incarnation of) 'type
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Fortunately, no such incarnations can exist after termination of Init3, because

there are precisely two monkeys alive, each of them able to call procedure 'type'

only once, and they have already done so (x=2).

The above informal reasoning showed that execution of 'type' did not inter-
fere with the validity of PI3:at(£l), whence this assertion can safely be assumed
whenever execution of the when-statement is resumed; likewise for PI3:after('Inité).
In the next section, these interference freedom conditions will be discussed in

general.

5. INVARIANCE PROOFS

In the proof system, the invariance of GI throughout the program (except for
the bracketed sections) and the validity of the PIi’s at all waiting points are
essentially used. However, these claims should be substantiated.

As to GI, by the discussion 1in section 3.2 it should be clear that the
invariance test is “hardwired” into the proof system by application of the
external-request-rule.

For those acquainted with the CSP-proof system in [Apt et al, 1980], it may be
instructive to see that this invariance test is a CSP-cooperation test in dis-
guise.

Consider a typical call (in Pi) to some common procedure (in Pj) with inter-
mittent assertions :

{p} <Sl; call P .pr(x,y); S,> {q}
- 2 (1)
proc pr (u#v) {MIj} begin T1;>{P1j:at(pr)} T {PIj:after(pr)}<;T2 end {MIj}

The first and third premiss of the external-request-rule tell use to prove:

{pAMI .AGI} S ;T,[+] {PI.:at(pr)[e]ap,AGI}
j 1771 j . 2 2)
'{pZAPIj:after(pr)[.]AGI} TZ[-]; s, {q A MIjAGI}

But remembering the equivalence result of variable-substitution and

assignment of section 3.2 (2) may be rewritten as:

{pAMIjAGI} 51; ui=x; VI=y; T1 {PIj:at(pr)ApzAGI}

3

{pz/\PIj:after(pr)/\GI} T, yi=v; S {q/\MIj/\GI}

2
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Now write (1) in CSP-notation (remember that "pz" belongs to the proof of the

calling process:

Pirte..{p} <55 Pj!(?c',?» {p2}<Pj?§; s,> {a}

- (4)
Poia.. MI.} <P, 2(u,v); T,>{PI,:at(pr)} T {PI.:after(pr)}<T2; P.tv>{MI.}

] N i 1 ] 3 L ]

Thus we see that (3) states nothing but the cooperation test of the matching

bracketed sections in (4), as Pj!aHPi?z =z:=3

Next we turn to the interference freedom test of the process invariant. This
will be 1illustrated using the program of fig.2, for which we will attempt to

prove the invariance of the process invariant, PIZ, of process P2.

process PO process P2
begin<{ql}ca11 Pl.pr>end b,c,d,e : bool

process P proc pr, begin {p1}S1; 32: when b:S2 end

1
proc pr begin<{q,}call P,.pr,>end proc pr, begin {pz}
begin skip end ifd: S3
I 4a SA; 33 : when e : Sg end end end

begin b:=c:=false
{1} 51 {eaTbl} 21:when c : T end
{true} T (b} EBQ
none of the Si's and T contain

when—-statements.

q3 = PIZ:at(£1)

figure 2
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The first waiting point is the statement, labeled Lqe According to the when-

rule, we need the validity of q3-=-P12:at(ILl). But, 21 being a waiting point,

S1 will be executed first and hence we are forced to show that this leaves
dq valid: {plAq3} S, {q3}. As 5, is the sole statement that can be executed at
this point, this is the only check to be made. In general, this implies that we
have to introduce an interference freedom test as in [Owicki and Gries, 1976].
However, DP is a more complicated language than those that Owicki was concerned
with. Firstly, had the guard, b, been true after execution of Sl, we would have
had to check whether {plAq3} 138, {q3}. So in general, the statement-sequences
over which to check the invariance of 3 cannot be determined statically, since
it depends on whether when-statements act as walting points or not.

Secondly, in the interference freedom test we have to take the environment into
account: we do have to check the invariance of q4 over Sl’ as there is a call
pending, but not over the body of pry. Likewise, at the waiting point after(‘Initz'),

we need only take S2 into account, as there cannot be any other calls pending. Hence

we must express whether some procedure incarnation can exist.

Let pr.inc denote some incarnation of the common procedure pr, declared within
some process Pm. This incarnation is called into existence by the acceptance of some
external request, generated by the execution of a call-statement within another pro-
cess. This call-statement on its turn may be part of a procedure body. Hence, a
procedure-incarnation is (uniquely) characterized by a chain, C1, C2, ey Ck’ of
call-statements: C, calling the procedure Pm.pr; C; (1£igk) within the body of the

k

and C, within the initial statement of some process (of

procedure called by Ci-1 1

course each Cj must be within a different process).
at('C1'), at(’Cz'), cees at('Ck') is called the (complete) calling-chain
determining or determined by pr.inc.
The question whether some incarnation can exist has thus been translated into the
question whether there is an execution of the DP-program such that (some of) the
constituent processes are (simultaneously) suspended at the locations specified

by the calling chain determining the incarmnatiom.
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Hence an assertion must be found, characterizing this situation: the calling-chain-
assertion.

