A PROOF SYSTEM FOR CONCURRENT ADA PROGRAMS

Rob Gerth

Willem P de Roever

Technical Report RUU-CS-83-2

Januari 1983

Rijksuniversiteit Utrecht

(%
R =: Vakgroep informatica
K

A, ~ Princetonplein 3
SN Postbus 80.002
3508 TA Utrecht
Telefoon 030-53
The Netheriands.

vakgroep informatica Ry Utreche

A PROOF SYSTEM FOR CONCURRENT ADA PROGRAMS

Rob Gerth

Willem P de Roever

Technical Report RUU-CS-83-2

Januari 1983

Department of Computer Science
University of Utrecht
P.0. Box 80.002, 3508 TA Utrecht

the Netherlands

A PROOF SYSTEM FOR CONCURRENT ADA PROGRAMS

Rob Gerth Willem P de Roever
Department of Computer Science, University of Utrecht
P.0. Box 80.002, 3508TA Utrecht, the Netherlands.

0. ABSTRACT

A subset of ADA 1is introduced, ADA-CF, to study the basic synchronization
primitive of ADA, the rendezvous. Starting with the CSP proof system of Apt,
Francez and de Roever, we develop a Hoare-style proof system for proving partial
correctness properties which is sound and relatively complete. The proof system
is then extended to deal with safety, deadlock, terminationm and failure. Two
non-trivial example proofs are given of ADA-CF programs; the first one concerns
a buffered producer-consumer algorithm, the second ome a parallel sorting
algorithm due to Brinch Hansen.

Keywords: Ada-tasking, concurrency, rendezvous, Hoare-style proof system,
partial correctness, total correctness, safety, termination, deadlock, failure,
cooperating proofs, blocking, soundness, completeness.

CR-categories: (1,;{ s C 3.1 , £;'3.2 P)

The first author 1is supported by the Netherlands Organization for the
Advancement of Pure Research (ZWO).

1. INTRODUCTION

In this paper, we study the proof theory of the basic ADA synchronization
primitive, the rendezvous. A subset of ADA, the ADA concurrency fragment with
acronym ADA-CF, is defined for which a Hoare-style proof system is developed to
prove partial correctness properties, which is sound and relatively complete as
proven in [9]. The proof system is based on the CSP proof system 1in [3] which
has as key-notion, the notion of cooperating proofs: Initially, proofs of the
concurrently executing processes, or tasks as they are called in ADA, which
constitute some program, are counstructed in isolation. In such component proofs,
assumptions are made about the behaviour of the other tasks communicating with
the task whose proof is being constructed. To obtain a proof of the whole
program, the proofs of its component tasks have to be combined. Consequently,
the component proofs should cooperate in validating their assumptions about the
behaviour of the others.

Technically, the main contribution of this paper is (1) the generalization of
the idea of cooperation, as developed for CSP-type communication of transmitting

simple values, to ADA-type communication which is akin to procedure calls and
(2) formalizing the use of proof outlines to derive safety properties from. The
generalization of cooperation has initially been developed in [16] and [8] in

the context of a different language, namely Brinch Hansen”s Distributed
Processes ([5]). .

The rest of the paper is organized as follows: Sectiom 2 introduces the subset
ADA-CF and its (informal) semantics (for a more formal semantics, the reader is
referred to [15] or [9]). In ADA-CF, only the bare essentials of ADA-tasking
have been retained. Notably, the subset does not admit shared variables,
access—-variables to tasks (or any other object) task—creation and entry queues.
This last restriction is not as serious as one might think it to be; see section
9 of this paper or [15]. Section 3 is the heart of the paper in which the
partial correctness proof system 1is developed. Section 4 contains the first
large(r) example proof of a program implementing a buffered producer-consumer
system. In section 5 the proof system is extended to deal with safety—-properties
which generalize partial correctness properties. Notably, no new proof rules
have to be introduced for this; instead, we show how to extract more information
from the same proofs. This section also introduces the necessary terminology and.
techniques which are used 1in section 6 to deal with deadlock freedom and in
section 7 to deal with termination and absence of failure (or clean
termination). For these three properties, new proof rules and tests are needed.
All this culminates in section 8 which contains the second large example proof.
We consider a version of a linear time parallel sorting algorithm of Brinch
Hansen ([5]) and prove it correct and deadlock and failure free. In fact, we
prove that the algorithm can be used as a priority queue. Section 9, discusses
some ADA constructs which can be added to our subset without much trouble.
Notably, we show how to incorporate the terminate-statement of ADA, which
introduces a distributed termination convention unot unlike that of CSP [ll].
Also, the absence of entry queues and some syntactic restrictions on the
variables in ADA-CF are discussed.

2. THE SUBSET, ADA-CF

The syntax of ADA-CF is described, wusing a BNF-grammar augmented with the
following embellishments (see also [1]):

-2-

(a) sitalicized prefixes in the nonterminals are irrelevant. I.e
“enéry_1d” are both equivalent to the nonterminal “id”

(b) square brackets enclose optional items. I.e., the production “decl ::= [en-
try_decl] [var_decl]” also produces the empty string

(¢) braces enclose a repeated item, which can be repeated zero or more times.
L.e., the production “id_list ::= id {,1d}” produces lists of one ore more
id”s.

The reader who is familiar with ADA, will notice that some liberties have been

taken with the ADA syntax which is verbose at times.

.y Yar id” and

program ::= begin task {; task} end

task ::= task fask _1id decl {label} begin stats end {label}

label 11= /abe/ 1id:

decl ::= [entry_decl] [var_decl]

entry_decl ::= entry erzry_1id list;

var _decl ::= int war id list;

id 1list i:= id {, id}

stats :1= [label] stat {; [label] stat}

stat t:= pull | ass_st | 1f st | while st | call st | acc_st |
sel st

ass_st 1= var {4 := expr

if st ::= 1f bool expr then stats else stats endif

while st ::= while bool exg;—zb stats endwhile

call_;E 1i= call éasA_;a.ené:;_id(actual part)

actual part::= {expr} [#rar id 1list]

ace-st 1:= accept enéry 1d(formal part) do stats endaccept

formal part::= [var_id list] (#rar id list]

sel st ::= select sel_pranch {35 se;*pranch} endselect

sel branch ::= bool expr: ace_st [; stats]

expr ::= "expression”

bool expr ::= "boolean expression”

id := "identifier”

There are some syntactical restrictions om the variables appearing in an
ADA-CF program (if “S” denotes an ADA-CF statement, then FV(S) denotes the set
of its variables):

Rl. for any two tasks T and T” in an ADA-CF program, FV(T)NFV(T") = @,

R2. within a task no name-clashes may occur either between the formal

- parameters, in the formal parts of the task, themselves or between the

formal variables and the global variables of the task,

R3. no formal in parameter may appear on the left-hand-side of any assignment or
as in out parameter oam any call,

R4. for any call-statement, Eé&i_T.a(e,,...,en#x,,...,xm)
(L) x,,..., X, @ust be all distinct,
(ii) FV(e1,...,en)f\{x4,...,xm} = 4.

These restrictions will be discussed later om in sections 3 and 9.

Jext, we glve an informal descriprion of the semantics.
An ADA-CF program consists of a fixed set of rasks. These tasks ara all
dctivated sinultaneously and executed in parallel. When execution rteaches the
end of the task-body, this task terminates. Each task can have declarations of
variables (all of type integer) and of entries, which may be “called” by other
tasks. The actions to be performed, when such an entry is called, are specified
by matching accept-statements for this entry. Execution of an accept is

-3-

syachronized with the execution of a matching entry call. Consequently, a task
executing an accept or entry call, will be suspended until another process
reaches a matching entry call or accept, after which the statements of the
accept-body are executed by the called task, while the calling task remains
suspended. This action is called a rendezvous and 1is the only means of
communication between and synchronization of tasks; 1in particular, there are no
global (i.e., shared) variables. After a rendezvous, the two tasks engaged in
this rendezvous continue their execution in parallel again. A program aborts (or
fails) if (1) an entry is called of an already terminated task or (2) a task
reaches the end of its body, while other tasks are still waiting for a
rendezvous with this terminated task (the ADA reference manual ([1,$9.5]) is not
quite clear what should happen in the second case, but failure 1is presumably
what is intended).) :

Apart from the synchronization involved, the rendezvous-action is similar to
an ordinary call for a procedure, having as body the body of the accept
participating in the rendezvous. A task may only contain accepts for omne of its
own entries, but it may contain more than one accept for the same entry. Each
accept specifies a formal part for 1ts entry; all accepts for the same entry
should specify the same formal part. The first set of parameters in such a
formal part, closed-off by the “#°-sign, 1is of mode in (i.e., are value
parameters); the second set 1s of mode in out (i.e., are 1initialized result
parameters). Hence, in the actual part of a matching call, the first set of
actual parameters may be (integer) expressioms, the second set must be
variables. The parametefs specified by an accept are local in scope w.r.t. the
accept-body. Execution of a rendezvous between an entry call and a (matching)
accept starts by assigning the values of all actuals to all formals. Then, the
accept—-body is executed after which the computed values of the formal result
parameters are assigned to the actual result -parameters.

The select-statement allows a task to wait for synchronization with one of a
set of alternatives. First, all boolean expressions, “guarding” the branches of
the select, are evaluated to determine which branches of the select are open
(i.e., which expressions evaluate to true). If all are closed, the program
aborts. Otherwise, the task, if necessary, waits wuntil a rendezvous
corresponding with one of the open branches 1is possible. (Notice that each
branch starts with an accept.) In many cases, more than one rendezvous may be
possible because several entries of a task may have been called or several tasks
may have called the same entry. Similarly, several open branches may start with
an accept for the same entry. In such cases, one of these alternatives 1is
selected arbitrarily. In particular, thls means that there are gno eatry or
calling queues associated with entries as in ADA (*).

Finally, we assume that execution of an ADA-CF program can be modelled as an
arbitrary interleaving of the actions of the component tasks. I.e., we assume an
interleaving semantics (INT) and, in this respect we do not distinguish
ourselves among other researchers in the proof thecory of concurrent programs.
However, this 1s not the only possibility and ome could also assume maximal
paralellism semantics (MAX). In such a semantics, component tasks execute truly
in parallel whenever this is possible; in particular, execution of a task is
never unnecessarily suspended. Both types of semantics are reasonable: MAX
corresponds to a situation in which the component tasks execute on identical
dedicated processors; INT corresponds to a situation 1in which this is oot the

(*) That the presence or absence of entry queues has no iInfluence on the
semantics of our subset 1s proved in [15]; see also section 9.

