RENDEZVOUS WITH ADA - A Proof Theoretical View

Amir Pnueli

Willem P. de Roever

RUU-CS-82-12
July 1982

7'

Rijksuniversiteit Utrecht

Vakgroep informatica

Princetonplein 5
Postbus 80.002

3508 TA Utrecht
Telefoon 030-53 1454
The Netherlands

yakgtoep Informatica R.U, Utreche

RENDEZVOUS WITH ADA - A Proof Theoretical View

Amir Pnueli

Willem P. de Roever

Technical Report RUU-CS-82-12
July 1982

Department of Computer Scierce
University of Utrecht
P.O. Box 80.002, 3508 TA Utrecht
the Netherlands

Rendezvous with ADA - A Proof Theoretical View

Amir Pnueli
The Weizmann Institute of Science, Rehovot, Israel

Willem P. DeRoever*
University of Utrecht, The Netherlands

abscract

h fragment of ADA abstracting the communication
and synchronization part is studied. An operational
semantics for this fragment is given, emphasizing
the justice and fairness aspects of the selection
sechanisms. An appropriate notion of fairness is
shown to be equivalent to the explicit entry-queues
croposed in the reference manual. Proof rules for
irvariance and liveness properties are given and il-
lustrated on an example. The proof rules are based
cn temporal logic.

Introduction

In this paper we conduct a very preliminary in-
yastigation of the concurrency and synchronization
aspacts of the programming language ADA. Our aims
in this investigation are the clarification of the
issue of fairness in the execution of ADA tasking
sechanism, and a development of temporal-logic
pased formalism for proving liveness (eventuality)
and other temporal properties of ADA programs.

With this in view we study an extremely simpli-
fied fragment of ADA, retaining just the constructs
which are relevant to tasking and synchronization,
ind not even all of these. For this fragment we
define interleaving operational semantics which
models the execution of concurrent tasks by a se-
guential execution of atomic instructions taken one
at a time, from a single task each time. Such mod-
elling of concurrency by interleaving has proved
most fruitful in the past and will be shown to be
valuable in our present investigation of ADA. In
developing this semantics we will show that the
concept of entry-queues used in the ADA definition

* The second author's stay at the Weizmann Insti-
tute was made possible by a travel grant of the
Netherlands Organization of Pure Research Z.W.O.
The research was supported in part by a grant from
the Israeli Academy of Science, the Basic Research
Foundation,

in order to ensure fairness in the selection among
tasks waiting on entry-calls for the same entry, is
not really necessary. In our definition we will use
the more abstract notion of fairness and show that
it is equivalent to the one ensured by the queues.
Queues in our opinion is a concept more appropriate
in a discussion on the implementation level than in
a language definition. :

Next, we will formulate a very simple invariance
principle which will enable us to prove properties
of the invariance class [MPl]. We proceed then to
define temporal proof principles which are analogous
to the ones developed in (MP3] for the shared-vari-
able model of concurrent programs. The principles
introduced here, enable proofs of temporal proper-
ties of ADA programs. Their utility for such proois
is demonstrated by an example.

-We believe that this fragment of semantics and
proof-theory, concentrating on the issues of concur-
rency and communication in ADA would greatly enhance
our understanding of these important aspects of the
language. Combined with other proof theoretical ef-
forts directed at the intra-task finer structure,
it could yield a powerful comprehensive proof metho-
dology for the complete language.

The basic synchronization and communication me-
chanism in ADA is that of the rendezvous in which
one task issues an entry-call while another task
reaches an accept statement for the entry named by
the caller. This communication mechanism combines
and improves on several features existing in pre-
viously suggested mechanisms. The actual entry-call,
when executed, is similar to the monitor mechanism
as introduced in [H] and expanded in [BHl.,, in that
communication of values, is done via parameter trans-
fer between the called and calling task. Also, the
caller is suspended until the execution of the ac-
cept-body is completed. Similar to CSP (H] and CCS
(M1, the rendezvous requires coordination of the two
tasks, that is, both the caller and called tasks
must be actively interested in establishing communi-
cation in order for the contact to be established.
However, significantly differently Efrom CSP, the
naming convention and selection of alternacives is
asymmetric between caller and acceptor. The caller
has to know the entry name which is restricted =zo
an association with a single task, but the accepcor
task need not know by name all its potential callars.
In that, the entry concept is similar to that of a
CCS channel with the restriction of having only one
possible task as acceptor. Another restriction is
that while an acceptor may have a selection of ac-
cept statements to choose from, being able to pock

¢r.e for which an entry-call is pending, the caller
must issue one entry call at a time. This simpli-
fies the implementation by introducing a tie-break-
ing asymmetry. It enables the selection to be done
locally, at the acceptor's site, while the caller
glays a more passive role - placing a request for a
- call and waiting until it is granted. The possibil-
icies of conditional and timed entry calls introduce
some more complications to this straightforward de-
scription but do not significantly alter the picture.
The ADA report emphasizes several times that the
salection between open alternatives of a selective-
wait statement is arbitrary and does not imply any
fxirness assumptions. The only fairness considera-~
~.on mentioned is when several tasks issue an entry-
zall for the same entry. Then, the report states,
rhese requests are queued, using one queue for each
zntry name, and once an accept statement for that
sncry is selected, the requests are to be honoured
. in the order of their arrival.

The Language Fragment

In order to concentrate on the basic essentials
zL the communication mechanism in ADA we restrict
sirselves to a minimal stripped down fragment of
th2 lanquage. This fragment is referred to as ACF
for "ADA Communication Fragment”.