If 'S' is some assertion within the program P, the pre-assertion of 'S', pre('s’),
in a proof-outline of P, expresses in general that there is a computation-history
leaving control in process P just before 'g', A first approximation to the calling-
chain~assertion might therefore be:

pre('C1') A pre('Cz') A pre('Ck'), (%)
i.e., the conjunction of the pre—assertions of the call's. As in the situation we
are attempting to characterize, the call-statements in the calling-chain are actually
being executed , the assertions in the corresponding calling chain assertion should
indeed be the pre—assertions of the call-statement (i.e. the "pz-assertion" of the
external request rule), rather than the pre-assertions of the surrounding bracketed
section.

There are however three refinements that must be incorporated in the definition.
Firstly, the pre—assertions all encode local computation-histories, which therefore
should be checked for compatibility. It should be checked whether the local histories
are compatible with the global calling-history which is encoded in GI. Secondly, in
the proof-outlines, no specific incarnations are considered, hence the assertions
interspersed in the procedure bodies and in particular the pre—assertions of the
various call-statements are canonical with respect to the various incarnatioms. In
the calling chain assertions however, we do consider specific incarnations, so the
assertions making up the calling chain assertion must be modified by substituting
the formal parameters of each common procedure by the actual parameters of the cor-
responding call-statement (bearing in mind that the actual parameters of a call
'Ci' (1<igk) may contain formal parameters of the procedure containing 'Ci', called
by 'Ci_1'). Thirdly, GI is needed to check compatibility. However the conjunction
of ($) with GI will in general be false, because ($) captures the situation that all
processes on the chain are waiting for the call-statements to finish, but does not
specify whether control is inside bracketed sectioms in which GI need not hold. This
implies that the calling chain assertion must be extended to specify where control

resides in the procedure—incarnation defined by the calling chain.
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Hence:
Let at('C1'), cees at('Ck') be the calling chain defining the incarnation
pr.inc of the common procedure pr and let p be some assertion within pr.
Then the calling chain assertion chain(pr.inc,p) is given by:
pre('C1')Apre('CZ')[;1/E1]Apre('C3')[;2/521[21/GA]A...A
pre('Ck')[;k_x/Gk_l]...[;]/51]Ap[§£/3£]...[§1/EA]AGI

!

where (1) ;i denotes the actual parameter list of the call-statement 'Ci and

(2) Ei the formal parameter list of the procedure called by 'Ci'.

With these calling-chain-assertions at hand, the DP interference freedom tests
can be formulated more precisely.
In [Owicki and Gries, 1976] parallelism is introduced by the cobegin-statement:

i .o .
cobegin S1 Sn end

Execution of this statement causes the statements Sl’ SZ’ ey Sn to be executed

in parallel. They require however, roughly speaking, that each assignment-

statement is executed as an indivisible, atomic action. Hence, the possible

execution-sequences of the cobegin-statement are all interleavings of the atomic

statements within Sl’ cees Sn' Consequently, the interference freedom condition

(basically) is, that any assertion, p, from the proof-outline of Si must be left

invariant by execution of any of the atomic actions, T, part of some statement,

Sj' which can be executed in parallel with Si (i.e. part of those Sj with j # i).
Stated in these general terms, the same principle applies to DP, provided

the two key-notions, atomic actions and concurrently executing statements, can

be rendered meaningful in a DP-context.

Starting with the last notion, it is clear that a syntactic constraint does not

suffice: within the same DP-process, two statements, 51 and 52, which may be executed

concurrently (t.i. whose operations may be interleaved), notation: S1 I S2, presuppose

at least one external request to the process. This fact is expressed by the validity

of some calling-chain-assertion "tracing out" a computation leaving control at('Sl')

or at('S2'). To express this an auxiliary predicate, act (£), is introduced, for any

£ specifying a waiting point:
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act(f) =PI : £, if £ is a location within or after the initial statement,

false , if there are no calling chains leading to the procedure
containing £,

= ﬁz/zséchain(pr.inc,PI:Z), if £ is in the body of procedure pr.

In this last clause, the conjunction ranges over all incarnations of pr.
Using this predicate, we can define
Elﬂﬁz where (1) neither Zl nor 22 is of the form after(pr),
(2) 21 and 32 are not both of the form at{pr), and
(3) El and 22 are not both within the initial statement,
as follows

Klllzz iff act (l’.l)/\act(ﬂz) holds.

Notice that this predicate is defined for location specifiers instead of statement
names.
validity of 21"32 in some state, is interpreted as implying that there is a computa-
tion such that control is both at(ll) and at(ﬂz). If Kl = at('W'), (W=when b:S end),
then (Zlﬂﬂz)Ab denotes that in the above situation 'W' can be interleaved at Zz.
Next, what are the atomic statements in DP?
From the semantics of DP, the points at which interleaving takes place, i.e.
the points at which another operation can be started or resumed, are the waiting
points. A complication arises because some of the waiting points are semantically
defined, so we must carefully phrase what we mean by atomicity:
T is an atomic statement of the initial statement or procedure body S iff
(1) T is either a prefix of § (t.i. at('T') = at('S')) or T starts with a
when-statement
(2) T is either a postfix of S (t.i. after('T') = after('s')) or T is followed
in S by a when-statement
(3) no when-statement other than the one possibly following T acts as a waiting
point.
Notice that the first 2 requirements are of a syntactical nature, but that the third

requirement is a semantical one.
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This definition simply states that for 'T' to be an atomic statement of a process
P, (1)at('T') must be a point at which the process can start execution, or resume
execution when coming from a waiting point, (2) after('T') must be a point at
which P starts or resumes another operation and (3) control must not leave 'T'

in between.