Sy

case or in which time=-sharing occurs. The reader 1is referred to [(17] for a more
formal exposition. While our proof system is sound under both INT and MAX, it is
complete under INT only (see [17] for an example).

Example 2.0. This example illustrates the ADA-CF susbset and the liberal way ia
which ADA-CF is augmented with extra data types when this is deemed necessary to
code non-trivial example programs. The proof systam will be developed Ffor the
integer data type only, though.

The program is a straightforward solution of a producer=-consumer problem with
a buffer in between to smooth out speed-variations and is a slightly adapted
version of the solution in (1,89.12] (“u” denotes an arbitrary positive integer
constant):

begin

task producer

—_—;rray (1..n) of int vecl; int i;

begin L := 1 — and initialize vecl to some arbitrary values
while 1 # o+l do

call buffer.put(vecl(i)); 1 := i+l
endwhile;
call buffer.term()

end .

task consumer
array (l..n) of int vec2; int j;
begin j := 1;
while j # o+l do
call buffer.get(#vec2(j)); j = j+l
endwhile;
call buffer.term()
end;

task buffer
entry put, get, term;
array (0..99)_3§ int pool; int in, out, count, terms;

begin in := 0; out := 0; count := 0; terms := 0;
while terms # 2 do
select
count < 100
accept put(x) do pool(in mod 100) := x endaccept;
or count > 0O
accept get(#y) do 7 := pool(out mod 100) endaccept;
or true o o
accept term() do null endaccept;
terms := terms+l
endselect
endwhile
end
end

The extra entry “term” and variable “terms” in the buffar-task, are aeseded to
determine when ©buffer may terminate (terms=2). Remember that ADA-CF does not
have the ADA terminate-statement. jm]

3. THE PROOFSYSTEM

The proof system is similarly structured as the one of Owicki in [l4] or the
CSP-system of Apt et al [3]: In order to prove a property about a program, one
first constructs separate proofs for the component tasks in isolation and then
combines these component proofs to obtain a proof of this property. In general
the component tasks will influence each other. Counsequently, within a component
proof ome has to make assumptions about the behaviour of the environment of the
task. Therefore, if these component proofs are to be combined, these assumptions
should be consistent and must be checked. This explains the need for tests such
as the interference freedom test of [l4] and the cooperation test of [3].
Because of the close relationship between ADA-CF and CSP communication, the
consistency test on component proofs of the ADA-CF system will be based on the
CSP cooperation test. Such tests introduce a meta-element in Hoare-style proof
systems, because they refer to properties of proofs. The natural notion of proof
for which such tests can (formally) be defined 1is that of proof outlines; first
‘introduced by Owicki for her language GPL in [14] and subsequently used for CSP
in [3]. In the case of GPL and CSP, it is a rather trivial problem which
consistency tests have to be imposed upon the proof outlines (of course, the
specific form such a test takes may be less trivial to find). In the case of
ADA-CF, the reader will see that there 1s a subtle problem involved in this
choice. ’ .

To “separate” the component proofs from each other, the following axiom and
proof rule are adopted:

‘Al. call: {p} call T.e (T {q},

provided FV(p)n {X}= 9. -

T and ¥ denote respectively the value expression list and the value result
variable list; the domain of FV has been extended so as to yield the set
of free variables of its argument assertion(s). This axiom expresses that
in a component proof, anything may be assumed about the result of an entry
call. Of course such an assumption must be checked later omn. The
restriction on the free variables of the pre-assertion will be discussed
later.

R1l. accept: {p”} s {q7}

’

{p} accept e (3#3)‘23 S endaccept {q}

provided {TQ,¥}NFV(p,q) = @.

First of all, the rule forces a proof of the accept-body to be given.
However, it does not enforce relationships between the pre and
post-assertion of the body and the pre and post-assertion of the accept.
This is reasonable as p~ and q~ must say something about the values of the
formal parameters, which are (partly) determined by the environment.
Consequently, these assertions have to be checked too, later on. The
formal parameters are local w.r.t. the accept-body, whence the restriction
on the variables free in p and q.

These are augmented by the following rules and axioms:

A2. null: {p} null {q!l.
A3. assignment: {ple/x]} x := ¢ {p},

where [t/x] denotes the usual substitution of the expression t for each
(free) occurrence of x in p.

R2. select: {pAb1} s, {q}, -.., {pAbn} S, {q}

{p} select b,: 8§, or ... or b : S _ endselect {q}

Remember that waiting (until a rendezvous 1s possible) is not a partial
correctness property.

R3. if: {pabd} s {q} , {pa=b} S~ {q}

{p} if b then S else S~ endif {q}

R4, while: {pAa b} s {p}

{p} while b do S endwhile {pA-=b}

R5. compositiom: {p} S {q} , {q} 8~ {z}

{p} s;5° {r}

R6. comsequence: p=p” , {p"} S {q7} , ¢ gq

{p} s {q}

R7. body: {p} s {q}

{p} begin S end {q}

In the sequel, a task will often be identified with its body, in the sense
that {p} task T {q} or {p} T {q} will be written where {p} begin S end {q!}
(being the body of task T) is meant.

Using these rules, properties about tasks (or task-bodies) in isolatiom, can
be proved. Such proofs can be given an alternative form by annotating the
task-body with the assertions generated by its proof; i.e., each sub—statament S
of the task-body can be annotated with the assertions used in the application of
one of the above rules or axioms to S. It is straightforward to make this
precise:

Definition 3.0. A proof cutline for an ADA-CF task (-body) S, associates with
each sub-statement R of S (and with S itself) a unique pre-assertion, ora(R),
and a unique post-assertion, post(R), and defines a bracketing for the task (*).
Such a proof ocutline is called wvalid for. a formula {p} s {q} precisely if for
each sub-statement R of S, the following verification conditioms hold:

(*) The notiom of bracketing will be explained later om. Until then, the reader
may safely ignore this requirement.

(1) pospre(S) and post(S)=q,
(2) pre(S)—pre(R) and post(R)=spost(S) if S= begin R end,
(3) pre(R)—spost(R) if Rzmull , -
(4) pre(R)=spost(R){t/x] if R=x := ¢ ,
(5) pre(R) Ab=spre(R”), pre(R)Ab—pre(R"), post(R")-s»post(R)
and post(R")=ypost(R) if R=if b then R” else R" endif ,
(6) pre(R)A b=spre(R”), post(R")—pre(R) and pre(R)Ab-post(R)
if Rawhile b do R” endwhile ,
(7) pre(R)A b _,pre(R) and post(R)-apost(R) for i=l..n
if R= select b, R1 or ... or b : R, endselect endselect ,
(8) FV(pre(R), post(R))f\{E v} = 9 if RS acceEt e (u#*) do R” endaccept ,
(9) FV(pre(R))N{X} = § if R=call T.e (€#x) ,
(10) pre(R)=spre(R”), post(R”)—opre(R") and post(R")-opost(R)Aif R=R";R". !

Such proof outlines correspond with the purely sequential part of an ordinmary
proof. It is easy to see that a proof outline is valid for a formula {p} s {q},
precisely when 1its pre and post—assertions can be used in an ordinary proof for
{p} s {q}: The conditions (1l)...(10) restrict the assertioms to those that can
be obtained by using one of the proof rules or axioms given.

Apparently, with proof outlines a special kind of proof corresponds; namely
proofs in which no two applications of a proof rule or axiom refer to the same
statement; otherwise the pre and post-assertions of this statement would not be
unique. We will returnm to this fact later on.

Subsequent discussions will always refer to proofs in this form; an example
will shortly follow.

In the prodf outline of a component task T, assumptions are made about the
behaviour of the tasks, T communicates with. To be more specific, T makes
assumptions about the values it receilves, both for the value—-result parameters
on termination of an entry call and for the formal parameters; when T enters an
accept. Using these assumptions the proof outline for T specifies in a sense the
behaviour to which T commits itself; i.e., the appropriate pre-assertions
specify the values sent off to a task which becomes engaged in a rendezvous with
T. In essence, the consistency test must show that the behaviour of each task
satisfies the assumptions concering its behaviour;_ made by the task
communicating with it. This discussion makes the following more formal statement
of the cooperation test plausible:

First formulation of cooperation of ADA-CF proofs.
The proof outlines of {p } task T, {q by oeen, {pn} task T {qn} cooperate if
(1) for any “matching communlcatlon palr
C= call TJ.e (TH#X) and
A= accept e (T#9) do S endaccept (A within TJ-),
the formula {pre(C)Aapre(A)} CllA {post(C)Apost(A)} holds, whenever C and A
become engaged in a rendezvous. ("Cl|A” denotes the execution of this
rendezvous).
(2) the assertions of the proof outlines of {p;} T; {qi} (i=1..n) have no free
variables subject to change in any T. (j#1). L.e., have no free variables
which apear free on the left-hand-side of any assignment in TJ- or as

value-result parameter of any entry call in Tj‘ D

The first clause is clear enmough, asking to derive the post-assertions of the
entry call and accept, if a rendezvous between these two occurs, (necessarily)
in a state obeying the two pre-assertions. The discussion what formulae like {p}

-8-

CllA {q} precisely denote and how they are proved, is deferred for a while.

The second clause forces the independence of the proof outlines: No proof
outline may “talk” about variables of other tasks; hence, a proof outline cannot
be invalidated by actions elsewhera. However, this restriction does aot apply to
variables that are not changed in the program. Such so called freeze variables
are needed to prove relations between variables of different rtasks. As a
consequence, only post-assertions of entry calls and the pre-assertions of
accept-bodies make assumptions about the behaviour of other tasks (so that only
these assertions have to be checked). This 1is reasouable because at these places
.only, outside information is injected into a task.