An ACF program P is a block containing a fixed
numper of tasks. No shared variables are allowed
as2tween tasks. New tasks may not be dynamically
creacted. Except for the entries declared within
each task, no other procedures, subprograms or
nested blocks are allowed. The statements allowed
within a task are: assignment statement, if state-
went, loop statements, entry calls, conditional
entry calls and selective waits. Of the selective
wait alternatives we only allow accept-statement
ar.d terminate. No delay statements are allowed
anywhere., The program in Fig. 1 is an example
of an ACF program.

Operational Semantics for ACF

Consider an ACF program P consisting of the
tasks Let all the variables declared

in all of the tasks be y = (yl,.,.,yn) with '

Tl,...,Tm.

ranging over Di U <'undef'>.. A state in the exe-

cution of P has the form:
s = <(Tl—location)A(Tz-location)A...
l,...,nn>

.is the current value of the

A(Tm—location);n

L} L}
n € Di U <'undef'>

variable Y, in state s. Each Ti-location,

i=1,...,m is a description of the location of
the task T, in its program (task body). It has
the general” form: T at S .

In general, Si is a sequence of statements whlch

are yet to be executed by T..
gience A if Ti

It is the empty se-
has texminated.

We define a succession relation, written s - s'
and called a transition, to denote that a single
computational step can lead from s to s'. The

2.

relation is defined by cases corresponding to the
various types of possible statements:

Assignment Transition:

<...(Ti at ;: = f(;):S)A..; -

<. (T, 2t S)A, ... 5 £(M)>

For convenience we use simultaneous assignments o
all of . .
Ypeeer¥y

This succession rule specifies that one possible
computation step of the program consists of a sirgle
task performing an assignment statement. As a re-
sult of this action, Ti moves to the location im-

mediately after tha assignment statement and the va-
lue of £(M is assigned to the variables V.
Additional rules correspond to the local action

of if and loop statements.

If Transition

<...(T; at if p(y) then s, else s, end if ; S)A...i1>

+ <. (T, At S S)A.LT>

1
Provided p(ﬁ) = true.

Similarly the ‘else' clause may be taken:

<...(T. at if p(y) then S. else S2 end if ; S)A...;m>

1
T <...(T at 52 ,S)A...,n>

Provxded p(n) = false.

Loop Transition
<...(T; at while c(y) do B;S)A...;n> >
<...(T, at B; while c(¥) do B; S)A...:m>

Provided c(ﬁ3 = true.

This transition_corresponds to the case that the
loop condition c(y) is true fro the current values
of the ¥y variables. In such a case, the loop's
body B is to be performed first, followed by a re-
peated execution of the loop.

<...(Ti at while c(}% gg_B ;S)A...;ﬁ$ ->

<...(Ti at s)A...;ES

provided c(n) = false.

This corresponds to the case that the loop's condi-
tion is false, in which case the whole loop state-
ment is skipped.

The above transitions correspond to local opera-
tions and involve the movement of a single task at
a time. Following are joint transitions whicn in-
volve simultaneous movement of two tasks at the same
time. They are associated with communications. We
consider next transition effected by communicaticn:

Rendezvous Transition:

Let e be an entry declared within Tj. Thon

we have the following transition:

<...(T. at e(U;v); S.) A...
1 - 1

('rj at select...or when c(;) = accept e(-f-:_j:g; g:out) ;B

end e ; S, ...
_— 2

end select ; S)A... ;ﬁB ->
<...(’I‘i at rendezvous e ; Si) vee

...('1‘j 55?:=G;B;F:=E;end e;$s ;S)A...;F)

b

. Provided c{(n) = true.

' Here f and E are all the formal parameters
of modes in and out respectively. B is the bedy
cf the entry e within the selective wait state-
ment. S4 is the sequence of statements to be per-
formed by T. after the rendezvous is over. Note
that the traisition places Ty in a special new
state 'rendezvous e', and replaces the accept state-
ment in T by elaboration including explicit para-
meter transfer.

The above rendezvous transition correspondsto a
simple entry call of task T; and a selective wait
statement at task T,. Similar rendezvous transi-
tions are also definadd for the cases that T; is
at a conditional entry call of the form:

(T, at select e(E;V) ; S,
i =— = i
else s!
———— i
end select ; s;

In this case the T location descriptor in s'
will_have the form:

(T, at rendezvous e; S.; S").
i = — i’ i
Similarly, a rendezvous transition exists for the
case that Tj is at a simple accept statement of
the form: ' :
(Tj at accept e(?:i_rl; E:out) i B; Sj)

ndezvous situations are terminated by:

Rendezvous Termination Transition

s

'<...(T. at rendezvous e ; S,)A... (T, at end e ; S.)A...
. 1 = ——— i 3 - J

i N>
; <...('ri at Si)A ..,.(Tj at sj) A e >

This transition terminates the rendezvous situation
in which T; is suspended while T; executes the

body of an entry that was called byj T;-

The following transitions correspond to the op-
tion of taking the ‘'else' clause of a select~state-
ment. In a given state s we define e'COUNT(s)
to be the number of tasks currently waiting in front
of a simple or conditional entry call for the entry
e. Then we have the transitions:

Else Transitions:

<...{(T. at select e(u;V) ; §
i—-— . i
else §S!
— Ui
end select ; S;)A.. -n—> hd
<...(T, at S' ; S") A... ;n>
(T, at 5; ; S7) A in

Provided no task 1is currently in front of an accept
statement for e or a selective wait with an open

alternative of accepting e.