Before we can formulate the interference freedom conditions, there are some
technicalities to be dispensed with. Firstly, up to now we have implicitly assumed
that interference freedom need not be checked for each incarnation separately (cf.
the definition of K1ﬂ£2 above,, in which we do not ask for the existence of a
particular incarnmation). This is indeed correct as the discussion in section 3.2
indicated the possibility of specifying the input-output behaviour of some procedure
in a canonical way, i.e., indicated the possibility of giving proof outlines for
the procedure bodies. A problem arises here, however, as the formal parameters of
a procedure are local to that procedure, so that there are name~clashes to be
avoided.

Secondly, the proof outline of a procedure-body does not extend to the prelude of
that body and GI does not hold in the prelude, so that we can't use the "-predicate
there. However, the assertion to be proven invariant over the procedure-body may well
contain variables which are changed by the prelude so it must be taken into account.

Regarding the first problem, it suffices to substitute fresh variable-names for
the possible formal parameters in an assertion. As to the second problem, we intro-
duce strongest post-conditions (w.r.t. partial correctness). I.e., if assertion p is
to be invariant over some procedure body T1;>T;<T2 ({p}T1;T;T2{p}) we will check
instead whether {p*T1}T;T2{p}, where p-T, is the strongest assertion s.t.
{p}T1{pﬁT1}. Using such conditions does not complicate matters unduly, because a
prelude typically consists of one or two assigmnments.

The following definition formalizes these ideas:
Let p be an assertion within the proof outline of process P. Let X be the
(possibly empty) set of formal parameters within p and ; a set of fresh variables

. . d
(of the same cardinality of x). Furthermore, let 'S' denote some statement of P.
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Then p = ply/x] and p('S') = p - R where
R = T1, if 'S' denotes a statement in a procedure body T1;>T<;T2 and

T;T, =S, or T;T, = S; T' or T;T, = T';S for some statement T',

2 2 2

skip, otherwise.

Now let £ be some location specifier at('W') or after(Init), 'T' a statement which
obeys the syntactical comstraints of our definition of atomicity, and atom('T')
the assertion enforcing the semantic constraints. Then the interference freedom

of 'T' w.r.t. PI : £ is expressed as

{PI:Z('T')API:at('T')Aatom('T')Aact(Z)('T')Aact(at('T'))}T{PI:Z}

If this is applied to the interference freedom test of q3 in the above

example, the following conditions must be checked:

*
(1) {q3 APy A (S1 - T1b) A q, Ady A GI} S, {q3}( )
(2) {q3 APy A (S1 >b) Ag Ag, A GI} s, when b:S, end {q3}
(3) {q3 A P12 : at(ﬂz) AbAgAgy A GI} when b:S2 end {q3}

(4) {q3 AP, A (T1d o (s, = e)) A false} if ... end {q3}
(3) {q3 AP, A Ta A (s, - Tle) A false} S, {q3}

(6) {q3 A PI, at(ZB) A e n false} when e:Sg end {q3}

0f course, the last three tests are trivially satisfied, but they are interesting
because they clearly show that the atomic statements do not follow the phrase—structure
of the language: Ome branch of the if-statement in the body of Pr, (fig. 2) contains a
when-statement, and it is necessary to "break open'" this if-statement to consider each
branch separately (tests (5) and (6)). The assertion atom(...), must force the correct
branch to be taken in such cases.

We see that a direct analogue of Owicki's test (i.e., listing all atomic statements

separately) is somewhat awkward here. In fact, the situation is worse because in the

(*) R - s denotes the weakest pre-condition (w.r.t. partial correctmess) s',

such that {s'} R {s} holds. This dynamic logic approach was suggested by

Amir Pnueli.
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presence of loops, there may even be an infinity of atomic statements. So, we look
for an alternative formulation in which interference freedom w.r.t. some assertion
PI : £ is expressed for all-atomic actions within a procedure body or initial state-

ment S in a single step. This will appear to be straightforward.

Consider a proof for
{PI:E('S')API:at('S')Aact(Z)('S')Aact(at('S'))}S{?fTZT.
This takes care of the invariance of PI : £ over S. However S may contain atomic
statements too. Consider such an atomic statement T within S, starting with resp.
followed (in S) by when-statements W1 resp. WZ' If T can be interleaved at({), i.e.,
if W, and W, can become blocked at(£), PI : £ must be invariant over T. The pre-

1 2
assertions of W, and W,, in case they blocked, are PI : at(w1) and PI : at(wz). This

1 2°
suggest changing PI (for this particular proof) such that PI : at(Wi) - PI : £
whence the following definition of the auxiliary predicate, INV(p,'S'), expressing
the interference freedom of 'S' w.r.t. the assertion p.
Let 'S' be some statement and p an assertion associated with a statement denoted
by the location specifier £. Then INV(p,'S') is true iff a (valid) proof can be
constructed for {p('S')API:at('S')aact(£)('S")Aaact(at(’'s'))}s{p} such that the
process invariant PI', used when applying the when-rule in this proof, is the

following

v=/\ 1 Y. (= . 4 4 ' 1
PI'= Wi, in 'S at( Wi ): (PAPI:at( Wi Ynact (£)aact (at( Wi )))
Using this predicate, our final interference freedom test is straightforwardly
formulated as:

Interference freedom test:
Let process P have procedures pr,,...,pr_ and a process invariant PI. Assume we have
12 n

a proof outline (w.r.t. PI and GI) for P. For any 'S' in P, let pre('S') denote the

1

(sequential) pre-assertion of 'S' in P's proof-outline. Suppose we have a predicate
INV(p,'S') asserting the invariance of an assertion p over all atomic statements
within 'S'. Then PI is defined to be interference free w.r.t. a proof outline of P
iff

(1) for each 'term' in PI of the form at('Wi'):pi the formula

INV(pi,pr .body)A...AINV(pi,prn.body) holds,

1

(2) for each term in PI of the form at('Wi'):pi, 'Wi' within some procedure-body
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INV(pi,Initp) holds, and
(3) for the possible term after(initp):q in PI, INV(q,pr1.body)A...AINV(q,pr .body)
n

holds.

