THE DENOTATIONAL SEMANTICS OF DYNAMIC NETWORKS OF PROCESSES

Wim BShm

Arie de Bruin

RUU-CS-E2-13

Augustus 1982

& * 5o, Rijksuniversiteit Utrecht
SN Vakgroep informatica
Ty y . .
ke ~ Princetonplein 5
oy Vs Postbus 80.002

3508 TA Utrecht
Telefoon 030—531454
The Netherlands

e

vakgroep informatica RU, Utrecht

THE DENOTATIONAL SEMANTICS OF DYNAMIC NETWORKS OF PROCESSES

Wim B&hm

Arie de Bruin

Technical Repcrt RUJU-CS-82-.3

Augustus 1282

Department of Computer Science
University of Utrecht
P.0. Box 80.002, 3508 TA Utrecht

the Netherlands

THE DENOTATIONAL SEMANTICS OF DYNAMIC NETWORKS OF PROCESSES

Wim BShm
Department of Computer Science, University of Utrecht,

P.O. Box 80.002, 3508 TA Utrecht, the Netherlands

Arie de Bruin
Faculty of Economics, Erasmus University,

P.O. Box 1738, 3000 DR Rotterdam, the Netherlands

Abstract

DNP (dynamic networks of processes) is a variant of the language introduced
by Kahn and MacQueen [3,4]. In the language it is possible to dynamically
create new processes. We present a complete, formal denotational semantics

for the language, alohg the lines sketched by Kahn and MacQueen.

Keywords and phrases: denotational semantics, parallellism, recursively

defined processes, parallel coroutines, continuation semantics.

1. Introduction

In this paper we will define the denotational semantics of DNP (dynamic
networks of processes), a language introduced by Kahn and MacQueen [3,4].
A DNP program describe§ a network of parallel computing stations (processes)
which are interconnected by channels. Processes can only communicate via
these channels. The channels are possibly infinite queues of values, Commu-
nication is asynchronous. The computing stations can "expand" into sub-
networks, which will be connected to the rest of the network by the original
channels. The process that caused the expansion may remain active and become

part of the new subnetwork. This is called a "keep".

Kahn and MacQueen define the meaning of a DNP process as a function Zrom
input histories to outpur histories. A history is a possibly infin:te
sequence modelling the values ever transmitted through a channel. In [3]

an intuitive treatment of the semantics of this kind of parallel programs

is given. However, it is not specified precisely how to obtain the meaning
of a single process from its program text. Furthermore they give an informal
treatment of how the meaning of a network is derived from the constituent

processes and the network topology. In this paper we will give a complete

formal semantics of the language.

2. Syntax

To keep the definition of the semantics short we will use a stripped

version of DNP, defined by the following BNF-like syntax.

We use the following syntactic classes as primitives:

x € Van Program variables
c € Chvar Channel variables
P € Puan Process names

t € Exp Expressions

b € Bexp Boolean expression

Expressions and boolean expressions are built up from variables, constants

and operators in the usual way.

s € Stat Statements

§ ::= x:=t | S,;S, | while b do § od | if b then S, else S, fi

1 1 2

read (x,C) | write (t,C) [expand E

B € Inst Instantiations
B ::= P(Cl,...,Ck;Ck+1,...,Cm) l
keep P(Cl,...,Ck;Ck+1,...,Cm)
A channel is called an input channel if it occurs before the semicolon

and an output channel if it occurs after it.

E € Ndeg Network definitions

E ::= [Blﬂ .o llBk]

where it must be possible to partition the set of all channels into three
subclasses:
Global inchan(E), viz. the channels that occur once and only once as
an input channel.
Global outchan(E), viz. the channels that occur once and only once as
an output channel.

Internal chan(E), viz. the channels that occur twice, once as an input

channel and once as an output channel.

T € Deck Process declarations
T ::= P(Cl,...,Ck;Ck+1,...,Cm) <« begin S end
where .all Ci are different
.all channels occurring in a read statement in S are in {cl""’ck}
.all channels occurring in a write statement in S are in {Ck+1,...,cm}
.for all expand E in S
.Global inchan(E) = {Cl,...,ck}
.Global outchan(E) = {

c }

Ck+1,..., -

.E contains at most one keep of the form keep P(Ci,...,Ci;C£+1,...,Cé)

A € Prog Programs
1= : eee H >
A = <T ..., T P(Cl. CriCryrr ,Cm)
where P(C, ,...,C ;C ,---,C) and all instantiations in all T, are well-
1 k' k+1 m i

formed with respect to T ,...,Tn. Here well-formedness is defined as follows.