Example 3.l. Comsider the following ADA-CF program:

begin task T int x; begin call T .a (x) end
task T” entry a; int y; beginm accept a (u) do y := u endaccept end

end

Clearly, {true} begin task T; task T” end {x=y}. (3.2)

-

To prove this, introduce a freeze variable “z” and proof outlines

task T int x; task T” entry a; int y
{x=z} begin {true} begin -
{x=2z} call T7.a(x) {x=z} {true} accept a(u) do
end {x=z} {u=z} v := u {y=z}
’ endaccept {y=z}
end {y=z}

It is easy to see that the proof outlines are valid. Do they cooperate too?
Well, clause 2 clearly holds; a little thought makes satisfaction of the first
clause plausible too. As the proof rule for such formulae has not yet been
given, the actual “proof” can only be rendered in the following form: Clause 1
asks for the proof of {x=zAtrue} C[lA {z=z Ay=z} (C denotes the entry call in
T, A the accept in T° and C|/A the actual rendezvous). According to the
semantics of a rendezvous (cf. sectiom 2), C A is (roughly) equivalent with

u:=x; y:=u
(u:=x is the assignment of the actual to the formal parameters). Consequently,
one has to show that the formula

{z=2} u:=x {u=z} y:=u {x=z A y=z}
can be “completed” so as to yield a valid proof outline. In particular, the
intermediate assertion, u=z, should be retained, as this assertion embodies the
assumption of T7 about TI”s behaviour. To show this, is rather trivial; the
following proof outline is the required completion (*):

{x=z} {x=z Ax=x} u:=x {x=z Au=x}

{x=z Au=zAu=u} yi=u {x=zAu=zAy=u} {(z=z Ay=z}.

So the outlines may be combined:

{x=z Atrue} begin task T; task T° end {z=z Ay=2z]},
Application of the cousequence rule yields

{x=z} begin task T; task T” end {x=y}.
As the value of z and hence of x has not been specified, (3.2) holds too. n]

- e v oo ety e

(*) Juxtaposition of two assertions in a proof outline denotes implication of
the rightmost assertion by the leftmos:

-0Q=

The last deduction in the example was not formalized and indicates another
missing proof rule:

R8. substitution: {p} s {q}

, provided z4€ FV(S,q).
{p(t/z]} s {q}

Using this rule, the last step in the example proof can be formalized using the
substitution [x/z] (and then applying the consequence rule).

The above simple-minded approach to cooperation 1is too weak in general: The
first clause of its definition requires one to prove a formula involving an
entry call C and an accept A, but only if C and A can actually become engaged in
a rendezvous. This now, cannot be inferred from the program text alome but has
to be semantically characterized. Comsequently, it raizes the dual problem of
characterizing the absence of a rendezvous.

A rendezvous between A and C can ouly occur if there is a computation of the
program, reaching simultaneously both A and C. Now, in a (valid) proof outline,
the pre—assertion of some statement, by definition, characterizes all
computations reaching this statement. Consequently, a rendezvous between A and C
cannot occur, whenever pre(C) A pre(A)-»false.

The following example and subsequent discussion addresses the question whether
assertions can be made strong enough to express the impossibility of a
particular rendezvous.

‘Example 3.3.
begin]
task T begin call T .a(l); call T".b()"ggg
task T” entry a; int x;
begin
accept a(#u) do x := u endaccept;
accept a(#v) do x := v endaccept;
end
task T" entry b;
begin accept b() do null endaccept; call T".a(2) end

end
The formula
{true} begin task T; task T”; task T" end {x=2}
clearly holds. In order to prove it, the post—assertion of the second accept in
a proof outline of T” necessarily must imply x=2. If this post-assertion is to
pass the cooperation test, the conjunction of the pre—assertion; p, of the first
entry call in T with the pre-assertion; q; of the second accept in T must
somehow yield false, expressing that this rendezvous will not take place during
execution, thus trivializing the cooperation test for this pair. Comsequently, g
must express something like "if T” is at the second accept then T must be after
its first entry call”™. But precisely this type of assertion is ruled out by the
second clause of the cooperation test! Besides; there is the wmoot point how to
express such conditions at all. a

In other words, this example suggests the proof system to be (still)
incomplete 1in the sense that not every operationally true property can be
proved. It 1illustrates the difference between a syntactically matching pair -
such as the call in T" and the first accept in T” -, and a semantically matching

-10-

pair = such as the call in T" and the second accept in T-.

To determine which of the syntactic matches also wmatch semantically, the
example suggests that it needs relating states of different tasks to each other.
For chis purpose, the proof system is augmented with a global invariant, GI,
which may also carry other global information needed for a proof. GI expresses
in general which rendezvous” occurred and which values were sent and received
during these rendezvous”; in short, it expresses (or encodes) the
communication—history. As i1s well-known, to express ralations between the states
of different tasks in general, either the state of each task has to be
.explicitely extended with a locatiom counter or the tasks have to be extended by
statements Involving fresh, so called auxiliary variables. For this proof system
the latter option iIs chosen, as 1in [3] and [14]. For ADA-CF it is an open
problem whether location counters can be used, too. Presumably it is possible
because for CSP, the question has an azffirmative answer, as proved in [12].

For example, if the tasks T and T~ in example 3.3 are augmentaed with auxiliary
variables 1 and j respectively (both initialized ¢to 0), the £fact that T has
executed its first call can be encoded in I by inserting the assignment 1:=1
between the two calls. Likewise, to encode that T~ has executed its first
accept, anm assignment j:=1 can be inserted between the two accepts in task T7.
Then the pre-assertion, p, of the first call in T can be chosen so as to imply
j=0 (j is initialized to 0); The pre-assertion, q, of the second accept in T-,
can be chosen so as to imply j=1. A global invariant, IS j=l-+i=l, would express
the property “if T~ is after {its first accept (j=1) then T must be after its
first call (i=1)". Comsequently, 1if control would be at the first call in T and
simultaneously at the second accept in T, the state would obey pAqAI (I is
assumed to be globally iavariant), which implies 1i=0 A j=1 A (j=1=-»i=l), which is
equivalent to false; this shows that this situation can in fact not occur durlng
execution and it trivializes the cooperation .Lest for this matching pair.

Unfortunately, I is wmot a global invariant for the program because of the
problem of updating its free variables. Since the assignments to 1 and j need
not (and in genmeral will not) be executed simultaneously, I can be invalidated.
To resolve this problem, the range over which a general invariant, GI, must hold
is restricted as in [3] by introducing a bracketing for each program; the
updatings of GI-variables are then confined to bracketed sectionms (in which GI
consequently need not hold) which are associated with entry calls and accepts as
these are the only statements at which the execution of differen tasks
synchronize:

First definition of bracketing:
A task is called bracketed if the brackets “<” and “>” are interspersed in its
text, so that _
(1) for each bracketed section <5>, S is of the form
S” ;call T.a (e#x); S" or accept b (u#v) do S7; S; S” endaccept
(where S” and S" update the variables of the global invariant and may be
null-statements),
(2) each call and accept i3 contained in a bracketed sectionm. g

Introduction of a global invariant (and associated bracketing) enables a
reformulation of the cooperation test in order to refine the notion of matching:

Second formulation of cooperating ADA-CF proofs:
The proof outlines of {p } task T, (q } (i=l..a) cooperate w.r.t. GI if
(1) for any syntactlcaTlv matchlqg palr <C> and <a>, where
C..S1; call Tj.e (242); S 2 and AFaccept e (THT) do S:; S; S; endaccept

-11-

(A within T,), the formula
{pre(C) A pre(A) AGI} CllA {post(C) Apost(A) AGI} holds

(2) the assertions of the proof outlines of {pA} T, {q.} (i=l..n) have no free
variables subject to change in any 'I.'i (3#1). * O

Notice that confining the updating of GI-variables to bracketed sections only,
implies that to ensure invariance of GI, only bracketed sections have to be
checked and that GI wmay be assumed to hold when entering such a section
(provided GI holds initially). This suggests the following parallel composition
zeta rule:

29: parcom:
proofs of {p.} task T {q.,} (i=l..n) cooperate w.r.t. GI
A — o~ A

’

{p1/\---ApnAGI} begin task T ; ... task T end {q1A cee Aq ANGIL}

provided no variable free in GI 1is updated outside a bracketed section
and GI does not contain formal or actual parameters as free variables.

The reason not to allow formal or actual parameters to appear free in
GI, is to prevent some additiomal complications to occur: Allowing actual
parameters, would introduce an aliasing problem; as "a variable of GI then
could ‘be updated wunder a different name. Allowing formal parameters,
would complicate the rendezvous rule, RLl, to be developed below. In
general, problems will arise 1f proofs are combined (using this rule) of
tasks which share variable—names, because of possible name-clashes in the

* consequent of the.rule. This motivates restriction Rl of section 2, which
restricts the subset to programs in which no name-sharing occurs.

Finally, a rule is needed to remove auxiliary variables from a program agaln
(this rule is similar to the omes in [3] and in [14]):

R10. AV: Let AVAR denote a set of wvariables such that x € AVAR =2 x
appears in S° only in assignments of the form y:=x with
y € AVAR. Then '

{p} s° {q}
() s {q}

provided FV(q)N AVAR = @ and S is obtained from S” by deleting assignments
and declarations to variables in AVAR.

Zxample 3.4. Now, the formula

{true} begin task T; task T~; task T" end {x=z} (3.5)
of example 3.3 can be verified, indeed. To express the necessary assertions,
three auxiliary variables, i, j and k, are introduced into the proof outlines of

T, T” and T", respectively. The proof outlines will be less detailed than in the

previous example, but the reader will have no difficulty to fill in the missing
details.

task T int i; task T" entry b; int k;
{1=0} begin {k=0} begin

{1=0} <eall T .a(l); i:=1>; {k=0} <accept b() do k:=1; null endaccept>;

~-12-

{i=1} <ecall T .B(» {k=1} <ecall T .a(2)>
end {i=1} end {k=1}

task T” entry a; int x,j;
{j=0} begin
{j=0} <accept a(#u) do {j=0 Au=l} x:=u; j:=l endaccept>;
{j=lAx=1} <accept a(#v) do {j=l Ax=1Au=2} x:=y endaccept>
end {j=lAax=2;

. In this proof, the following global invariant is used:
GIzZ (j=leri=1) A (k=1=j=1).
Now clearly, the individual proof outlines are correct and the secound clause of
the cooperation test holds too. As for clause 1 , first coansider the not
semantically matching pairs: The first call in T with the second accept in T7,
and the c¢all in T with the first accept in T7. It is easy to see that the
conjunction ¢f the pre-assertioms with GI -i=0 A j=l Ax=1 A (j=lemi=1) A (k=1 =]j=1)
and k=1 A j=0 A(j=lei=1) A (k=1 = j=1) respectively - both yield false. Next the
semantic matches:
(1) The first call in T with the first accept in T .
The formula
{i=0 A j=0 AGI} u:=l {j=0Au=1} x:=u; j:=1; i:=1 {i=1 Aj=1 A x=1 AGL}
should be completed. This is trivial: .
{1=0 A j=0AGI} u:=1 {j=0 Au=l} x:=u {x=1 A j=0}
ji=1 {x=1 Aj=1} i:=1 {x=lAi=lAj=l} {x=lAi=1AGI}
(2) The second call in T with the accept in T".
To complete {i=lAk=0 AGI} k:=1; mull {i=l1Aak=1AGI}, is even more trivial:
{i=lAk=0AGI} {i=1Ak=0AGI} k:=l {i=1Ak=lA j=1} null {i=l Ak=1AGI}.
Notice that here, the implication i=l=j=l, part of GI, is needed; otherwise
the second part of GI — k=1-= j=1 - cannot be derived.
(3) The call in T" with the second accept in T~.
This iIs left to the reader.