This transition corresponds to choosing the ‘else’

. ¢lause of a conditional entry call.

<c..(Ty 2t select

when c(y) = accept e(£;g)...

else S'
]

end select ; sg) Acee i > +

<...(T, at S' ; S") A...;N>
=] 3

3

Provided e'COUNT(s) = O for every open alterna-
tive e. This means that no other task is waiting
on an entry call for any of the open alternatives
of Tj.

A special transition allows termination of the
complete program.

Teimination Transition:

<A,('ria_t_1\)4 A('r

i 3 j

at select...or terminate..)

in> »
<A(T1£M;Tf>-
i

Thus, if all tasks that have not terminated yet

are waiting at selective-wait statements which con-
tain a 'terminate' alternative, then the whole pro-
gram is allowed to terminate.

" An initialized computation is a sequence of
states: ' :

<] So"sl"sz"...'

which satisfies the following conditions:

Proper Initialization

The first state s0

Sg = <('1‘l _a:._Pl) A ...(’!.‘m ﬁpm) ; undef >

has the form:

Thus, initially each T; is at the beginning of
its program Pi’ and all variables are uninitial-
ized.

Proper State to State Transition

Every two consecutive states si, si+l in a,
are related by the succession relation defined akove

A l2cal computation is any suffix of an initial-
LYo ConLdTarLon.

T T legal computation enables us o
€.ty tre

ravior of a concurrent program starting
¢y ohservation instant, not necessarily

ted in maximal computaticns,
wnich can not be axtended.
either infinite or are finite
wnich is terminal, i.e.,
successor s' such thac skvs'.

that has to be imposed
consequence of the fact
order to medel concur-
every task will eventu-
xecuticn of one instruction and in-
execution of the next one. It
nly by communication instructicns.
. ame behawvior by interleaving execu-
ttois we irtroduce the notion of justice [LPS].

ot is said to move during a transition
ER it Zhe location description of T, in s
‘rom its location description in s'.
s and an entry e we denote by
the number of tasks currently waiting
.o enzzy call for e . A task T; is said to
i a state s 1if one of the following

o

. frent of a local statement, i.e.
, 1f or lcop statement.
.5 1n front of a selective wait statement

with an open alternative accepting the entry
e wiile e'COUNT(s) > 0.

;. T, is irn front of an end 2 statement.

¢ T, s ir frent of a conditional entry call
or 3 selective wait containing an 'else'’
clavse.

1LL€L}, a task is enabled if it is in front
stion whose eventual termination depends
itself. 1In Dartlcular, a task
of an entry call is not considered
because for the call to be accep-
s of the particular calling task has
e ::med by the task potentially accepting
It

g is defined to be just if it is
every task which is continuously
certain point on in o, moves in-

Yy many times in g,

the notion of eventual movement in
s. However, it dces not guarantese
of honouring different calls for
thelr order of arrival. We thers-
lso the requirement of fairness.
sequence ¢ 1s defined to be

Eoro process T nay walt forever on an entry-c
It Tne entov e ile infinitely many entry calls
ot ¢ are kACCE_,r_ed in G,
MLor10sT agpearance this concept seems weaker
firsc-out discipline required in

we wxl- show that under ap-
he reguirement of fairness
1pline of accepting call
-

arrival.

admissible computations =o

be all legal computations which are both jusc and
fair.

Fairness vs. Explicit Queues

In the reference manual it is stated that qucues
are maintained in order to ensure that entry calls
are honoured in the order of their arrival. 212
tasks issuing an entry call for a particular sntry
are queued on a separate gueue dedicated to thatc
entry. Then when a task selects to accept an entry
call, the task being first on the queue for that
entry is accepted first.

It is straightforward to incorporate the explicic
queulng mechanism into our semantics. Let 2y,...8

) r
be all the entries accepted (and called) in the
program. We augment our states by r queces, de-
noted by ql,...,q respectively. Thus, a stace
will have now the Eorm.

s = <(T,-locatien)A...A(T -location);n.,...,Nn ;
1 m 1 n
cea K>
Xl' Ar

where X_,...,X are the current values of the
queue variables® UL Each Xy 1s a (pos-
sibly empty) list oOf tasks.

All the transitions considered above remain the
same with the additional requirement that they re-
tain the current values of the queue variables
xl,...,Xr.

In addition we add the following transition:

ueuing Transition
g

<...(T. at e (G}V}..)A...;ﬁ';x

. >
) 17T

<...('I‘i at e (E}v)..)A..;H; X

2 PR O SRRE U IV

1 L i c

Provided T, € X
i 2

This transition corresponds to the step of ad-
ding the task T; to the end of the queue g, goro-
vided it is not already there. *

The rendezvous transitions have to be modified
so that the first task on the queue will be accecp-
ted. We will only present the simplest case where
a task Ty is waiting at an entry call on an entry
€y, T; 1is at the head of the qy queue and a
task Tj is ready to accept a call for entry e

Rendezvous Transiticn

<...{T. at e (W;Vv) :S.) A..
—-— 2 i

(T, at accept el (£:1in ;g:out) ;B

j =
nd e ;S.) A.. ;—;) P G
2l s, 3> miky i X”
o
<...(T, YA,
i
T 20
(5 ey SJ)A ;
n; XL""Xz n,xr>

This corresponds to the initiation of a

between T, and T, which is the firsre e
queue g . The transition also removes
- Similar rules apply to the more genc: SR

that T 1s at a conditional entry caill an

1 s

A legal computation is any suffix of an initial-
ized computation.