1
Let Tl""'Tn be a sequence of process declarations and (keep)

P(Cl,...,Ck;Ck+1,...,Cm) an instantiation B. We call B well-formed with respect

< . . Py] v, L} 1t .
to Tl""’Tn iff there is a Ti in Tl,...,fn of the form P(Cl""’ck’ck+1"""m)
Remarks

An expand statement "expand E" replaces the process in which it occurs by

a subnetwork of processes, connected to the rest of the graph by the channels
in Global inchan{(E) U Global outchan(E). The processes in the subnetwork are
interconnected by the channels in Internal chan(E). The restriction imposed
on the class of declarations guarantees these properties for all expand
statements. If an instantiation in E is a keep, then the new process inherits
the data and control environment of the original process, i.e. it will proceed
with the statement following "expand E". The other instantiations are fresh
copies of processes starting at the first statement with all variables ini-

tialised on the value undefined.

3. An example program and its associated functions

The following DNP program sorts a sequence of nonnegative numbers followed
by -1. This is a simplified version of pipelinesort from [1, section 2.2.].

The program starts as in figure 3.1.

unsorted r\ empty

sort

A 4

Bot
tom

sorted subsequence

figure 3.1.

2
3

3
5

5
-1

figure 3.3.

-1,3,5,2

A sort process reads one number from the channel "unsorted", creates a
fresh sort process in front of it, and inserts the number just read
into a sorted subsequence from the channel "subsequence". The resulting
sorted subsequence i1s written onto channel "sorted". Sort creates a
process in front of it by means of the expansion:

expand [sort (unsorted,subsequencel; sorted,emptyl)

lkeep sort (emptyl,subsequence; subsequencel,empty)

]

which is pictured in figure 3.2.

unsorted empty unsorted emptyl empty
‘e and new old
! *pan sort sort
" -— N b
sorted subsequence sorted subsequencel subsequence

figure 3.2.

The new sort process in the picture is a fresh copy of sort; the old
sort process is a keep which will manipulate the number it just read.
Bottom is a process which just sends an empty (thus sorted) subsequence
to the first sort process.

Sorting the sequence 1, 5, 3, -1 proceeds as shown in figure 3.3.

We now give the program text.

<
sort (unsorted,subsequence;sorted,empty) <
begin read (x,unsorted);
if %20 then expand [sort (unsorted,subsequencel;sorted,emptyl)
lkeep sort (emptyl,subsequence;subsequencel ,empty)
1
read (y,subsequence) ;
while (y20 and y=x)
do write(y,sorted); read(y,subsequence) od;
write(x,sorted)
else read (v,subsequence)
£i;
while y20 do write(y,sorted); read(y,subsequence) od;
write(-1,sorted)

end,

bottom (empty;subsequence) « begin write(-1,subsequence) end,

main (unsorted;sorted) <«

begin expand [sort (unsorted,subsequence;sorted,empty)

lbottom (empty; subsequence)

end
main (in;out)

>

According to [3,4] we associate the functions from input histories

. . 4 an
to output histories fsort’ fbottom

above. These functions have the following properties

(1) fbottom(x) = <-1>
2y £ ., (X)) =Y,
malin
= \
where <Y ,U> fsort(x'v'
V= fbottom(U)
: <~1>"X ,<y>"Y) = ,X, Y
(3) £__ ¢ (<y>"Y) fcopy(y)
(4) £ . (<x> g,y) = <Uu,v>,
where <U,W> = fsort(X,Z)
<Z,v> = f (x,W,¥), for %20
merge
N, <y>T = y2 b <g> , <>) 7
(5) merge(x,m, y>' ¥) = y20 A yix = (<y>,<>) fmerge
<z>" = y20 = (<y>,<>) " ,
(6) fcopy(y,x, z>"Y) vy 0 (Y2) fCO y(ZIXIY)

d £
main

with the process declarations

(x,X,¥), (<x>,<>)‘fcopy

(<-1>,<>)

The meaning of the program is the meaning of the initial network, viz.

main

the recursive definition of £
merge

£
merge

models the behaviour of a while statement.