Application of R9, the parallel composition rule, yields
{1=0A j=0 Ax=0 AGI} begin task T; task T”; task T" end
{i=1 A j=1 A x=2 A k=1 AGI}.
Using the consequence rule to get the post-assertion x=2 and the AV-rule, which
may be applied now, to remove the auxiliary variables, the formula reduces to
{i=0 A j=0 Ak=0 AGI} begin task T; task T”; task T" end {x=2}.
Now, the substitution rule can be used to substitute 0 for i, j and k in the
pre—assertion. Formula (3.5) is obtained by reducing the pre-assartion to true
with a final application of the consequence rule. It should be resmarked here
that, although 1in this example, GI only relates locations in different tasks
with each other, in general GI also caries other state information; see for
instance the example proof in section 3. =]

The above development mirrors the development of the CSP-system in [3]. In
fact, all of the above examples and problems have their counterpart in that
proof system. However, the couastruction of a proof system for ADA-CF also
introduces problems which are particular for that language, and it 1is to these
problems that the vrest of this section addresses itself. They resul:t from the
possibility of having occurrences of calls or accepts within cthe body of another
accept; such a nesting of communication statements 1is not possible in CSP. This
will enforce a refinement of the notion of bracketing. It has also cousequences
for the formulation of the final - still missing - proof rule to derive the {p}

-13-

Clla {ql}-type formulae of the cooperation test.

First an example will show that, although 1introducing bracketings (and global
invariants and auxiliary variables) has wmade the proof system (seemingly)
complete, at the same time it has made it unsound!

Example 3.6. Consider the following proof outlines (h is an auxiliary variable):

task T task T entry a; int h;
{true} begin {h=0} begin
<ecall T~ .a()>; {h=0} <accept a() do h:=1; {h=1}
end {true} <call T".b(1)>; h:=0
T endaccept> {h=0}
task T" entry b; int y; end {true}

{true} begin
{accept b(x) do
{x=0} y:=x emdaccept> GI =h=0
end {y=0}

The individual proof outlines are correct and if they are combined, they

“prove”
{true} begin task T; task T7; task T" end {y=0}.

However, the reader easily sees that after termination, y=1 holds. The problem
is of course the assumption of T", x=0, (which follows from rule Rl) about the
value it receives from T . This assertion should not pass the cooperation test
for the accept imn T" with the entry call im T”. Unfortunately it does, and
vacuously so, as the conjunction of the respective pre—assertions with GI yields
‘false: h=1 Atrue Ah=0. The test for the other matching pair holds too (this time
rightly so). Hence, the outlines can be combined and the proof system allows
“proofs” of invalid formulae and is consequerntly not sound. 0

Analyzing the example, shows this disparity to be caused by the nested
occurrence of the entry call within the body of the accept in T’; because GI
should also hold when such inner calls or accepts are reached. As these appear
within the bracketed section of the outer accept in which GI need not hold,
indeed cannot hold as 1ts variables are being updated, this means that the range
of the bracketed sections 1s too large and must somehow be restricted so as to
contain precisely one call or accept each.

GI encodes, 1in general, the communication-history of the computation. This
suggests that updating 1its free variables is only necessary when communication
actually takes place. During a rendezvous, communication only occurs at the
start and at the end of such a period. This suggests the following refined
definition of bracketing: ‘

Definition 3.7. A task is called bracketed if the brackets “<” and 7> are
interspersed in its text, so that
(1) for each bracketed section, <S>, S is of the form
(a) 875 call T.a (e#fx); 87,
(b) accept b (u#v) do S7 or
(¢) 8" endaccept;
where S” and S” do not contain any entry calls or accepts and may be null
statements,

(2) each call and accept is bracketed as above. o

Clause la of this definition has remained the same; the other clauses have
changed. Clearly, the intention of this change is that GI must be shown to hold

-14-

again, whenever §” (in clause lb) has been executed and hence before another
call or accept can be encountered. (This implies of course 2 new interpretation
of the validity of a {p} C[{A {q}-type formula.)

Now cousider example 3.6 again and the accept in task T”. There is only one
possibilty to bracket this accept properly according to the new definition,
namely:

{h=0} <accept a() do h:=1> {h=1}
{call T".b(1l);> <h:=0 endaccept> {h=0}.
. But now it becomes immediately clear that GI=Zh=0 is not a global iavariant
anymore, because for this accept (A) and the call (C) in T the cooperation test
(or rather the proof of {true Ah=0AGI} C[{A {trueAh=0 AGI}) would also require
one to show that {true Ah=0} h:=1 {h=1Ah=0} which is evidently false. Hence,
this - at least - suggests that the proof system 1Is ocnce more sound.

Third, and final, formulation of cooperation of ADA-CF proofs.

Definition 3.8. The proof outlines of {pi} task Ti {q; } (i=l1..n) cooperate
w.r.t. GI 1f
(1) for any syntactically matching pair, <C> and <A>, where
C'='S1; call T‘-.a (3#:?); S, and
A= accept a (TWf¥) do §7;> S; <S; endaccept (A within Tj)’
the formula _
{pre(C) Apre(A) AGI} CllA {post(C) A post(a) AGL}
as defined below, holds, ‘
(2) the assertions of the proof outline of {p. } T {q. } contain no free

variables subject to change in any T, (3Fi), fér i=1..na%, o

i
HBaving obtained the correct notiom of bracketing and cooperatiom, the last
task is to define formally how to prove the formulae of the cooperatiomn test.
During the remainder of this section, the following entry call and matching
accept will be fixed, with pre and post—-assertions as indicated:

{p,} <53 {p1} call T7.a (e#x) {q }; 5,> {q]} 3.9)
{pl} <accept a (U#?) do {p;} S73> {E&} S {Ez}; <87 {q3} endaccept> {ql}

These bracketed sections are denoted by <C> and <A> respectively (the call is
part of a task T).

The question is, how to prove ;
lp,Ap,AGI} Clla {q aq AGI}. (3.10)

According to the semantics of a randezvous and the intention of the bracketing
and the cooperation test (and as suggested in the various examples), proof of
this formula requires that the following partial proof outline can be complated:

{p1ApLAGIh.*
S¢; 9,¥:=8,%; S7; {pAGI} S {qaGI}; S7; %:=¥; S

3 (3.1L)
[)
\q‘ Ag,A GI;

2

~y 4 . s - -, . .
(X:=V denotes the simultaneous assignment of the v, “s to the x.7s; likewise for
A A
the assignment T,7v:=2,%).

-15-

In this partial outline, ounly P,» Po» 9,5 G and GI are known assertions; p, q
and the other assertions which are not shown, have to be found.

Completion of (3.11) in this form turns out to be not that satisfactory a
solution. The problem is, that the cooperation test would force for each accept
A, a set of different proof outlines to be completed, one for each call matching
with A. This is, because the to-be-guessed assertions in (3.11) have to relate
the states of the task containing the call, T, and the task containing the
accept, T”, to each other; i.e., it is not possible just to substitute the
assertions from the “regular” proof outline of the accept-body in (3.9) for the
missing ones in (3.11). A second reason for not adopting this solutionm, is that
the whole format of the cooperation test would break down:

Operationally, the cooperation test must show that whenever execution reaches
a state in which control is simultaneously at some matching call-accept pair,
the assumptions about the resulting rendezvous in the respective proof outlines
are correct (and that GI holds again after updating its variables). Formulation
of this test essentially hinges on the assumption that such states are all
characterized by the appropriate (unique) pre—assertions of the proof outlines
and GI. Now suppose the accept A to contain an inner call C°. As more than one
proof outline has to be constructed for the outermost accept, more than one
pre-assertion 1is obtained for the inner call. In other words, a particular
pre-assertion does not fully characterize anymore, the states in which control
is at 'C”. Consequently, the cooperation test — in this form - breaks down,
because for each matching pair as many tests must be generated as there are
different pre-assertions. The effect is self-propagating: Each of these tests
‘results in a new proof outline to be completed for an accept A~ matching with
the call C°. On its turn, A~ may contain an inner call too and still more checks
have to be generated (although the total -number of necessary tests remains
finite).

These phenomena clearly show that in order to obtain a usable proof system for
ADA-CF, another approach to the proof of (3.10) has to be found. An approach
that retains the notion of proof outline in the sense that for an accept too,
only one proof outline has to constructed; the cooperation test should not need
additional ones. This means that the proof outline of the body of some accept
must be canonical in the sense that its constituent assertions must be strong
enough to justify the assumptions of each matching call and, symmetrically, must
be weak enough to remain valid under the “value—injection” of each matching
call.