The assertion associated with each when-statement in 'S' by PI' in the INV predicate

is rather formidable. On the other hand, consider such a when-statement 'Wi'. By the
ordinary proof outline, we know that PI : at('Wi') holds when control arrives at('Wi').
The disjunction act(K)Aact(at('Wi')) remains valid because of the substitution of

the formal parameters in the calling chain assertion. So effectively, only validity

of E'has to be proven.

They are, however, all needed because every time we must check if an interleaving
is possible. If it is not possible, PI' : at('wi') reduces to false and the test is
trivialized. Notice that this does not imply that subsequent tests are trivialized too,
because the when-rule rule forces us to use PIL' : at('Wj') as a pre—assertion for a

subsequent statement 'Wj'.
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6. THE DUTCH NATIONAL TORUS.

Edsger W. Dijkstra designed the following problem, "inspired by the Dutch National

Flag" [Dijkstra, 1977]:

Consider a program comprising 3 + 3 processes in a cyclic arrangement; three main pro-

cesses, called R(ed), W(hite) and B(lue), and three buffer processes RW, WB and BR, in

between:
R
BR RW
B\Q—/w
WB

Each main process contains initially a number of red, white and blue pebbles. Its
goal is to collect from the system all pebbles of its own colour, thus constructing
a neatly coloured Dutch National Torus. Communication takes place along the directed
channels as indicated in the figure. In particular, process B cannot communicate di-
rectly with process W to transmit its white pebbles. Moreover, per communication (at
most) one pebble can be transmitted.

Below, we will give a DP version of Dijkstra’s solution. Readers who want to see more

of the original draft are referred to [Dijkstra, 1977].

The solution, as proposed in Dijkstra, implemented in DP.

The program contains three main processes R(ed), W(hite) and B(lue) respectively, and

three buffer processes RW, WB and BR, in between.

Each buffer process is synchronized with its left neighbour for the input of pebbles.
After each single input the process is synchronized with the main process at its
righthand side, to get rid of the pebble again. The private variable y takes care of
buffering the pebble. The main process on the left can only have its pebble buffered

in y when y contains no other pebble; this is controlled by means of a when-statement.
Each main process transmits the value w to its right buffer process when it has trans-
mitted all foreign coloured pebbles, to signal that the buffer process may terminate.

A specific buffer process BR is as follows:
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process BR
y:pebble; trm:bool;
proc p(x:pebble)
when y=g:y:=x end
y:=¢; trm:=false
do Tltrm:

when y#g:icall R.p(y); trm:=y=w; y:=¢ end

end

Each main process has three bags of pebble, r(red), w(hite) and b(lue) initialized to

Ty, W, and bO (the pebbles themselves are denoted by #, w and b). Its goal is to

collect from the system all pebbles of its own colour (in the correspondingly coloured

resp.

bag). Its foreign pebbles it transmits, ome at a time, via the buffer process on its
right, thereby first emptying the bag that contains the pebbles with the larger travel-
ling distance. When it has no more foreign pebbles left, it gives a signal w, via the
same buffer process (this introduces a starting problem, which will be discussed on the
basis of the program text). Communication takes place in a lock-stepped fashion: after
the process has sent a pebble to its right buffer process, it waits until its left
buffer process has a new pebble to be submitted. When no more pebbles are to be sub-
mitted, expressed by the variable "term'", the main process just empties its foreign
coloured bags of pebble. This emptying takes place in a smooth way, by the set up of
the communication: the right buffer process only finishes the request when it has al-
ready sent the former pebble to the next main process. Thus, no pebble vanishes. A
variable "acc" keeps count of the last communication action of the process: acceptance

or output of a pebble. Hence, our tramslation of a particular main process R (if g is

a bag of pebbles, the cardinality of g is denoted by #g):
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process R
r,w,b:bag of pebble; acc,term:bool
proc p(x:pebble)
if x=@: term:=true
x#w: ""place x in appropriate bag"; acc:=true
end
r,w,b:=r0,wo,b0; acc,term:=true, false;
do #b>0:
b-:=b; acc:=false; call RW.p(b);
when termvacc:skip end
end;
do #w>0:
w-:=W; acc:=false; call RW.pw);
when termvacc:skip end
end;
call RW.p(w)

end

The starting problem.

Unfortunately, the program lined out above does not fullfill its purpose for
every input. Consider an initial division of pebbles such that process R has no

white and blue pebbles. Execution in R starts with Init

R’ where the loop state-

ments are skipped because their guards are false. Consequently, InitR terminates
before external requests to procedure PR can be honoured. Such a request may
introduce a white pebble in R (as process B initially may have a white pebble).
This pebble will never be sent to its collector process W, since sending only

takes place in Init_, which has terminated.