. In these equations three forms of recursion occur. The simplest is
in (5), which stems from the fact that

In (4) two kinds of

recursion can be observed. Firstly, the histories Z and W are defined re-

cursively, because the subnetwork in which they occur is cyclic. Secondly,

fS is defined recursively, which stems from the fact that fS

ort

1
ort models

the behaviour of an expand statement in sort. In the formal semantics in

section 4 these complications are taken care of by the least fixed point

definitions 4.2.2.4., 4.2.2.7. and 4.2.6. respectively. The above equations

(y,X,Y)

are sufficient to show that the network indeed yields a sorted permutation of

the input sequence [1].

4. Semantics
In this section we will present the semantical domains and functions.

The next section will be devoted to some explanatory remarks.

We will make use of the following notational conventions.
If X and Y are domains then X - Y denotes the domain of all functions
from X to Y. If moreover X and Y are cpo's then [X » Y] denotes the
domain of all continuous functions in X = Y.
Function application associates to the left, i.e. fabc = ((£(a)) (b)) (c).

. The - operator associates to the right, i.e. A»> B> C~=>D = A-> (B=- (C-D)).

. To enhance readability, syntactical arguments are enclosed in [][-type
brackets and continuations in {}-type brackets.

. If £f € X » Y then f{y/x} denotes the function Ax'.x'=x =y, fx'.

. Tuple notation: the sequence of objects xl,...,xn is denoted by
<x1,...,xn>. Concatenation is denoted by ~. Projection is denoted by
subscripts, i.e. if x = <a,b,c> then x2 = Db.

. 0> B,y denotes B if & is true and Y otherwise.

4.1. Domains

Values § €v (undefined € V)
States c€X=Van->v
Histories T €V°
Channel contents € € Cheont = Chvar » v
Processes o € Process = [Cheont » Cheont]
Continuations 8 € Cont = £ » Process = 5 - [Cheont » Cheont]
Process generators B € Prngen = Chvar* - Chvar* - Process,
with the restriction that the resulting
processes write on their output channels
only, i.e. for all g,
B<c, oo ,Ck><E1 e ee ,En>ec = < for all
c g {c;,....C}.
Environments v € Env = (Puvar » Prgen) x (Puvarn - [Process - Prgenl]),

4.2. Functions

4.2.1. M:Exp » £ > V and M:Bexp » £ -~ {true,false} are assumed to be predefined.
4.2.2 M:Stat » [Env » [Cont » (£ = Process)]]

4.2.2.1. Mlx:=clyoce = 6 (oiMltlo/xhe

4.2.2.2. Mﬂsl;szﬂyeoe = Mﬂslﬂy{MﬂszﬂYe}Oe

.2.2.3. MIif b then s, else s, filly6oe = MIplo - Mﬂslﬂyece, Mﬂszﬂyeoe
.2.2.4. MIwhile b do S odllyfce = MIbloc » MIslly{MIwhile b do s odlly8loe, goe
.2.2.5. Ml read (x,c) Iy6oe = ec=<> » AC.<>, Bc'e",

where 0' = of{first(eC)/x} and €' = e{rest(ec)/c}

.2.2.6. MIwrite (t,c)Iyboe = Ac'.c' = ¢ » <M[t]o>"60ec', eoecC’
.2.2.7. M[expand Elysoe = AC.Cc € Global outchan(E) - (Ld*)c, <,
where ®*:Chcont » Cheont is defined by

o*c' = M[ElYv6o (e'{ec/c})

C € Global inchan(E)

4.2.3. M:Inst -» [Env » [Cont » (Z > Process)]l

.,Cm)ﬂYeo = Y P<Cy s O ><C e e Co>

,cmﬂyeo = yzp(eo)<cl,...,ck><ck+1,...,cm>

4.2.3.1. Mﬂp(cl,.--,ck;c

.2.3.2. Ml keep P(Cl,...,C

K+1'°"

iC

k' Tk+1"7 7

N
S

M:Ndeg » [Env » [Cont » (£ - Process)]]
ME[Blﬂ ces "Bk]ﬂYGO = concat(MﬂBlﬂYGO,...,MEBk]YGO),
aiEC for the smallest i such that
where concat(®,,...,0d, JEC = ai€c¢<>, if there is such an i