The notion of legal computation enables us to
study the behavior of a concurrent program starting
at an arbitrary observation instant, not necessarily
the initial one.

We are only interested in maximal computations,
that is, computations which can not be extended.
2:ch computations are either infinite or are finite
ard end in a state Sy which is terminal, i.e.,

naving no possible successor s' such that sk*s'.

Justice and Fairness

An essential restriction that has to be imposed
or. execution sequences is a consequence of the fact
that we use interleaving in order to model concur-
rzncy. In real concurrency every task will eventu-
ally finish the execution of one instruction and in-
evitably start the execution of the next one. It
can be held up only by communication instructions.
To model the same behavior by interleaving execu-~
tions we introduce the notion of justice (LPS].

A task T; is said to move during a transition
~s', 1if the location description of T; in s
is different from its location description in s'.
Given a state s and an entry e we denote by
2'COUNT(s) the number of tasks currently waiting
Sl an entry call for e, A task T; 1is said to
be enabled in a state s if one of the following
corditions is met:

a) Ty is in front of a local statement, i.e.
assignment, if or loop statement.

b) T; is in front of a selective wait statement
with an open alternative accepting the entry
e while e'COUNT(s) > O.

¢) Ti is in front of an end e statement.

d) T; 4is in front of a conditional entry call
or a selective wait containing an 'else'’
clause,

w

Intuitively, a task is enabled if it is in front
of an instruction whose eventual termination depends
cnly on the task itself. 1In particular, a task
waiting in front of an entry call is not considered
anabled. This is because for the call to be accep-.
z¢d, a selection of the particular calling task has
to be performed by the task potentially accepting
this entry call.

A computation ¢ is defined to be just if it is
either finite or every task which is continuously
enabled from a certain point on in o, moves in-
finitely many times in ¢,

This captures the notion of eventual movement in
each of the tasks. However, it does not guarantee
the requirement of honouring different calls for
the same entry in their order of arrival. We there-
fore stipulate also the requirement of fairness.

An execution sequence 4 1is defined to be fair
if no process T; may wait forever on an entry-call
for the entry e while infinitely many entry calls
for e are accepted in g, '

At first appearance this concept seems weaker
than the first-in-first-out discipline required in
the reference manual.

In the section below we will show that under ap-
Fropriate restrictions the requirement of fairness
1s equivalent to the discipline of accepting calling
:asks in the order of their arrival.

We therefore define admissible computations to

q.

be all legal computations which are both jusc and
fair.

Fairness vs. Explicit Queues

In the reference manual it is stated that qucues
are maintained in order to ensure that entry calls
are honoured in the order of their arrival. ALl

"tasks issuing an entry call for a particular entry

are queued on a separate gqueue dedicated to that
entry. Then when a task selects to accept an entry
call, the task being first on the queue for that
entry is accepted first.

It is straightforward to incorporate the explicit
queuing mechanism into our semantics. Let ey,...e
be all the entries accepted (and called) in the
program. We augment our states by r queues, de-
noted by q,,...,q_ respectively. Thus, a state

X 1
will have now the form:

s = <(Tl-locatlon)A...A(Tm-locatlon);nl,...,nn;
Xl,---,Xr>

where X, ,...,X are the current values of the
queue vatiables® GyreeerGye Each X5 1is a (pos-
sibly empty) list of tasks.

All the transitions considered above remain the
same with the additional requirement that they re-
tain the current values of the queue variables
Xl,...,X .

In addition we add the following transition:

Queuing Transition

<...(Ti at el(E;V)..)A...;;l-;Xl,--..Xr>“'

<....(Ti at ez(u;v)..)A..;n i X

1""(x1'Ti)"' X, >

Provided Ti 3 Xg-

This transition corresponds to the step of ad-
ding the task T{ to the end of the queue q, pro-
vided it is not already there.

The rendezvous transitions have to be modified
so that the first task on the queue will be accep-
ted. We will only present the simplest case where
a task T, is waiting at an entry call on an entry
ey, T; 1is at the head of the 9y queue and a

i
task Tj is ready to accept a call for entry e

2

Rendezvous Transition

<...(Ti at ez(u;v) ;Si) AL

(Tj at accept el (E}iﬂ; g:out) ; B

end e, ;sj) Ao M ;Xl"'(Ti'xz)"' xr>
<...(Ti at rendezvous e ;Si) Ae

n; Xl,---,Xz,--wXL}

This corresponds to the initiation of a rendezvcous
between T. and T; which is the first task cn zhe
queue g, . The transition also removes T; froa
dy- Similar rules apply to the more gencral cusc:

that T; is at a conditional entry call and 4, &

A leqal computation is any suffix of an initial-
ized computation. .

The notion of legal computation enables us to
study the behavior of a concurrent program starting
at an arbitrary observation instant, not necessarily
the initial ane.

We are only interested in maximal computations,
that 1s, computations which can not be extended.
Such computations are either infinite or are finite
ard end in a state Sy which is terminal, i.e.,
faving no possible successor s' such that sk+s'.

Justice and Fairness

An essential restriction that has to be imposed
or execution sequences is a consequence of the fact
that we use interleaving in order to model concur-
rincy. In real concurrency every task will eventu-~
ally finish the execution of one instruction and in-
evitably start the execution of the next ocne. It
can be held up only by communication instructions.
To model the same behavior by interleaving execu-
tions we introduce the notion of justice [LPS}.