R’

Clearly, the problem is that Init_, is allowed to terminate without checking

R
whether it has to pass on pebbles from its left neighbour. This suggests, in-
serting just before the two guarded loops, the statement:
if #by+#wy=0: when termvacc:skip end\#b0+#w0¢0:§EiR end end.
An easier solution, not modifying the elegant algorithm, is demanding that

each main process contains at least one foreign pebble. This is what Dijkstra

proposed and we shall follow in his footsteps.
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Correctness proof of the Dutch National Torus.

First some conventions and notation are introduced.

(1) To avoid name-clashes, the variables of each process are indexed by the
process' name. However, this index will not be written if it is clear from
the context, which process a variable belongs to.

(2) The notation "#b(h)" is shorthand for 'the number of blue pebbles in h"
(where h is a bag, sequence, set etc.), "#(bR+wR)" for "the number of blue
and white pebbles in R" and so on.

(3) "hd(h)" denotes the head element of the sequence h; "tl(h)" denotes the rest
of the sequence.

(4) ”K*W+(€+w)" denotes a sequence of zero or more red pebbles, followed by
at least ome white pebble and possibly closed-off by an w. (¢ denotes the
empty sequence).

(5) "h"k" denotes the concatenation of the two sequences h and k.

We want to prove the following Hoare formula:

OR Vo) TOM (x g #b ) >0MH (x4 )>0A St (1 RY, (w, W), (BB Fley20}

[RIRWIW[WBIBIBR]
{ k,K)E{(r,R),(w,W),(b,B)(#kK=#(kOR+kOW+kOB))A#(WR+bR)+#(rW+bW)+#(rB+wB)=O}

To express the necessary assertions, some auxiliary variables are introduced. For

{#®

each process we introduce variables h and h which keep track of the pebbels having
been received resp. dispatched by the process. Using these, the fact that no
pebble is lost during execution can be expressed. Next, consider a buffer process.
With a little thought, it becomes clear that such a buffer has a maximal lag of 2
between the pebbles received and the pebbles already sent off. Therefore, an
auxiliary variable z is introduced, remembering the pebble received last, as long
as this pebble has not yet been put into the buffer-variable y. This is linked with
the fact that the (last) call to the buffer, having transmitted the pebbly now

in z, has not been completed yet. To express this link, each main process gets

an auxiliary boolean 1, expressing the fact that no call (originating from this

process) is in progress.
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The general invariant now becomes:

GIE?iEE;;j;;?EE}(EkL=hLAHK=hKLA(zKL=e ) 1K))

Proof outline of process BR.

The following monitor and process invariants are used
— — * %
= = - - = Z
MIBR—hBR hor YER zBRA(trmBR%hd(hBR) w)AhBRew A (s+w)A(w€hBR»#hBR 2)

PI = at(BR.p):(zBR=xBRAMIBR)Aafter(BR.p): MIBR[E/ZBR]A

at(Init_ ) :( AhBR=hBR=e)Aafter(InltBR):(MIBRAtrmBRAyBR=e)A

BR’* \ZBR ©
"Ity . =
at ("W ).(zBR XBRAMIBR)

The first term of MIBR just expresses that BR is a buffer (taking account of the

lag). The second term is needed to prove that no calls occur once the value w has
been been received. The last two terms describe the behaviour of processes B (as
seen from BR). This is needed to prove the calls to process R correct.

Here follows the proof outline:

process BR

y,z:pebble; h,ﬁ:igg_gﬁ pebble; trm:bool
proc p(x:pebble) {MI}
begin h™:=x; z :=x>{z=xAMI}

'W':when y=¢:{MIrz=xAy=¢}

Mi[e/y, x/2]} y:i=x
end {MI[e/z]}

<z:=¢ end {MI}

{z=eah=h=¢}
begin y:=¢; trm:=false {MIay=¢}
do  trm:{MIay=e¢}
when y=g:{MIAy=e}
<h":=y; {Mile/y, y=w/trm]} call R,p(y)>
trm:=(y=w); y:=¢
end {MIay=e}
end

end {MIay=catrm}

The proof outlines and invariants for the other buffers are similar and will not

be spelled out.
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Proof outline of process R.

The following monitor invariant is used:
MIRéEREb*W*(e+w)A((termRvaccR)*#hRZmin(1,#ﬁﬁ))A('WaccRﬁ#thmin(1,#Eﬁ—1))A

((accRA#wR=OA#hRZ1)ehd(hR)¢W)A(termR+hd(hR)=w)A#(bOR+w0R)>0A

#b(Eﬁ)+#bR=#bORA#W(ER)+#WR=#WOR+#W(hR)A#rR=#rOR+#r(hR)
The first term describes the sequence of pebbles that the process transmits. The
next two terms are necessary to prove that after termination of the process, at
least one pebble has been received. Together with the fourth and fifth term, they
are used to prove that after termination no white pebbles can be received. The
last three terms are important and describe the relationship between the pebbles

within the bags and the pebbles received resp. transmitted at any time.