1 k
<> otherwise

.2.5. M:Decl » [Env - Env]

M[P(cl,...,ck;ck+1,...,cm) < begin S end] = <Y1{w1/P},Y2{w2/p}>,
= Ad. Do ., C>. ' v, ,Cl>,
where cpz o)\<C1, ,CS> A<cs+1, ,ct>
s # kor t #£m > AE.AC.<>,
As.Ac.c = Cc' s o0E'C ., <>
s+1 s+1
where €' = AC.C = Ci - eCi, <>

and @ = @2(MHSEY{AO.XE.kC.<>}(Xx.undefined))

.2.6. M:Prog -» Process

M[Tl,...,Tn P P(C . ,cm)>ﬂ =

,Ck;Ck+1,...

ress,C 2><C - .C_ >,
m

1’ kK~ Tk+1’” M
where Y = (MHT1B°...°M[THH)Y

Y. P<
Y, P<C

9.

... I said: "Well, what about
the other people in the world
who might enjoy the melody of
the black page but could not
really approach its statistical
density in its basic form".
So I went to work ...
Frank Zappa,
The black page, #2
5. Discussion
In the headings of the following subsections we will refer to the
corresponding semantic clauses from section 4. We assume acquaintance with

the concepts of denotational semantics as provided in e.g. [2].

5.1. Domains (41}.)

5.1.1. Values, states and histories

V denotes the set of all values that can be assumed by the program
variables. One special value undefined is added, because we don't want
to be bothered by nonessential nondeterminism caused by uninitialized
variables; we initialize all variables on undefined. States are defined
in the usual way. Each process has its own state, there is no sharing
of variables between processes. A history is a finite or infinite se-
quence of values. On the class of histories we impose a cpo structure

by defining Tl E T, iff T, is a prefix of T,. The bottom element in ¥

2 1 2
is the empty sequence <>.

5.1.2. Channel contents and Processes

In section 3 we defined (like Kahn and MacQueen) the meaning of a process
as a function from tuples of histories to tuples of histories. Our approach
follows these lines, but as we will define the semantics of a process de-
claration by induction on the structure of its beody we cannot easily use
functions on tuples of histories because when we define the meaning of
a statement containing a channel variable, the position of that channel
variable in the input or output tuple is no longer known. Instead, we
apply the mechanism as used for states: the meaning of a statement is a
function from channel contents to channel contents, where a channel contents

associates a history with every channel variable.

A process O takes the histories on its input channels, which are assumed
to be there before the computation starts and yields the histories on the
output channels, consisting of all values written. We allow only continuous

functions from Cheont to Chcont. Notice that there are infinite objects in

10.

Chcont, the results of infinite computations. Usually infinite computations
are modelled by a bottom element, but our semantics yields a well defined

and useful result.

5.1.3. Continuations

Direct semantics does not seem appropriate. Consider the meaning of

composition. This should be something like
: = j =g,
M[[sl,s2]]ce M[[szll (M[[Sl]]oa) £

where g is the initial state, € models the contents on the input channels
and €' models the result on the output channels. Now Mﬂslﬂoe must yield
an intermediate result, and this poses at least three problems:
(1) What if S1 blocks on trying to read from an empty channel?
A special intermediate state blocked could be introduced, but this
can hardly be called an elegant solution.
(ii) An intermediate result must at least contain an intermediate state
g', an intermediate contents of the input channels, and the output

resulting from S Now Mﬂszﬂ must concatenate its own output to

1
Sl's output, but concatenation (KTl.ATz.T

(iii) What should M[expand E] loock like?

1‘T2) is not continuous.

We will use continuation semantics. We give MIs] an extra argumént 8,

a continuation, which is meant to model the future of the computation,
i.e. O supplies the meaning of the statements to be executed after S.