A task T; is said to move during a transition
5 ~s', 1if the location description of T, in s

is different from its location description in s'.
siven a state s and an entry e we denote by
%'COUNT(s) the number of tasks currently waiting
oL an entry call for e. A task T; 1is said to
Je gnabled in a state s if one of the following
corditions is met: . :
a) Ti is in front of a local statement, i.e.
assignment, if or loop statement.
b) T; is in front of a selective wait statement
" with an open alternative accepting the entry
e while e'COUNT(s) > O.
¢) T is in front of an end e statement.
d) T; is in front of a conditional entry call
or a selective wait containing an ‘else’
clause,

Intuitively, a task is enabled if it is in front
of an instruction whose eventual termination depends
cnly on the task itself. In particular, a task
waiting in front of an entry call is not considered
enabled. This is because for the call to be accep=-.
=e¢d, a selection of the particular calling task has
to be performed by the task potentially accepting
this entry call.

A computation o is defined to be just if it is
either finite or every task which is continuously
enabled from a certain point on in g, moves in-
finitely many times in g.

This captures the notion of eventual movement in
each of the tasks. However, it does not guarantee
the requirement of honouring different calls for
the same entry in their order of arrival. We there-
fore stipulate also the requirement of fairness.

An execution sequence ¢ is defined to be fair
if no process T; may wait forever on an entry-call
for the entry e while infinitely many entry calls
for e are accepted in g.

At first appearance this concept seems weaker
than the first-in-first-out discipline required in
the reference manual.

In the section below we will show that under ap-
propriate restrictions the requirement of fairness
1s equivalent to the discipline of accepting calling
:asXs in the order of their arrival.

We therefore define admissible computations to

q.

be all legal computations which are both jusc and
fair.

Fairness vs. Explicit Queues

In the reference manual it is stated that qucues
are maintained in order to ensure that entry calls
are honoured in the order of their arrival. A&all
tasks issuing an entry call for a particular entry
are queued on a separate queue dedicated to that
entry. Then when a task selects to accept an entry
call, the task being first on the queue for that
entry is accepted first.

It is straightforward to incorporate the explicit
queuing mechanism into our semantics. Let e ERELM
be all the entries accepted (and called) in the
program. We augment our states by r queues, de-
noted by 4g,,...,9 respectively. Thus, a stacte
will have now the form:

s = <(T,-location)A...A(T ~location);n.,...,n ;
1 m 1 n
Xl,---,Xr>

where X.,...,X are the current wvalues of the
queue variables™ g ERRYL- o Each Xy is a (pos-
sibly empty) list of tasks.

All the transitions considered above remain thea
same with the additional requirement that they re-
tain the current values of the queue variables
Xll---;x .

In addition we add the following transition:

Queuing Transition

oo ATy at) (W))AL M X e X >0
<e..lT; at e, (W;v). A, ;N ;Xl,---(xl'Ti):-- X, >

Provided Ti € Xz.

This transition corresponds to the step of ad-
ding the task T; to the end of the queue 9, pro-
vided it is not already there.

The rendezvous transitions have to be modified
so that the first task on the queue will be accep-
ted. We will only present the simplest case where
a task Ti is waiting at an entry call on an entry

€,, Ty 1s at the head of the 9y Qqueue and a .
task Tj is ready to accept a call for entry €.
Rendezvous Transition
<...(Ti E.P.eg,(“”’) ;Si) Ao
('1‘.‘j at accept e, (F:i_r__;g:out) ; B
end e, ; S, ..;_;‘ el T X).
—_— s]) A NiXye <Tl \2) Xe>

<...(T, at rendezvous e, ; S.) A ..
i " i

(T, at £:=u

B ;v:=§; end ¢

l;sj)l\";

n; Xl,---:XII---.XIP

This corresponds to the initiation of a rendezvous
between T. and T; which is the first task on rhe
queue qg,.” The transition also removes T; fzoa
9y- Similar rules apply to the more gencril cuscs

that Ti is at a conditional entry call and 4, =

currently empty, Oor when is at a selective wait
a:d selects to accept an enary call for e,.

We refer to this extended model of computation
as the explicit gueuing model. In defining admis-
sible computations for this model we only require
legality and justice since fairness is implemented
by the explicit queuing mechanissm.

Next we will show that under very general condi-
tions our restricted model requiring both justice
and fairness is equivaleat to the explicit queuing
model.

Tnaorem

Let P be an ACF program which does not refer
sxplicitly to any e'COUNT attribute. Then the class
of admissible computations of P is equivalent to
zae class of admissible computations of P under
the explicit queuing model.

Proof (Sketch)

Let o be a computation under the explicit queu-
ing model. Each state in ¢ has the form

s = </_\ (T;-location) inix>
1

Wa construct from ¢ a computation o' which is
aémissible under the fairness requirement by replac-
.ng each state such as s above by

s' = < A (Ti-loéation in>
. i

This replacement consists simply of omitting the

¥ component from all states. In addition we have
to delete from o' all transitions corresponding
ko queuing steps. Since such steps only change the
X component in a state s, they give rise in o'’
to trivial trangitions of the form .

s' +s',

To see that o' is a fair computation consider any
cask Ty waiting in front of an entry call for the
entry e, . This situation is also duplicated in
3. By justice, it will eventually be placed in Q-
If there are infinitely many calls accepted for e,
each moving T; one position closer to the top of
LTy eventually T; will be accepted. This fact is
certaxnly copied into ¢' as well., Thus, a task
waiting for e, while infinitely many calls for eg
are accepted will eventually be served.