Disregarding synchronization, a rendezvous is equivalent to an ordinary
procedure~call. A similar quest for canonical proofs can be found in the
literature dealing with proof rules for procedure-calls. There, the simplest
approach is the simulation of parameter transfer by syntactical substitution of
actual for formal parameters. To achieve this, a restriction nust be imposed on
the actual parameters allowed; see alse [2]. The same approcach is adopted in the
current case, and hinges on the following

Theorem 3.12. Let S be some ADA-CF statement, p and q two assertionms; U, ¥ and ®
denote sequences of distinct variables and € denotes a sequence of expressioms.
£ (a) BV {E =0, @ a{T} =8, FVSUEIDAEIE VIR = 9,
(b) the variables in © do not appear on the left-hand-side of any assignment
in S or as in out parameter of any call in S

Then (1) {p} S {q} = {p(+]} S[+] {q[+]} , provided FV(q)n (X} = ¢
([~] denotes the variable substitution [2,%/d,9]),

-16-
(2) {p} T,¥:=8,%; 8; X:=V {q} = {p} S[-] {q}, o
provided FV(p,q) N {3,7} = @.
We do not prove this theorem here, but instead refer the reader to the soundness
and relative completeness proofs in [9]; a similar theorem due to E. R. Olderog
is embodied in rule 26 in [2].

The restrictions 3.12(a) and (b) correspond precisely to the restrictions RI,
R3 and R4 in section 2 (the third one in 3.12(a) is subsumed by Rl). Under these
restrictions, 3.12(2) shows actual parameter assignment and substitution to be
. equivalent; 3.12(1) shows that a canonical proof (outline) for S can be used to
obtain information about any acceptable “call” (acceptable, meaning that
assigning the actual parameters to the formal ones leaves the pre-assertion, p,
valid).

We turn again to the formulation of the rendezvous-rule, to be used in proving
the formulae in the cooperatiom test. These paragraphs, upto the formulation of
the rule itself, are quite techmical in content and the reader may safely skip
them if he so wishes.

Using this theorem, formula (3.11) can immediately be rewritten as

{quPzAGI}

Sy3 S{U-15 {p{~1AGL} S[+] {q[+]AGL}; 83[+]5 S, (3.13)

la,Aq,AGL} aa .
(remember that FV(p1 ,q‘,pz,qx,GI,S,,SL)tﬁ{u,v} = @; p and q, still have to be
determined).
Now consider the proof ocutline in (3.9) for {52} S {Ez}' Then theorem 3.12(1l)
implies the existence of a proof (outline) for {p [-]} S[-] {3 .[+]}, too. This
proof outline is not yet stroug enough to be used in (3.13) because p and q have
to contain state-information of both T~ (containing the accept of 3.9) and T
(containing the call). A

During execution of S, the state of T remains fizxed and <(hence) is
characterized by the pre-assertion of the call, 7. Consequently, 51 is
invariant over S; §1 is even invariant over S[.], because FV(P)M {X} = @§ (this
explains the role of this restriction in the call-axiom 4l). GI, too, may be
assumed to be invariant over S and hence over S[] (remember, GI does not
contain formal parameters as free variables) because inner calls or accepts are
dealt with separately. Now, it is a fact that, using auxiliary variables and GI,
an assertion such as P, “talking” about the state of two different tasks, T~ and
T, can always be split into two assertioms, P and P,, each talking about the
state of only omne task (i.e., 54 about T and P, about T7); see e.g., the
completeness proof in [9]. Consequently, formula (3.13) can be rewritten as:

{p,Aap, AGL} _ o
g3 S5L:1s (o ap, [-1AGL} S[-] (B AT, [-1AGI} S7[+]; S
{¢ ¢ GI}.
And, as <far as the accept-body is concerned, there only remains the proof of
{51[']} S{+] {EL[-]} for which it suffices to prove {El} S {51} which is alrsady
part of the proof outline of T.

2

These arguments lead up to the last rule of the ADA-CF proof system, the
rendezvous=-rule:

-17-

Rl1l. rendezvous:
{pre(s,) Apre(S;) AGL} s, ST
{pre(“call”) A post(S)[-]AGI}

i et e e s e e e

J0e] {pre(“call”) A pre(S)[+] AGI}
S;[-]; s, {post(Sl) A post(S;) AGI}

{pre(Sq)Apre(S;) AGI} C[]A {post(S,.)Apost(S;) AGIL}

Where C = S ; call T7.a (e#%); S (within a task T)
A!accept a (V) do Sq,> S <57 endaccept,
(-] =(2,%/4,7],
“call” denotes the entry call within C.

Recapitulating, the premisses in this rule embody the cooperation test over
the two bracketed sections. Assigning the actual to the formal parameters has
been modelled by syntactic substitution (due to theorem 3.12 and the
restrictions on the actual parameters of section 2). The same theorem implies
that a new proof for the accept—body, S, need not be constructed for every
matching call and instead we may just substitute the actual for the formal
parameters in the proof outline for § in task T”. In other words, it is always
possible to give a camonical proof for an accept-body which suffices for the
cooperation test for all matching entry calls. Io the first premiss, we must,
among other things, show that the actual parameters obey the assumptions of the
accept, i.e., we must derive pre(S)(-]. If they do, post(S)[:] specifies the
result of executing the accept-body. -The intermediate assertion, pre(’call”),
retains informatiom about the variables in task T, other than the actual
parameters; i.e., it retains information about those variables of T that cannot
be changed by executing S. '

Canonicity of the proof of an accept-body}-is essential. We already indicated
that while discussing the cooperation test. When constructing a proof outline,
one coustructs unique pre and post—assertions for every statement. Consequently,
the assumption, permeating this section, that the proof of a component-task can
always be rendered in the form of a proof outline; only now has been
substantiated by the particular form of the rendezvous-rule.

The bodies of accept—-statements can be proved canonically; but we did have to
compromize: The rendezvous-rule clearly shows that for the bracketed sections
assoclated with an accept, we do have to construct multiple proofs (similarly
for entry calls). However, the completeness proof of the proof system ([9])
shows that bracketed sections need only contain one assignment each, so this
seems a small price to pay.

4., PROOF OF THE BOUNDED BUFFER PROGRAM

In this section the example program in section 2 is proved correct w.r.t. the
specification
{true}
begin task producer; task consumer; task buffer end
{V¥i=1..n vecl(i)=vec2(i)}. T o
For the proof, auxiliary variables are introduced:
- in the producre task, h,; recording the sequence of values sent off,
- in the consumer task, h,; recording the sequence of values received,
- in the buffer task 31 and Ez ; recording the sequence of values received,
respectively, sent off.,

-18-

These auxiliary variables denote sequences. In the proof outline, “a™b” denotes
the concatenation of sequences “a” and “b”, or of the sequence ~“a” and the
element “b”. In the assertions, arrays or array-slices will also be wused as
sequences. Finally, the expression “pool(xey)” 1s defined as follows (pool is a
variable of type array (0..99) of int):

peol(xay) = pool(x @od 100 .. (y-1) mod 100) , if x mod 100y mod 100

pool(x mod 100 .. 99)~ pool(O o {y=1) mod lOO) , otherwise

Bere follow the proof outlines (the labels are used in the next sectiocns; the
_invariant of the while-loop in task buffer” is denoted by I):

task producer”
—_;;fay (L..n) of int vecl; int i; sequence of int hq;
{h4=A& begin i:=1; — and initialize vecl to some arbitrary values
{h,=vecl(l..i-1) A ign+1}
while ign do {h1=vecl(l..i—l)ﬁ\i$n}
<h,:=h1'vecl(i); {h =vecl(l..i)A ign}
call buffer”.put(vecl(i));> {h,=vecl(l..i) A ign}
i:=1i+1; {h1=vecl(l..i—l)A;i<n+l}
endwhile; {h,=vecl(l..n)}
1.: {eall buffer”.term()>
end {h1=vecl(l..n)} 13:

task consumer”™
array (l..a) of int vec2; int j; sequence of int hz;
{hszQ begin j:=1
{h,= vec2(l..j~1) A jgn+1)}
while j¢n do ’

lH: {call buffer”.get(#vec2(j)); h,:= h “vec2(j);>
ji=i+1
endwhile {hz=vec2(l..n)}
ls: <call buffer”.term()>

end {hzfvec2(l..n)} 16:

task buffer”
entry put, get, term;
array (0..99) of int pool; int in, out, count, terms;
sequence of int h , h :

{h, =AAE = *

begin in:=0; out:=0; count:=0; terms:=0;
{count—ln-out/\O<c0unt<10046h ‘h “pool(outein)} =— {I}
while terms#2 do

17: select count<100: {1 Acount<lOO}
Kaccept put(x) do h t=h, Tx>
{count=in-out A O (c0unt<100 A h h “pocl(oute(in+l))}
18: pool(in mod 100):=x;

{count—lq-out/\Ogcount<100 AE4=EL"pool<outo(in+l))}
{endaccept>; in:=in+l; count:=count+l (I}
or count>0: {I Acount>Q}
accept get(#y) dod>
y:=pool(out moz_lOO)
<h H y endaccept>;
‘count-ln-ont/\O<count<lOO/\H =h ~“pool((out+l)ein)}
out:=out+l; count:=count+l {I}

-19-

or true: {I}
{accept term() do> null <endaccept>;
terms:=terms+l {I}
endselect {I}
endwhile (I}

end {H4=H&“pool(outoin)}

The general invariant is the obvious ome, stating that each value that is sent
is also received:
6GI=h,=h Ah =—bz.
We show that the proof outlines cooperate w.r.t. this GI:
Consider the entry “put”. There is only ome matching pair to consider, and for
this pair the rendezvous-rule requires the proofs of
(1) {h4=vecl(l..i-l)A i¢n AT Acount<100 AGI}
h1:=h1“vecl(i); 31:55,'vecl(i)
{h1=vecl(l ci)Aign Acount=out-in/\O(.count(log A_
h1=hzfpool(outoin)'vecl(i)AAGI}
(2) {h1=vecl(l..i) A count=in-out A 0gcount<100 Aﬁqéﬁl'pool(outo(in+l))A.GI}
null

{ idem }

Clause (1) follows by applying the assignment-axiom twice; clause (2) by
. applying the null-axiom. Consequently, cooperation 1is established for this
matching pair. The cooperation test for the entry “get” is an analogon of the
above test and the test for the entry “term”is trivial. So, the parallel
‘composision rule can be applied:

{h’aA,AhzsA Ah1=A Ah;-A /\h“=h1 A h’_=h,_}

begin task producer”; task consumer”; task buffer” end
{h‘=vecl(l. .0) A h1=vec2(l. .n) AT11=-ﬁz'pool(out-in) A-t'11=l‘14 A hfh,_}

The post-assertion can be reduced to Y i=1..n vecl(i)=vec2(i)” by applying the
consequence-rule. Next, the auxiliary variables can be removed. Finally,
substituting A, the empty sequence, for h,, hz s 31 and 31 and using the
consequence-rule again, reduces the pre-assertion to true, thus completing the
proof. ' ‘

Although, the buffer—task has an entry “term” for the sole purpose of letting
the task terminate, the proof does not refer to it. This is because we have only
shown partial correctness of the program. In fact, in section 7 where, as an
example, termination of the program 1s proved, the current proof outlines have
to be extended.