In other words, if 6 specifies how execution proceeds once the right hand
end of S has been reached, M[S]0 specifies execution starting from the
left hand end of S. More information about continuations can be found in
[2]. The domain of all continuations is Conft: the future of a computation

is modelled by a 6 which takes a state and a contents of input channels,

and yields the contents of the output channels.

5.1.4. Process generators and environments

MIS] needs one more argument, an environment, to obtain the meaning
of the process names occurring in S. The meaning of a process is a con-
tinuous function from Chcont to Chcont. A process declaration yields a
process in terms of the formal channel names, but an instantiation must
vield a process in terms of the actuals. To this end the domain of process
generators is introduced. A generator accepts a finite list of actual input
channels and a finite list of actual output channels and yields the actual

process. The restriction imposed in the definition of Env is needed to

11.

ensure continuity of concat(ul,...,un)e in ¢ (cf. definition of M[E], 4.2.4.),
where the o, are processes generated by the instantiations occurring in

a network definition E.

For normal instantiations (i.e. not keeps) the formal process and thus
the corresponding process generator 1is derived from its declaration. This
is modelled by the first component of environments. For keeps the formal
process will be supplied explicitly, and this is modelled by the second

component of environments.

5.2. The function M

5.2.1. Instantiations M[B] (4.2.3.)

An instantiation is always part of an expand statement. An instantiation
either creates a fresh copy of a process (normal instantiation) or resumes
the process in which the expand statement occurs (keep). The meaning M[BlySo
of an instantiation B in an environment Y is a process 0 € Process which
corresponds to executing the bedy of B. See also 5.1.4. The arguments 8 and
0 are those associated with the expand statement in which the instantiation
occurs. For normal instantiations we obtain the process generator from the
first component of the environment and the process name. We then apply this

generator to the actual channels and this yields the actual process.

A keep corresponds to the expanding process, which remains active after
execution of the expansion. This process will start executing the statements
(dynamically) following the expand statement and is therefore described by
the continuation 6 associated with the expand statement. The starting state

is the state 0 in which the original process expanded. So the formal process

we need is 60.

5.2.2. Declarations M[[T] (4.2.5.)

The meaning MHTHY of a declaration T in an environment Y is a new
environment: with a process name P two functions wl and @2 are associated
(see also the discussion of the domain Env in 5.1.4.). First @i this
function expects a process o specified in terms of the formal input and
output channels, and two lists of actual channel names. It yields the
actual process. The formal-actual transformation proceeds in two stages.
The contents of the actual input channels are given by €. First € is trans-
formed to €' which models the same input but now in terms of the formals.
Thus a€' yields the right output, but in terms of the formals. This is re-

written to an element of Chcont in terms of the actuals in the A—expression

= t - ' <>.
AE.AC.C C ati oe cS ’

+1i

12.

For the function P, a formal process does not have to be supplied explicitly.
It will be derived from the declaration T by evaluating its body with respect

to the empty continuation in an inital state where all variables are un-

defined.

5.2.3. Programs M[A] (4.2.6.)
The meaning of a program is the meaning of its body evaluated in the
environment determined by the declarations. Notice that the definition is

recursive in ?l This is needed because there can be recursive instantiations

in the bodies of the Ti'

5.2.4. Statements Msl] (4.2.2.)

MIsIlyboce yields a channel contents €' describing the histories on the
output channels resulting from executing S followed by the future computa-
tion as described by the continuation €. S is executed in a state O with
respect to an enviromment Y where the contents of the input channels is

given by €.

5.2.4.1. Assigmment (4.2.2.1.)

Ml x: =t Jy6oe yields the contents of the output channel by first of all
evaluating the assigmment x:=t in ¢ (yielding an updated state o{M[tlo/x})
and after that proceeding as given by the continuation 6.

Therefore, the effect of an assignment is captured by applying the continua-
tion to the updated state. The contents of the input channels do not change

because no input is read.

5.2.4.2. Composition {(4.2.2.2.)

1 ;52 with

with respect to {evaluation

Composition is handled in the standard way: evaluation of S

respect to 6§ is equivalent to evaluation of Sl

of 52 with respect to 8}, <f. 5.1.3.

5.2.4.3. Conditional (4.2.2.3.)

The result of evaluating "if b then S1 else 52 fi" with respect to

environment Y, continuation §, state 0 and input channel €, is either the

result of evaluating S, with respect to these parameters (namely if b

1
evaluated in 0 yields true), or the result of evaluating So (otherwise).