Let now 0 stand for an admissible computation
under the fairness requirement. States in ¢ have
the form s = {T;-location) ; H>. We construct

a corresponding '
such as s above by:

by first replacing each state

' = </} (Ti-location) M A e A>

That is, we uniformly add to each state a list of
empty queues.
In addition we make the followxng two modifica-
tions in o¢'.
a) We replace each rendezvous transition cur-
rently having the form: (for simplicity we
omit parameters)

<o (T c)AL . ;B Al
(TL at e, A (TJ at accept e, B YA n

xl""'A""’Xr > -

All components Xg

S.
<..(T; at rendezvous e, ..)A.. (Tj at B;..)A..in;
xll"'lAl"'Ixr>

by the pair of transitions as follows:

<..('ri at el)A.. (Tj at accept el; Bi..)A..; n;

Xl,...,A,...,xr > + (queuing step)
<..(Ti at el)A.. (Tj at accept el iBi AL

xl"'(Ti)""'Xt> -+ (rendezvous transition;

<..('1‘i at rendezvous el..)A.. ('rj at Bi..)A..:N;

xl,...,A,...,Xr>

This pair of transitions places T. on the queue,
which is assumed to be empty, just one step before
T. accepts. It certainly satisfies the requirement
that under the explicit queuing model only tasks
which are at the head of the g, queue are accepted.
It also defers the act of queuing to the last moment
possible.

b) If ¢' contains a task T;
in front of an e
calls on e, are accepted beyond s, then obviously
Ty is stué& at that position forever. We insert

which is waiting
call at a state s such that no

anywhere following the state s the queuing transition.

<.JTiE£e£“)Au in?xlw-xzrnxr> *

<..('ri at e,..)A.. PN iXyses (x1°Ti)...xr>

following this transition should
be modified accordingly. Thus,with stuck tasks, we
defer their being queued to the point beyond which
there are no more calls accepted for the entry e,.

This transformation will construct an admissible
explicit queuing computation out of every fair ad-
missible computation.

Supported by this theorem we will proceed to

“study ACF without explicit. queuing mechanisms. We

use instead the concept of admissible computations,
being fair and just legal computations.

However, as shown above, our treatment is easily
extendable to accomodate explicit queuing as well.

Broof Theory

We use tempéghl logic in order to describs pro-
perties of admissible computations of an ACF pro-
gram P. 1In describing state properties we use
predicates over the program variables Yqr---e¥q
and the task location descriptors. State properties
are then combined into temporal formulas using the
temporal operators: 0 (always), <> (sometimes), O
(next) and U (until). We refer the interestad
reader to [MPl] for an introduction to temporal lo-
gic and its usage for proving properties of proucams.
The proof system that we would outline here is tased
on the basic approach presented in [MP3].

Let T be any of the transitions presented a-
bove in the semantic definition of computacicns.
We observe that in a given program P therc are
only finitely many transitions corresponding <c

each of the statements in any of the tasks. Joint
transitions such as rendezvous correspond to a pair
of matching statements in two different tasks, but
there are only finitely many of them.

We say that a transition <t leads from ¢ to
¢y, where @ and ¢ are state properties, if for
every pair of states s and s' such that s-Trs'
© iz follows that @(s) 2 ¢(s’') holds. This implies
zr.at if Y was true before the transition then ¢
=121 hold after the transition., For every type of
transition t it is possible to write a formula
involving the program and location variables and
the predicates ¢ and ¢ which will be valid iff
: loads from ¢ to .

For example consider the case that t is a tran-
sition of T; from the location ¥:=£(¥); §; to
thz location Sj. Let (p-w(nl,..w ,yl,..yn),
'.=w(n1,..1| ,yl,..yn) where LI i=1l,..m are
zh2 location variables describing the current loca-
_ tion of the tasks '1‘1, i=1l,..m respectively. Then
T leads from ¢ to ¥ iff the following implica-
sion is wvalid:

'strl,..G:-fG); Sl .My y) 2

\P(ﬂ'l,--[sil,--ﬂm; £(y))

Similarly, for the case that T is a conditicnal state-

=ant we have that t leads from ¢ to ¢ iff:

w(:l,..lig ply) then Sl else s2 ;s],..nm ;y) =

if ply) then ¥(x

~

10 [Sl;S] ,..'ll‘m ;

else W(nl,..lsz;s],..nm s y)

3 transition Tt is said to be related to task.
T: if it is either a local statement in the task
Tj, or a joint transition which involves T; as
ane of its active participants.

We say that a task T leads from ¢ to ¢
if all transitions Tt related to T; lead from
9 to ¢. The complete program P is said to lead
frem ¢ to ¢ if each of its tasks Tyre-Tq
leads from @ to Y.

We are ready now to formulate several proof
orinciples which are used to derive temporal pro-
perties of ACF programs. We present here only some
derived principles adequate for most of the needed
applications. We refer the reader again to [(MP3]
for the more basic axioms. The principles presented
here are adequate for proving invariance and live-
ness properties.

The Invariance Rule: (IINV)

let ¢ be a state property.

F @y, ...,PpiY)
I P leads from @ to ¢

F op

This rule states that if ¢ 1is such that it
holds initially for the initial state where each
task T is at the beginning of its program P
Also it is assumed that every transition in P pre-
serves (p. Then we may conclude that ¢ is invari-
antly true for all admissible computations.

The following two rules are useful for establish-~
ing liveness properties.

Let @, y be two state properties and Tk one of

the tasks.