The process invariant is as follows:

PI. = at(R.p):(hd(hR)=xRAMIR[t1(hR)/hR]AhREW#a*(s+w)A#hRZmin(1,#ﬁﬁ))Aafter(R.p):MIRA
at(InitR):(#bOR+#WOR>OA#bORiOA#WORZOAlRAhR=Ek=E)A
after(InitR):(MIRA#bR+#WR=OAhd(Eﬁ)=MA(termVaCC)AlRA#E§ZZ)A

" '), T cn® 1Y) . ="** T
at ( w1 ).(MIRAhREb AlRALIR1)Aat( W, ).(MIR+#bR oAhReb w AlRA(#bOR>0»b€hR)ALIR2)

In the proof outline, the following two loop invariants are used:
LIp, =3k (#bp=#byp —kA (k>0-bER))

LIy EEk(#wR=#w0R—kA(k>0ﬁwEE£))

2
These are needed to show that at least one foreign pebble will be transmitted by

the process.

Now follows the proof outline of process R (the other proof outlines and corres-

sponding invariants are analogous):
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process R
r,w,b:bag of pebble; inc,term,l:bool; h,ﬂ;ggg_gﬁ pebble
proc p(x:pebble) {MI}
begin h™:=x;>{hd (h)=xAMI[£1(h)/h]Abew 2" (e+w)A#hzmin (1,#8))
if x=Ww:term:=true | x#w:"place in appropriate bag"; acc:=true end
{MI}<end {MI}
{#(ro+w0)>0A1=E£33Ah=Eéa}
begin r,w,b:=ro,w0,b0; acc,term:=true, false, {MIAh€b A1ALI A(termvacc)}
do #b>0:b-:=b; acc:=false; {MI[R" b/R1nREL” AIALL, [#b- 1/#b]/\‘|acc}
<1'=_§_§_}_s_g; B~i=b; {MIAREL AT IALL, } call RW.p(b), l:=true>;
{MIATED" AlALI } W, ':when termvacc:skip end
end; {MIA#b= ~0nTEb™ w AlA(#b >0ﬁb€h)ALI A(termvacc)}
do #w>0:w-:=W; acc:=false; {MI[h W/h]Ahtb w” ALALL, [#w—=1/#w]r#b= OA(#b >0~b€h) }

<1: false, hi=w; (MIARED W AT 1ALT A#b OA(#b >O—*b€h)} call RW. p(W) l:=true>;
{MIARED w* ALALI, Affb= OA(#b0>O*b€h)} 'W2 :when termvacc.gkigiggg

end; {MIA#(b+w)= OAhEb W*AlA#h>1A(termvacc)}

<l:=false; b i=w; call RW.p(w); l:=true>

end {MIA#(b+w)=0A1rhd (h)=wAhZ2A (termvace)}

Before the parallel composition rule can be applied, we need to check for coopera-
tion (i.e. we need to check whether the external request rule has been properly

used) and for interference freedom. First the

Cooperations tests:

We only check the call in process BR and the first call in process R; the other
ones are analogously proven. For each call we have to prove the three premisses

of the external request rule

A. call R.p(y) in BR:

1. {MI yBRzaAMIRAGI}

hBR *=Ypr3 PR <YpRr
™ BR[S/YBR’ yBR=w/trm ]Ahd(hR)-yBRAMI [tl(hR)/hR]AhREW’l (e +w)A
#hR;mmm ,#hR)AGI}

the relevant part of GI is E£R=hR’ so GI is trivially invariant;
the transformation of the BR-assertiomns is easily worked out, similar for
the rest.

2. Canonical proof of the body of R.p: see proof outline

3. {MIBR[ e/ yBR=w/ trm.BR]/\MIR/\GI}
skip
{ idem }

evident
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B. call RW.p(b) in R:

1. {MIR[EﬁAb/Ek]AEkEb*AlRALIR1[#bR-1/#bR]A—]aCCAMIRWAGI}

ER:=false; hR :=b; th :=b; sz:=b
{MIRAhREb AT 1pALI AT accAMIRWAzRW=bAGI}

relevant part of GI:E£=thA(sz=£»1R) which is clearly invariant; transforma-
tion of R-assertions: clear

RW-assertions: we only need to check the invariance of MIRW:

beforehand sz=8Ath=th Yaw? hence afterwards: hRW=hRW Yew ZRwt

also E£=th(GI) and Eﬁ€b+ afterwards, so hRWEb+ afterwards,

x % -
hence hRWEb w (£+m)Aw€hRW; trmp. and e, are left unchanged

2. Canonical proof of the body of R.p: see proof outline
- +
3. {MIR/\hREb AT IpALIp AT acc/\MIRW[a/zRW]/\GI}

zRW:=c; 1R:=true

-+
{MIRAhREb AlRALIR1A_]aCCAMIRWAGI}

cf. the definition of GI

Interference freedom tests.

As expected, only the buffer process BR and the main process R are checked.
A. process BR

1. PI:at('W'). Invariance over Init__ is trivial, because

BR
FV(PL:at ('W'))NFV(Init)=0
Invariance over BR.p is trivial too on syntactic grounds: no two calling
chains can coexist.

2. PI:after(Init). We show that no incarnation of BR.p can exist once
BR's initial statement is terminated. The only global information that
is needed, is that the actual parameter of a call to BR.p is either w,

” or w. Hemnce

act(at(BR.p))Aact(after(InitBR))(BR.p)a
MIAzE€ (W+a+w) AtrmaAy=¢g—

_ _ % %
Z€ (W+h+w) ah=h"zAhd (h)=wahéw 4 (g+w)-false.

As at(BR.p)Eat('WBR'), this takes care of the second test.