13.

5.2.4.4. Repetition (4.2.2.4.)
The statement "while b do S od" is equivalent to
"if b then S; while b do S od
else skip
£i"

Evaluating the meaning of the latter statement gives us 4.2.2.4.

Notice the recursion here. Equation 4.2.2.4. is an informal way of writing

down the least fixed point expression
M[while b do s odlly6 = ulAr6'.xo.Mlblo » MIsly6'c, 6ol.

A similar remark applies to the definition of ?hin the definition of the

meaning of programs (4.2.6.).

5.2.4.5. Input (4.2.2.5.)

in defining the meaning of a read statement two cases can be discriminated.
If the input channel is empty the process is blocked, it will have no effect
on its output channels anymore, i.e. it yields AC.<>. As the process is blocked
the continuation, which models the future of the computation, is ignored.
Remark that our semantics assumes that all input which will be supplied to
a process is given by the initial channel contents, there is no such thing
modelled in our semantics as a process waiting for input. If the input channel

is not empty then read(x,C) is equivalent to the assignments

X := first element of C; C := rest of C.

5.2.4.6. Output (4.2.2.6.)

Consider the write statement "write(t,C)" evaluated with respect to a
continuation ©. For all channels except C this statement is equivalent
to the empty statement. The output history on C consists of the value of

t followed by what will be written on C in the future.

A discussion of the expand statement will be given after we have treated

network definitions.

14.

5.2.5. Network definitions M[E] (4.2.4.)

To model the expand statement we need to find the (smallest) solution
of a set of equations in history-valued variables, derived from the topology
of the new network. Consider as an example an expansion into the net in

figure 5.1.

Yy
figure 5.1.
According to Kahn the global behaviour of the net is described by an

operator which takes an input hsitory x and yields an output history u.

This operator is derived by solving the equations:

FP((x,2)
G(y)
This is equivalent to deriving the least fixed point of A<y ,2>.<F (x,z),G(y)¥1>,

Y

<z ,>

where G(y)+¥1l corresponds to output on the channel labelled z. In our approach
we follow the same line of thought but now in terms of channel contents.

This means that we need to find the least fixed point of an operator from
Cheont to Chcoont. This is accomplished in two stages. First we describe the
behaviour of the processes in the network as if they were not interconnected,
i.e. the internal channels occur twice but the two occurrences are not re-
lated yet. In terms of the example above we derive the operator MIE]: which

is pictured in figure 5.2.

figure 5.2.

15.

5.2.6. Expand statements M[expand E] (4.2.2.7.)

Here is the second stage. We have derived an operator MHEHYGG and now
we will transform it into an operator ®* of which we will take the fixed
point. $* essentially connects the internal channels. In terms of the
example, ?* rephrases the operator A<y,z>.<F(x,z), G(y)¥1> as a function from
Cheont to Chcont. We cannot simply take the fixed point of MIEly80 because
the global input given by € in the definition must be supplied explicitly.
Notice that the results on the internal channels are invisible from outside

the expand statement.

5.2.7. The existence of M

We have to show that M is well defined in the sense that for any
syntactical object A, M[A] is an element of the right domain, e.g. for
every instantiation B we have that M[B]ly00 must be continuous in Y and
0. This result then guarantees the existence of the fixed points occurring

in the definition.

These properties can straightforwardly be shown by induction on the

complexity of A.

References
[1] B&SHEHM, A.P.W. and A. DE BRUIN, Dynamic networks of parallel processes,
Report IW 192/82, Amsterdam, Mathematical Centre, 1982.

[2] GORDON, M., The denotational description of programming languages,
New York, Springer Verlag, 1979.

[3] KaAHN, G., The semantics of a simple language for parallel programming,
in: J.L. Rosenfeld (ed.), IFIP74, Amsterdam, North-Holland Publ.
Comp., 1974, pp. 471-475.

(4] KXAHN, G. and D.B. MacQUEEN, Coroutines and networks of parallel processes,
in: B. Gilchrist (ed.), IFIP77, Amsterdam, North-Holland Publ. Comp. ,
1977, pp. 993-998.