5. SAFETY PROPERTIES

Section 3 presented a proof system for proving partial correctness properties
of ADA-CF programs; i.e., properties expressing that if a program terminates, a
certain assertion will hold afterwards. However, nonterminating concurrent
programs are perfectly respectable (see section 8 for one such program); also,
even if a program terminates, intermediate states such as those in which control
is at some select, waiting for a rendezvous, may still be interesting.

Therefore, partial correctness properties are generalized by introducing
safety properties. Such a property expresses that, in Lamport”s parlance ([13]),

-20-

"during the computation of some program nothing bad happens;. Partial
correctness is a safety property because it expresses that a program does not
terminate in an incorrect state. In general, a safety property, or safety
assertion, is an invariant over the computation of a program, asserting what the
program—state should obey when control arrives at some (or all) intermediate
points in the program.

The principal question is whether the proof system has to be extended to prove
such properties. The answer is, perhaps at first somewhat surprising: No; proof
outlines as they are, are “strong” enough to derive safety properties from. On
. the other hand, it is not that surprising because, as indicated before, the
pre—assertion of some statement (in some valid proof outline of a task T),
characterizes the state of T whenever coatrol arrives at this statement. The
only moot point concerns the proof outlines of the accept-bodies in T. These, by
definition, cannot specify the values of the formal parameters during a
particular rendezvous and, counsequently, do not fully characterize the state of
T at such a time.

The rest of this section shows how to derive descriptioms about the state at
intermediate points, from a proof outline. Then, showing that some safety
assertion, SA, holds for a program, means constructing a proof outline and
showing that the state-descriptiocns derived from this outline imply the
corresponding state-assertions of SA.

First some notation has to be introduced in order to (syntactically) specify
such intermediate points, called frontiers of computation. This 1is not
altogether trivial, as tasks communicate: Specifying that a task T 1is within
some accept implies that some other task is at an entry call engaged in a
rendezvous with this accept. Likewise, if this entry call is within another
accept there must be a third task engaged in a rendezvous with that accept. So,
in general there can be a chain of tasks, waiting for' T to finish (executing the
accept); a so-called -calling chain for T. Evidently, not every set of “points”
within a program is a froutier of computation which can (potentially) be reached
during execution of this program.

Frountiers of computation are built up as follows:

First, control points are introduced to specify points im isolated tasks. Next,
control points are combined into multi control points; these specify a point in
some task T which is “active”, in general together with a specific calling chain
for T. Finally, a frontier of computation consists of a set of “non conflicting”
multl control points. Such control points, multi comtrol points and frontiers of
computation do not appear, however, in the assertions of a proof outline. This
contrasts with [13], in which Lamport introduces location predicates (these
correspond to our location points) into his assertion-language so as to obtain a
safety proof system.

To refer to a particular statement S, a unique name, “S7, is introduced; e.g.,
to distinguish between two occurrences of an assignment x:=1. If “C” denotes an
entry call, cthe bracketed section surrounding “C” is denoted by “<C>°. Such
names will not be further specified and the reader 1ay think of some form of
labeling.

Definition 5.0. Let “S” denote a statement, “C” an entry call and let T be the
name of some task. A control point (c.p.) is one of the folowing:

(1) at(7S7) , (2) at(T) , (3) after(T) , (4) in(°C”).

A c.p. belongs to a task T, if the statement it crefers to is part of the
task T. O

-21-

The interpretation of these c¢.p.”s 1is suggested by their form: at(“S”) denotes
the polat just before ~S7; likewise, at(T) and after(T) denote the points just
before and after the body of T; in(”"C”) is somewhat special and denotes the
“point” which is vreached when “C” becomes engaged in a rendezvous (until this
happens, the task would be at(”C”)). Such points are used to specify calling
chains. Notice, that in(”C”) does not correspond to an actual point in the
program text, although it is clearly a well-defined point which is reached
during execution of a rendezvous when the actual parameters have been sent over
but the rendezvous has not terminated yet; see also [15] and [4] in which
similar observations are made.

Next, dependencies between c.p.”s of different tasks are described.

Definition 5.1. Let ’C,’, ’CL’, ey ’C“f be a list of calls;. each call within a

different task. A calling chain (c.c.) is a list in(’Cq’), ey in(’Cn’) such

that

(1) “C,” does not appear within an accept,

(2) “C;,y appears within an accept (syntactically) matching with ’C;'
(i=1l..n-1). s

Notice that the rendezvous” specified in a c¢.c., are syntactically possible ones
and nothing is implied about their actual occurrence.
Definition 5.2. Let Xys X5 ceey X be a list of c.p.”s, each X, belonging to a
different task. A multi control point (m.c.p.) is a tuple
& I xn? such that
(1) Kyy voes Xy is a c.c.,
(2) n=1: x does not reference a statement appearing within an accept,

n>l: x is of the form at(”S”), and “S™ appears within an accept matching

with the entry call in L

The task to which =z, belongs, is called the fromtier task of the m.c.p. O
Definition 5.3. Let th), ceey, X be a list of m.c.p.”s. A frountier of
computation (f.o.c.) is a set (x4, ..., X'}, such that in the sequence of
c.p. s which make up the m.c.p.”s in the above list, no two c.p.”s belong to the
same task. _ m]

This definition does mot require a f.o0.c. to specify progress 1in every task.
Also notice that the set of f.o0.c.”s of some ADA-CF program is always finite.

Having obtained enough notation to specify f.o.c.”s, the next assignment is to
generate from a (valid) proof outline a description of the state at some f.o.c.

At first, disregard comtrol points of the form at("C”) (°C” an entry call) and
the fact that a state description should also include the values of the formal
parameters (when appliccable). Then, it is clear what assertions to associate
with any of the other c.p.”s: With a c.p. of the Fform at(”S”) associate
pre(”S”), and associate post(”“S”) with a c¢.p. of the form after("S"). The
discussion in the last part of sectionm 3 indicates that pre(”C”) characterizes
the state of the task containing the call “C”, when a rendezvous (“through”™ “C7)
is in progress. Consequently, the assertion to associate with in("C7) 1is
pre("C”). A little thought makes it it clear that with a m.c.p., the conjunction
of GI and the assertions associated with its constituent c¢.p.”s should be
associated; with a f.o.c., the conjunction of the assertions associated with its
constituent m.c.p.”s (and GI). GI is needed (1) to relate the states of the
different tasks, referenced in the f.o.c., with each other, and (2) to express

22~

that the syntactic matches, as specified in the m.c.p. s, match semanﬁically; if
some of them in a a.c.p. do not match, the conjunction can be made to yield
false (by strengthening GI if necessary), which - as usual - is interpreted as
stating that the m.c.p. cannot be reached in any computation of the program.

The use of GI in these formulae introduces, at first sight, an awkwardness
because it restricts the set of f.o0.c.”s for which such formulae can be derived
from a2 proof outline, to those 1in which the c.p.”s belonging to one of the
frontier tasks of the m.c.p.”s, specify points outside the bracketed sections of
that proof outline. Fortunately, the completeness proof for the proof system in
. [9] shows that bracketed sections need only contain assignments to auxiliary
variables, which are not part of the program proper. This implies that it
remains possible to generate state descriptions at aany f.o.c. of the original
program, 1i.e., of the program without the statements involving auxiliary
variables.

Finally, what assertions should be associated with c¢.p.”s of the form at("C”)
(°C” am entry call)? Certainly not pre(”C”) for the reasoun stated above, since
no rendezvous involving “C” is 1in progress as yet. In fact, the same discussion
in the last part of sectiom 3, suggests that the pre-assertion of the bracketed
section surrounding °“C7, “KC>”, be associated with “C”. As bracketed sectious
need only contain assignments to auxiliary variables, this seems a reasonable
choice. Hence:

Definition 5.4. Let some program be given, together with a proof outline for it,
valid w.r.t. some GI.
(1) With each c.p. %, an assertion, A(x), 1s associated as follows

1f x=at(°S7), 7°S” nmot an entry call, then A(x) = pre(”Ss”)
in(°C”), “C” an entry call, . pre(°C7).
at("c7), - pra("<C>7)
at(T), T the name of a task (-body); pre(T)
after(T), post(T)

(2) Let X be some f.o.c. of the program, such that no c.p. owned by a fromtier
task specifies a point within a bracketed section. Let Res Kyy eee, X be a
list of all c.p.”s which are part of the m.c.p.”s in X. Then, the assertion
R('X), characterizing the program state 1f control arrives at X (i.e.,
if X is reachable), is defined by

R(K) = A(x,) A ... AA(x) AGL. o

One question remains unanswered. Namely, how to include the value of formal
parameters in the state descriptions. In fact, we already have, because one of
the functions of GI is to encode which values are communicatad during a
particular rendezvous; hence, GI can always be strengthened so as to encode
these values (given the completeness of the proof system).

Example 5.5. Comsider the example proof of section 4. We show that whenever
control is at the f.o.c. {<in(l‘),at(19)>}, x=vecl(i) holds. This is in facrt
quite trivial: According to definition 5.4.,

R({a(l) ae (1)) = (v =vecl(l..1) A |, =h ~pool(outein)"x AR, =).
This implies that vecl(l..i)iﬁl'pool(out-in)“x and hence that x=vecl(i). O

The contents of this section will be extansively usad in the remainder of the
paper.

~23=

6. DEADLOCK FREEDOM

As in [3], the concept of blocking is introduced. It originated with Owicki in
[14]. In our context, a blocking of a program is a f.o.c. in which no coumponent
task can proceed (but in which the program has not terminated yet).
Consequently, a program 1s deadlock free (w.r.t. some pre-assertion, p,
characterizing the initial state in which execution starts), precisely when no
blocking is semantically possible.