B. process R

1. PI:at('Wi’) (i=1,2). The invariance checks over R.p are trivial and are left

to the reader. Here too, no global information is needed.
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2. Pl:after(Init). To check invariance over R.p no global information is needed.
Hence we prove

% % — —
{hd (h)=xAMI[t1(h)/h]Ahéw % (e+w)A#b+#w=0Ahd (h)=wA (termvacc)Ala#h22}
if x=w:term:=true|x?w:"place in appropriate bag"; acc:=true end

{#b+#w=0ahd (h) =wA (termvacc)Ala#h22}.
Only "#b+#w=0" and "termvacc" can be affected by execution of R.p.
Invariance of the latter term is trivial, so we concentrate on the first
one.

First assume term holds:
In that case MI[tl(h)/h]a#h22-hd(t1(h))=w, so the pre-assertion implies
hd (t1(h))=wAh€w 4" (+w) which is false.

Assume TJterm holds:
Then acc must hold. As #w=0, MI[t1(h)/h]Aa#h22-hd (t1(h))€n+w.
The pre-assertion implies that h€w*n*(s+m), hence hd(h)€n+w.

So after termination, we still have #b+#w=0.

This concludes the interference freedom tests and the parallel composition rule

may safely be applied:

{# (bpp+wgp ) >0a (7 b ) +# (X p 4w 2 )>0A @25 1 (2 ,R), (w, W), (b,B) #logz0AGL}

[RIRW]. .. IBIBR]

{ T Rel (r,8), G, W), (b.B) (#kK=#(k0R+kOW+kOB))A#(WR+bR)+#(rw+bw)+#(rB+wB)=0AGI}

Derivation of the required post-assertion:

(iEE;jatngIK:after(InitK))*#(wR+bR)=OA#(bw+rw)=OA#(wB+rB)=O,

whence the second part of the post—assertion.

Of the first part of the post—assertion, we will only show #rR=#r0R+#rOW+#rOB:

MIRe#rR=#(rOR+r(hR)) (1
we show that #r(hR)=#(r0W+rOB): (2)
GIhp =hypabpp=hpa (1pozp e =€) (3
PIB:after(InitB)ﬁlB )

PI__:after(Init

BR =£ /\MIBR (5)

BR7VER
from (3), (4) and (5) follows hR=Eﬁ’ hence #r(hR)=#r(Eﬁ)
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PIB:after(InitB)eMIBA#rB=0, or #r(ﬁ£)=#(r0B+r(hB))

which turns the last result into #r(hR)=#(r0B+r(hB))

Remains to show #r(hB)=#r0w:

a similar reasoning as in (3), (4), (5) for the processes W and WB shows that
#r (hy) =#r ()

PIW:after(Initw)ﬁMIWA#rw=O, or #r(Eﬁ)=#r0w, whence #r(hB)=#r0w

Finally (1)A(2)*#rR=#rOR+#rOW+#rOB.

Using the consequence, substitution and AV-rule, allows us to remove all un-

necessary information and the auxiliary variables, thus concluding the proof.

If this proof is compared with the original proof in [Dijkstra, 197 1, the
reader undoubtedly will notice the greater length and complexity of our proof.
He should however bear in mind that ours is completely formal, whereas Dijkstra's

proof is based on informal (albeit sound) reasoning.
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1. A SUMMARY OF BRINCH HANSEN'S LANGUAGE DISTRIBUTED PROCESSES (DP)

A DP-program consists of a fixed number of persistent sequential processes
that are executed concurrently. We assume the processes to be numbered, hence a
DP-program is denoted as [P|l...IP,], n>2. A process does not contain parallel
statements and can access 1ts own private variables only (i.e. there are no
shared variables in DP). The only form of process communication is calling a
common procedure declared within another process. Such an external request is
honoured when the other process arrives at a waiting point, waiting for some
condition to become true.

The syntax of a DP-process is as follows:

process<name>
{private variables>

<{common procedures>
<initial statement>

1.1. Process execution

A process starts by executing its initial statement. This continues until the
statement either terminates or waits for a condition to become true. Then another
operation may be started by honouring an external request. In that case a (fresh)
procedure incarnation is created and executed. When this operation terminates or
waits, the process will either begin yet another operation (by honouring an
external request ) or will resume an earlier operation (as result of a condition
having become true). This (coroutine—like) interleaving of the initial statement
and the procedure incarnations continues forever. A process continues to execute
operations except when all its operations are delayed at waiting points or when
it makes an external request. In the first case the process remains idle until it
receives an external request; in the second case, the process 1is idle until the
callee has completed the requested operation. Apart from this nothing is assumed
about the order in which a process performs its operations.

1.2. Common procedures
Syntax of a common procedure (*)

proc<name> (<input parameter list>#<output parameter list>)
begin <{statement> end

External request of P to a common procedure gqr declared in process Q :
call Q.qr(<expression list>,{variable list>),

where the variables in the expression and the variable lists wmust be private to
P.

The parameter transfer mechanism is the following: Before executing the proce-
dure-body, the expression-values of the call are assigned to the input
parameters. Afterwards, the output-values are assigned to the variables of the
call.

As in the above situation, execution of the calling process, P, is suspended
until the callee, Q, has completed the request, recursion (be it direct or
indirect) is disallowed as it would lead to deadlock (**).