The Justice Rule: (JUST)
l. | P leads from @ to @v{
2. F T, leads from ¢ to ¢

3. Foe>s(y vEnabled (T,))

ko>l

This rule states that if every transition in P
leads from @ to vy, every transition in Ty
leads from ¢ to ¢ and @ implies that either’
Vv is already true or that T, is enabled, tha.

p is guaranteed to eventually happen and ¢ will
continuously hold until then. Assume that we have
an admissible computation whose first state satis-
fies . By the first premise ¢ will hold con-
tinuously until ¢ is realized, if ever. By the
third premise the continuous holding of ¢ implies
that ¢ will happen or that Ty is continuously
enabled. By justice T, must be eventually moved
which by the second premise must produce § imuwe-
diately.

The following liveness rule is more specific
and relies on the fairness assumptxon applied to
tasks waiting on entry calls.

The Fairness Rule: (FAIR)

1. |k P leads from @ to wv¢

2. F T leads from @ to ¢

3. I-(p:'rk_aﬁe(ﬁ‘;?);s

4. F 9> <(p v after accept e)

- kool

.The difference between this and the previous rule
lies in premises 3. and 4. Premise 3. assures that
while ¢ holds Ty is waiting in front of an encry
call on the entry e. Premise 4. states that ¢ im-
plies that eventually either W will-be realized or
a call for entry e will be accepted. Thus if T
is stuck and ¢ maintained forever, an infinite
number of e-calls would be accepted. By fairnass
Ty must eventually be accepted, leading to .

An Example

. As illustration of a proof of a liveness property
we consider the program in Figure 1.

We wish to prove termination of the whole program.
That is:

l-/\ (r, atP):o(/\T at'A)
i=0 i=0

A crucial stage in the termination of the program
is given by:

Lemma A F (T, at B,) > < (n=0)
To prove this we will attempt to prove
1. + T, at e_(1,a) D <> (n=0v [(T. after accsorte.) A
1—"1 Q0 —— ==
(Tl at rendezvous e, i)
Note the abbreviation of T, after accept c stund-
ing for the more detailed diéscription.

This will be a conclusion of the fairness rule
by taking

P, :

1 TL at el(l,a) and

wl: n=0 v [(T0 after accept el) A

(Tl at rendezvous el)]

tc only remains to establish the three premises to
zhe FAIR rule. The first premise is:

F P leads from wl to wlv¢l .

“tviously any transition in P which does not in-
volve T, leaves T; at e;(l,a).

2 T; leads from @, to wl

is the
which

The only possible transition involving T
azceptance of the e call of Tl by T
ieads immediately to wl.

(=2 o

+ “}.: T; at el(l,a) - Obvious.
Tne only premise requiring further proving is the
last one, namely:

- 9 > <>(\pl v T, after accept el)

Lemma B F @, D <>y, v [P, A T. at selectl)
—_— 1 1 1 0 ——
That is, given that 'T; is waiting at the e
call, then either n will be zero, the T, entry
call will be accepted or T, will reach once more
the location immediately in front of the select
statement. This is proved by considering all the
scssible locations in which T4 might currently be
znd using justice following its execution to the
beginning of the loop.

entxy

remma ¢ | [TO at select A n=u] D <(n=0 v

To after accegtvel v [To at select A n<ul):
This states that T, being at the beginning of the
select statement with a certain value of n, then
either n will be set to zero, an e, entry ac-
cepted or T will return to the beginning of the
select with a strictly lower value of n. By con-
sidering the different entries that T, may choose
to select, it is obvious that either e is accepted
or e is accepted which inevitably decrements the
value of n. By applying induction on the value of
u to Lemma C we obtain

F ['1‘0 at select A n=u] D

<(n=0 v T, after accept el)

0

This certainly establishes the last premise for the
FAIR rule and proves Lemma A.

To proceed from n=0 to total termination is
straightforward.

Conclusions and Discussions

In this short paper we have outlined a proof
theoretical approach to the semantic definition and
verification of a fragment of the ADA language. We
have concentrated in particular on the synchroniza-

7.

tion and tasking mechanism for which the litecature
contains much less established formal techniques
than for sequential programs. We have alss shcwn
that for programs obeying some restrictions, both
the semantic definition and proof principles bccome
simpler. This has been demonstrated for progruus
which do not explicitly test the size of entry
queues (e’'COUNT). For such programs the whole con-
cept of explicit queues which does have an imple~
mentation flavor and may appear as a strange incru-
der in the formal definition of a language, car be
replaced by the much more liberal notion of fair-
ness. This may hint that programs obeying therz
restrictions are somewhat more well-construcced in
much the same way that structured programs, leading
to a simpler proof theory, are considered bettcr
constructed.

In order that this preliminary investigatiocn
will not remain an academic exercise, one should
seriously consider the extension of this approach
to cover all of the ADA language. In trying to do
so there are two types of extensions one has to
make. The first type should consider many additicn-
al details that we have omitted for the sake of sim-
plicity. Providing rules both on the operaticnal
semantic level and on the temporal level, for treat-
ing these additional features of the language may
require ingenuity but is still a standard exten-
sion of the approach suggested here. This includas
the sequential features of the language such as
blocks, declarations, procedures, packages and data
structures. The second type of feature is much
more challenging since it seems to question the
adequacy of temporal logic for its expression.
These are all the features that relate to real time
and its measurement such as the delay statements
of different forms, Statements claiming that a
certain block of code will be terminated within a
certain number of time units since its initiation

‘.seem to be out of the scope of temporal logic which

by nature is qualitative rather than quantitative.
One development that this seems to call for is the
extension of temporal logic into some more quanti-~
tative time logic in which such statements can be
expressed.