To simplify the definitions in the sequel somewhat, a restriction on ADA-CF
programs is introduced: accepts may only appear in a program as the 1initial
statement of a branch of a select. Notice, that an accept, A, 1is trivially
equivalent to

select true: A endselect.

Consider a f.o.c. X for some program P. Intuitively (and roughly), P cannot
proceed in X when the froatier tasks of the m.c.p. s in X cannot proceed. I.e.,

when each frontier task is either terminated or at some entry call or select,

but there are no syntactic matches between the entry calls and any accept in an
open branch of one of the selects in these frontier tasks. This characterization
is partly syntactic and partly semantic in nature. The syntactic part 1s the
subject of:

Definition 6.0. Let X be a f.o.c. for a program begin task T ,; ... task Tn end.
Let x., ..., X, be the sequence of c¢.p.”s in X” c.p: X, belonging to task T;.
Furthermore, let T «++s T7 be the sequence of frontier tasks of X.

‘Then X is a blocking frontier of computation (b.f.o.c.) 1iff

(1) X # {<after(T, 3>, ..., Lafter(T D1 ,
(2) for each T there is a c.p. x belonging- to it i=l..n (hence s-n);
(3) each x (in frontier task Tk) is either of the form after(T}) or of the form
at(”°s”), where “S7 is an entry call or a select, k=l..t,
(4) 1f x} is of the form at(“call T'L.a(...)’) then x‘$ after(’rz) (k=1l..t). o
Clause (1) tells us that the program should not have terminated yet; clause
(2) enforces that a b.f.o.c. takes each component task into account and clause
(3) indicates that a task can always proceed if it is not at an accept or entry
call. Clause (4) is necessary because calling an entry of an already terminated
task results in failure.
In order to formulate that execution cannot proceed in some b.f.o.c., an
auxiliary predicate is introduced:

Let “S” denote a statement select b1: S or ... or bh: Sn endselect and let
Ic{l..n}. Then
CB(at("s7),1) =\ (=, | 1e1}aAV (b, | 1i¢1}.

Definition 6.1. Let X be a b.f.o.c.. The sequence cousisting of c.p.”s in X of
the form at(”C”), respectively, at("S”) (°C” an entry call, “S” a select) are
denoted by x cos X respectively, ¥y sety Yy, For each Yoo define a set
I(y,) by
ke I(y,) iff the k“th branch of the seélect y 1is for an entry called by omne
of the x;"s.
The blocking assertion for X is defined as

B(X) = CB(y,,1(y,)) A -+- ACB(3,,1(5) =

1) "

Now, a program is deadlock free, simply if each b.f.o.c. either cannot be

-24=
reached or is not bhlocked:

Definitiom 6.2. A program P is deadlock free w.r.t. a pre—assertion p, 1ff proof
outlines can be constructed “starting” in p, such that for each b.f.o.c. X for
P,

R(X) A B(X)ofalse. g

Example 6.3. Consider the buffer-example in section 4 again. W2 show deadlock

freedom.
. 1t is a simple exercise to show that the b.f.0.c.”s are the f.o.c.”s of the
form {<at(l)>,<at(l,)>,<at(1l,)>} for 1=1,2,3 and j=4,5,6 (13 aad l‘ denote the
points after the tasé bodies, i.e. at(13)=after(producer’) and at(l,)=after(con-
sumer”)). Only the first b.f.o.c. (i=1, j=4) and the last ome (i=3, j=6) will be
considered; the others are left to the reader.
(1) X = {<ac(l,)>,<at(l $)> <(at(1ly)>}:
B(X) = count>lOOAAcount ¢ 0 Atrue, which is false, independent of the
truth-value of R(X) (which is true incidently). So, al:hough’x can be
reached X will not be blocked and no deadlock occurs.
(2) X= {<at(l >, <at(l)>,<ae(l)>}
B(X) = count<lOOvC0unt>OVtrue
R(X) = h =vecl(l..n) Ah =vec:Z(l..n)Ac:oun'c=:f.n-ou1:,\ 0gcountg§100 A
'E .=, pool(outein)/\h =h, AT 0, .
So, B(X)AR(X), well, does not evaluate to false!

Does this mean 'that the program deadlocks? No of course, but the proof
outlines are too weak to prove otherwise! The problem is, that the exit
condition of the while statement in the buffer task has not been taken into
account: The statement necessarily terminates if both other tasks have executed
their call for the term entry. :

This is remedied as follows. The producer and consumer tasks are both extanded
with a new auxiliary variable; k¥, and % respectively. The proof outlines are
changed as follows (only the parts that change are shown; the changes to
consumer” are analogous to the changes to producer”):

task. producer” task buffer”
—_———— _in_t k —————eme,
{h =A ak,=0} {I Aterms#2}
begin select
—_————— or true: {I Aterms#2}
endwhile {h1=vecl(l n)Akq-O} <accept term () do> null
<call buffer”.term(); k,:=1> {terms:=terms+l endaccept {I}
end (h =vecl(l..n)Ak, =1} ————-

end {IAterms=2}

The reader will have no difficulrties checking that these changes leave the
proof outlines valid and that they cooperate w.r.t. the new general invariant
GI =Gl A terms=k,+k
Now consider the above b.f.o.c. X again. B(X)) remains the sams, but now
R{(A)=R" ('X)Ak_‘-l/\& =1 A terms#2 A terms= =k, *k,
(where R7(X) denotes the f.o.c. assertion as determined by :the older proof
outlines). It is easy to show that now B(X)AR(X)=ofalse. O

This example clearly shows that to prove deadlock freedom, ia general, the

-25-

proof outlines have to be stronger that the ones needed for proving partial
correctness properties.

7. TERMINATION AND ABSENCE OF FAILURE

In this section, the proof system is extended (for the last time) in order to
reason about termination and failure. To this end, proof rules have to be
replaced by new ones. These changes also enforce adaptation of the notion of
proof outlines. As these adaptations are straightforward, they are left to the
reader.

First counsider termination. A program terminates if it does not admit infinite
computations; i.e., if each computation terminates either properly (by reaching
the end of the program) or in failure or in deadlock. Notice that we implicitly
make the assumption here, that execution of a program only halts when nothing
else is possible. Clearly, without this assumption a program that does not loop
or fail or deadlock need not terminate either, as execution might just stop in
the middle of the program. 1In the terminology of [15], we assume that (1)
execution of a program is fair in the sense that if a task T executes a call for
some entry, only finitely many other calls for thils entry can be accepted before
the call of T is, and (2) execution of a program is just 'in the sense that if
execution of a task can proceed, it will proceed in finite time. We will come
back to this remark in sectiom 9.

Obviously, the only source of non—termination 1is the while statement. The
‘technique to prove termination of a while statement is well-known (cf. [2]):
Find a quantity which decreases every 1lteratiom, Dbut cannot decrease
indefinitely. This is embodied 1in the following rule; taken from [2], which
replaces the older rule for while statements, R4: '

R4”. while: p(at+l) b, {p(a+l)} S {p(a)}, p(0)-»—b

3

{3 n pa)} while b do S endwhile {Q(O)}

where p(n) is an assertion with a free variable n; ranging over the
natural numbers, such that n§FV(S). ‘

This well-known rule appears 1in various forms throughout the literature on
proof systems for sequential languages. One might ask why it suffices 1n this
concurrent context, too. The reason 1is simply that the behaviour of a task”s
environment can be fully specified by the assertions associated with the task’s
accepts and calls. Given these assertions, a component proof is constructed as
were it for a sequential program.

Next, we turn to absence of failure. Ignoring failure caused by operatioms on
data (e.g. division by 0), there remain two scurces of failure: (1) a select
without an open branch and (2) a call for an entry of a task already terminated
(or about to terminate). Hence, these two situations must be proved never to
occur.

Basically, proving absence of failure 1s quite straightforward. One siamply
strengthens the assertions of the proof outline so that the pre-assertion of any
statement implies that execution of that statement does not result in failure.

As for (1), one must consequently show that the pre—assertion of any select
implies the existence of at least one open branch of that select. This is
embodied in the following rule which replaces the select rule R2:

-26-

R27. select: p-o(b‘v -eevb) o, {pAbz} S, {q} (i=1l..n)

{p} select bq: 31 9T +.. or b : S,, endselect {q}

Regarding the second possibility of failure, we can proceed as with the
deadlock freedom test, showing that certain f.o.c.”s cannot semantically be
reached:

Definition 7.0. A program P does not fail w.r.t & pre-assertion p, 1iff proof
. outlines can be coustructed, starting in p, such that for each f.c.c.

X = (<x,,++.,%,,at(call T.a(...)")>,<after(T)>}
(x,, +-+, %, (230) a calling chain), the formula R(X) yields false. O
Example 7.1. This is 1llustrated (for the last time) on the buffer example of
section 4, for which termination and absence of failure is proved. Firset,
consider termination of the while-locop in the ©buffer” task. With every
iteracion, either a value 1s received or sent away, or the entry “term” is
called. In the first two cases, 31 respectively, El is extended; in the last
case the vaziablf “term” increases. Hence, the quantity

20+2~|h, [-|h |-terns
(|1 denotes the number of values making up its argument) would be a likely
candidate to prove termination from. Correspondingly, if I denotes the loop
invariant in the proof outlinme in section 4, the new _parametrized ome will be:

I(m) = IA(z=2n+2-|h [-Ih l-terms)A(ih |<n/\|h l¢n)

terms=|{1i | Ih [=n, i=1..2}1.
The last conjunct is necessary for showing that I7(m+l)-sterms®2, the
penultimate one for showing that - I"(0)-sterms=2. As I7(2n+2) holds before
entering the loop, this proves termination _of the while statement. The reader
will have no difficulties showing that I“(m) 41is a loop invariant according to
the new definition (cf. rule R47). So, proving this formally, as well as proving
termination of the loops in producer” and comsumer”, will be left to him. Notice
that the last two conjuncts of 17°(m) coustitute & further refinement of the
specification of the behaviour of the other task communicating with buffer”.
Next, absence of failure. Firstly, the third branch of the select in buffer”

is always open, so there is no problem here. Secondly, the f.o.c.