(*) In DP, as defined in [Brinch Hansen, 1978], procedures may have 1local
variables. We have disallowed this in order to concentrate on the
concurency—-features of DP, without being distracted too much by sequential
language aspects already dealt with elsewhere, cfr. [de Bakker, 1980]. See also
section 3.2 p.9

(**) Although we might have allowed direct recursion, as a process calling one
of its own common procedures does not result in process—communication
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1.3. Sequential language constructs
The sequential constructs of DP
1976]:

(1) guarded conditional: if b, : S, |l...| b : 8 end
-1 1 n n —

are the Dijkstra guarded commands (Dijkstra,

meaning: arbitrarily take one of the S ”s whose boolean guard b, evalu-
ates to true and execute it; abort if all guards evaluate to false.

(2) guarded iteratiom: do bl : Sl ...l bn : Sn end

. : lo.u ] :
meaning: while blv"'vbn-ég if b1 : S1 .. b_: Sn end od

n

1.4, Synchronisation at waiting points
Synchronisation is established by so called guarded regioms:

when—-statement : when b1 : S1 foodd bn : S end

n
with meaning : walt until at least one of the guards b, is true, then
select one of these arbitrarily and execute the corresponding statement
Si'

cycle-statement : cycle b, : §, booaa bn : S end
with meaning : do true : when bl : S1 Fooes | bn : S end

We now define the notion of synchronisation taking place at a waiting point.
By synchronisation we mean either:
(1) the act of honouring an external request from another process, or
(2) the act of resuming execution of a guarded region (having been a
waiting point earlier on) as result of a condition having become true.
(This resembles a (nondeterministic) coroutine-mode of operation.)

The choice of one of these synchronisation-acts at each waiting point is

completely nondeterministic, as is the possible choice between guarded regions
that can be resumed

Control is at a waiting point within a process

(1) at a guarded region, if all of its guards are false on arrival,
(2) upon termination of its initial statement

(3) upon completion of an external request to one of its common procedures

1.5. Data-types
The only data—types we allow are the boolean and integer types.
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1. SUMMARY OF THE PROOF SYSTEM

This appendix contains the formal definitions of the proof-theoretical terms
introduced in the abstract and a list of the axioms and proof rules making up the
DP-proof system.

1.1. Proof-theoretical terms

Bracketed section
A bracketed section within a DP-program [Plﬂ...“Pn] is of the form
<S>, <Sl;T1> or <T2;SZ>, where

(1) S within process Piis of the form Sl;call Pj.pr(x,y);S2 (i#i),

(2) pr in process Pi is declared as proc pr(uf#fv) begin T1;> T <;T2 end,

(3) Sl’ Tl’ T2 and 82 do not contain any call-statements or when-statements.
Auxiliary variables (AV)

Auxiliary variables differ from (the normal) program variables and formal

parameters. They may only appear in assignments of the form x:=t, with x€AV. Each
auxiliary variable may be assigned to in one process only.

General invariant
GI contains no free variables subject to change outside bracketed sections

Process invariants
The process invariant, PI;, of a process P; may only contain variables, or auxi-
liary variables free in P; and location predicates referencing statements of Pi.

1.2. Proof rules and axioms

Axioms
assignment :
{plt/x1} x:=t {p}
skip :
{p} skip {p}
Rules
composition :
o} s, {a} , {a} s, {r}
{p} 535, (g}
consequence :
o »py, {py} S {4, qp =g
{p} s {q}

conjunction :
{p} s {r}, {q} s {r}

{p 9} s {r}

substitution :
{p} s {q}

y provided x¢free(S,q)
fplz/x1} s {q}
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il {pab.} s, {a}, ..., {pab } s {a}, p>, ¥, b;
{p} if by : Syfe.- b, : S end {q}
do :
{pAb1} S1 {p}, ..., {pAbn} Sn {p}
{p} doby : s l..uTb '+ s_end {pATl,¥; b}
when :

{p/\b1} s, {q}, ..., {p/\bn} S {q},
pAT] 121 b, - PL:at('s"),
{b1API:at('S')} 8, {q}, ..., {bn/\PI:at('S')} S, {q}

{p} when b

: . : {
1 Sll.. lbn Sn end {q}

external-request-rule (*) :
{p/\MIj/\GI} 8,31, [] {PIJ. :at(pr)['],\pz/\GI},
{PIJ. tat(pr)} T {PIJ. :after(pr)},
{pz/\PIj:after(pr)[-]/\GI} Tz['];sz {Q’\MIJ"\GI}

{p} <83 call Pj-pr(?i); s,> {q}
where (1) Pi contains the bracketed section,
(2) Pj the declaration proc pr(u,v) begin T1;> T <;T2 end (i#3),
(3) [-1 = [t/u, y/v],
(4) free(p,q)< free(Pi)
(5) free(p,)S free(P ) \y
(6) free(PIj rat (pr),PIj:after(pr)) < free(Pj)

parallel composition : )
{PIi:at(Initi)} Initi {PIi:after(Initi)}(and PI, is interference free, i=1..n

n . n . .
{;a, PI;:at(Tnit)AGI} [Pl...1P 1 { A, PI,:after(Init, )AGI}
where (1) PIi denotes the process invariant of process Pi’
(2) Initi is the initial statement of process Pi

AV ¢
{p} s~ {q}

{p} s {q}

provided free(q)MAV=0 and S is obtained from S” by deleting all
assignments of the form x:=t for x€AV

(*) The barred parameters and variables denote parameter and variable lists
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