Within the framework presented here, we would
like to point to another approach which may yet be

‘able to manage these features without having to ex-

tend the time logic. This approach is to add to
the state some additional artifacts which will en-
able to capture quantitative time in increasing
degrees of accuracy. .

For example, in the simplest approximation we
could describe the location of a delayed task by
a state such as:
<..(Ti

at delay (nl))A..(Ti2 at delay (n2))A..>

Then we would introduce a special time-step transi-
tion which will transform a state such as the cbove
into -

<..(Ti at delay (nl))A..(Ti2 at delay (nz))A..>
time-step
.. - a e -1
< (Til at delay (nl 1))aA (Ti2 at delay (n2 1)aL.>

and explicitly require that this transition be ap-
plied with justice and all components of the fovn

“T. at delay (0)" are resolved before the next time
step is taken.

Such a device will ensure a correct synchroniza-
tien among all the delay statements, which for many
cpplications is quite sufficient. On the other hand
it does not assure a correct compatability between
explicit delay statements and the timing of execu-
cion of other instructions such as assignment, com~
munication, etc. The report itself does not say
anything about this since it is evidently imple-
mentacion dependent.

For a hint how even these requirements can to
scme degree be incorporated into our model, one .
could introduce a master clock into the state.
=~his will be a global variable which is incremented
on each time step transition. Intuitively this
elock should count in "big" units, much bigger than
zhe timing of a single instruction. In addition
we could introduce instruction counters ¢,,..c .,
one for each task. These will count the fiumbe? of
operations, measured in some basic units, performed
by cthe task T, since the last time-step transition.
They are reset to zero on each time-step transition,
and incremented whenever task T. performs a tran-
sition. We may now add to our semantics the re-
striction that none of these counters ever exceeds
1000, say. This implies that no task performs more
than a 1000 elementary operations in a "big" time
selot. On the other hand we may also require that
no time step transition is allowed when there exists
a ¢, such that ey <500. This could provide a
lower bound on the rate of speeds of the different
tasks.

By. adding such a timing mechanism into the oper-
ational semantics itself - states and transitions,
we are now assured that the temporal logic approach
is still applicable and can even deal with real time
~analysis.

- References

fal Reference Manual for the ADA Programming
- Language. United States Department of De-
fense, July 1981.

Apt, K.R., Francez, N., de Roever, W.P. - A
Proof System for Communicating Sequential
Processes, ACM Transactions on Programming
Languages and Systems 3 (July 1980) pp. 359-
388S.

[AFR]

[BH) Brinch Hansen, P. - Distributed Processes:
A Concurrent Programming Concept - CACM 21,

11 (November 1978) pp. 934-941.

{G] Gerth, R. - A Sound and Complete Hoare Axio-
mization of the ADA Rendezvous. Proc. ICALP
July 1982, Aarhus, Denmark.

{H] Hoare, C.A.R. - Communicating Sequential
Processes. CACM, Vol. 21, No. 8 (1978)
pp. 666-677.

(L] Lamport, L. - "Sometime” is sometimes "not
never”. On Temporal logic of programs. 7th
Symposium on Principles of Programming Lang-
uages, Jan. 1980, pp. 174-186.

(LPS] Lehman, D., Pnueli, A., Stavi, J. - Impar-

tiality, Justice and Fairness: The Ethics

[M]

(MP1}

{Mp2]

{mMp3}

(RDKR]

4.

of Concurrent Termination. Proc. of thsz
8th Symposium on Automata Languages and
Programming, Lecture Notes in Computer Sci-
ence 115, Springer Verlag (July 198l), po.
264-277.

Milner, R. - A Calculus of Communicating
Systems. Lecture Notes in Computer Scienca
92, Springer Verlag (1980).

Manna, Z., Pnueli, A. - Verification of Con-
current Programs: The Temporal Framework =
in the Correctness. Problem in Compucter
Science (R.S. Boyer, J.S. Moore eds.) Iater-
national Lecture Series in Computer Sciznce,
Academic Press, London 1981.

Manna, Z., Pnueli, A. - Verification of Con-
current Programs: Temporal Proof Principles.
Proc. of the Workshop on Logics of Programs,
Yorktown Heights, Springer Verlag, Notes in
Computer Science (D. Kozen ed.) 1981.

Manna, Z. and Pnueli, A. - Verification of

Concurrent Programs: The Temporal Proof Sys-
tem. In the Proceeding of the 4th Advanced
Course on Programming, Amsterdam, June 1932.

Roncken, M., van Diepen, N., Kramer, M.,

de Roever, W.P. - A Proof System for Brinch
Hansen's Distributed Processes. Technical
Report CS-81-5 Rijksuniversiteit Utrecht.

9.
task To ig
entry el (1dl : in
entry ez (xd2 : in

end To

=]

INTEGER ; retl : out BOOLEAN) ;

=]

INTEGER ; zet2 : out BOOLEAN)

task body To is
n : INTEGER : = 1

~

begin
loop
select
accept e (id1 ; retl) H
if idl =1 then n: = 0
elsif n>0 then n : = n+l
t, = >0
re 1 (n>0)
end el
er |
accept ez (id2 H retz) ;
if n>0 then n : = n-1 ;
ret2 : =‘(n>0)
end e,
or terminate
end select
end loog
end To

task bodz Tl is
a : BOOLEAN ;

begin e, (1,a) end T, ;

task body T, is
b : BOOLEAN : = true ;
begin while b do
loop e, (2,b) end loop
end T, |

task body '1‘3 is
¢ : BOOLEAN : = true
begin while c¢ do
loog e2 (3,c) end looE

end T3

FIGURE 1