X = {<at(1l,)>,<after(butfer”)>}
should not be reachable. Using the proof outline of buffer” strengthened as
above, we get

R(?{)-sh1=vecl(l..i-l)/\ién/\terms=2;~terms={{i | lh [=n, i=1..2}]A h =h,
which implies false. Reachability of {<at(l)2, <after(buffer >} is c*eated
completely analogously. To show that {<at(ll)> after(buffer”)>} and {<at(l)>
{after(buffer”)>} are not reachable either, we have to resort to the same trlck
as in example 6.3, this time left to the reader.

8. CORRECTNESS OF A DISTRIBUTED PRIORITY QUEUE

This priority queue is based on Brinch Hansen”s sorting algorithm in (5]. In
order to code the algorithm and 1its driver-task, some trivial extensions to
ADA-CF are made by

(1) introducing task-arrays: If sort denotes some task, then sort(l..l10) denotes
an array of 10 identical tasks, denoted by sortc(l), sort(2),, sort(lQ)
respectively (; 10 can of course be replaced by any other integer comstant).

-27-

The variables and labels in each of these component tasks are implicitly
assumed to be indexed with the task-index to avoid name-clashes. Executing a
task-array simply means executing all component tasks in parallel.

Two nullary functions, “this” and “succ”, are introduced. Evaluation of
“this”, respectively, “succ” in a component of a task—-array, returns the
index of this component, respectively, the index of its successor, “this”+l.
This also holds for the last component of a task-array. However, such a last
component will abort when it tries to call an entry of its nonexisting
SUCCESSOT.

As the values of “this” and “succ” are syntactically determined, no
changes of the proof system are necessary. We do need a rather obvious
extension of the absence—of-failure test, though.

(2) introducing Dijkstra”s guarded loops ([7]):
do ¢ : S,] ...ﬂcn: S, o4,
where ¢,, ..., ¢, are boolean expressions, guarding the ADA-CF statements 84
s wee Sn’ Execution of the loop-body 1is iterated as long as some boolean
guard evaluates to true (on loop entrance). The loop-body is executed by
arbitrarily choosing an S,, whose guard, c,, evaluates to true, and excuting
it.

A moment of reflection will make it clear that for proving an assertion p
to be a loop—invariant (for the above guarded loop), omne should prove that
{p/\ci} s; {p} holds (i=l..n). ’

Description of the algorithm and its implementationm.

The priority queue cousists of a row of n identical tasks and can sort up to n
‘elements (n is an arbitrary positive integer constant). The elements are input
through the first task, which stores the smallest element so far encountered and
passes on the rest to its successor. The latter task keeps the second smallest
item and passes on the rest, and so on. The elements are output (in increasing
order) through the first task. After each output; a task receives ome of the
remaining elements from its successor. A task is in equilibrium when it holds a
single elements or when it holds none and neither do its successors. When the
equilibrium of a task is disturbed (by its predecessor), it takes ome of the
following actiomns:

(1) if the task now has two elements, it keeps the smaller one and passes on the
larger one to its successor, or '

(2) if the task now has no elements but its successor does, it takes the
(smallest) element from its successor.

The priority queue 1s implemented by a task—array sort(l..n). The elements of
each task are kept in an array “here”; “len” contains the number of elements
currently present, while “rest” contains the number of elements which have been
passed on. Each component task has two entries, “put” and “get”; to put elements
into, respectively, to get elements from a task. Whenm a call for “put” is
accepted, the received element is placed in the array “here”. Then, 1f the task
finds itself having two elements, it sorts the elements in “here” into
increasing order and sends off the larger one (contained in here(l)). An entry
call for “get” is only accepted by a task, if len=1 holds. In that case, the
task sends back its element, after which it obtains the element from its
successor (if it has any).

task sort(l..n)
entry put, get;
array (l..2) of int here; int rest, len, temp;

-28-

begin rest:=0; len:=0;
while true do
k: select true:
accept put(u) do len:=len+l; here(len):=u endaccept;
1f len=2 then
if here(2)<here(l) then
temp:=here(2); here(2):=here(l); here(l):=temp;
endif;
1: call sort(succ).put(here(2));
;;;E:=rest+l; len:=1;
endif
or len=l:
o accept get(#v) do v:=here(l) endaccept; len:=0;
if rest>0 then
m: T call sort(succ).get(#here(l)); rest:=rest-~l; len:=l
endif
endselect
endwhile
end

To drive the priority queue, the following driver-task is used:

task driver

" int x; bag of int bag;

begin bag:=9; :
do lbagl<a: z:=7; 1
Q Ibagl>0: a
od

end

o¢ call sort(l).put(x); bag:=bagefx]
t call sort(l).get(#x); bag:=bagelx
9 —

Here, z:=? denotes the assignments of an arbitrary (integer) value to x. The
variable “bag” is of type bag of int, which means that it is a set in which the
same value may appear more than once. The operators @ and & denote the union and
the splitting of bags (no values are thrown away); “[... 3§ is our
bag-constructor and @ denotes the empty bag. The variable “bag” retains all
values which have entered the queue but have not left it as yet, and is needed
to express the safety property we want to prove below. Notice that the
nondeterministic way in which a branch is choosen during each iteration of the
guarded loop, forces the task-array to functiom as a priority queue rather than
as a sorter.

Correctness proof.
Consider the program
begin task driver; task sort(l..n) end.
We want to derive for this program, the safety assertion
R¢({<after(m°)>}) =» x=min(bag).
I.e., whenever a value is removed from the queue, it 1is minimal amongst the
values which have entered the queue wup till now. Notice, that to say that it is
minmal amongst the values which are still in the queue, would be a weaker
assertion, as this would allow the program to forget some values. This motivates
the use of the bag-variable in the driver.
In the proof outline(s) of the task-array, auxiliary variables, “kept”™ and
“sent”, are wused; all of type bag of int. The values which are prasent in
sort(i) are kept 1in kepti (remember, the variables are assumed to be indexed);

-29-

sent, contains the values which have been sent to sort(i)”s successor. 1In the
proof outline of the driver-task only one auxiliary variable
is introduced, sent,, of the same type and with the same function as the other
sent_”"s.
The general invariant expresses that no transmitted value is lost:
n=1
GI = /\(sent =kept. @&sent.).
420 A At Adq
The proof outlines of the component tasks are all the same. Hence we will give
a “canonical” one. To obtain the proof outline of a component task, the reader
should substitute the task—index for all appearances of the function “this” in
the assertions.
Finally, the loop—invariant of the while-loop in the task-array is split into
two parts, L and R (by convention, min(B)=1if B=@):

L zkept=fhere(i)!i=1l..|kept|] Alen=lkept| A here(l)gmin(sent) Arest=|sent|30,
R=Z (len=0 wrest=0) A rest§n~this A Oglengl.

task driver”
int x; bag of int bag, sent

o’
{sento=¢}
begin bag:=9; .
{bag=sent°/\0\<lbag1$n_} - the loop-invariant
do Ibagli<n:

x:=?; {bag=sent A 0¢lbagl<n}
'1.: <call sort(l).put(x); sent :=sentoe‘[x]];>
_ {bag=sent,®fx] A 05/ bag |<n}
bag:=baggl[x] -
Ibagl>0: {bag=sent A 0<|baglgn}

m,: <call sort(l).get(#x); sent°:=sent°®\[x]];>
{bag=sent ®fx] A 0<Ibaglgn Ax=min(bag)}
bag:=bagef[x]

od {false}
end {false}

task sort(l..n)”
entry put, get;
array (l1..2) of int here; int rest,len,temp;
bag of int kept, sent;
{kept=sent=@}
begin rest:=0; len:=0;
{L AR}
while true do
k: select true: {L AR}
<accept put(u) do> {LAR}
len:=len+l; here(len):=u
{(LAR)[len~1/len] Ahere(len)=u}
<kept:=kept®u]] endslect;>
{LA(len#2-3R) A (len=2 -aR[len-1/len] Arest<n-this)}
if len=2 then
if here(2)<here(l) then
{LAR[len~1/len] Arest<{n-this Alen=2 Ahere(2)<here(l)}
temp:=here(2); here(2):=here(l);
{kept=[here(2)]]6m:emp] Alen=|kept| A here(l)gmin(sent) A rest=|sent|30A

-30-

R{len-1/len] Arest<{a~this A len=2 Ahere(l)=here(2) A temp<hefe(2)}
here(l):=temp
endif;
{LAR[len=1/len] A rest<n-this A len=2 Ahere(l)ghere(2)}
<eall sort(succ).put(here(2)); kepc:=kepusﬂhere(2)];
sent:=sentgflhere(2)];>
{(L[rest+l/rest] AR)(len-1/len] aArest<a~this Alen=2}
rest:=rest+l; len:=1
endif [LAR]
or len=1: {LAR alen=l}
{accept get(#v) do> {LAR alen=1}
vi=here(l) {LAR Alen=l Av=here(l)}
<kept :=keptolv] endaccept;> {L{len-1/len] AR Alen=1l}
len:=0; {L A(rest=0-»R) a (rest>0-sR[{len+l/len]) A len=0}
if rest>0 then {L AR[len+l/len] arest>0 Alen=0}
——<3§££ so;zzgﬁcc).get(#here(l)); kept:=kept&ﬁhere(l)]b
sent:=sentefhere(l)];>
{(L{rest-1/rest] AR)[len+l/len] A len=0 Arest>0}
rest:=rest~l; len:=l
endif {L AR}
endselect {L AR}

endwhile {false} .
end {false}

Next, we prove cooperatiomn w.r.t. GI:

(L

(2)

Consider the call for put in sort(i) and the corresponding accept in
sort(i+l) (i<a).)

The first premiss of the rendezvous rule trivially holds, as no auxiliary
variables are updated and the pre-assertion of the accept body makes no
assumption about the value of the actual parameter. For the second premiss,
one should prove:

{LiAR; {len ~1/len] arest <n-iA len =24 here (l)ghere (2) A

(L;,, AR, J[len, ~-1/len.]Ahere, (len.)=here (2)A GI}
kept :=kepE::10[ﬁe:;e;(2):ﬁ;1 kepth. :;iépt;eﬁ:he;;; (2)}[;'“H *
sent :=sent,@fhere, (2)]
{(L;[rest‘.-*-l/resti] AR)[len;-1/len] arest >n-i Alen =2 A

Lo A (len4,“f"2-b~R‘LH) A(lenh‘aZ-;RiH[len*.“-l/leni“] Arest‘,_'(n-i)}
This is a simple but arduous exercise. Notice, that

(len#2-sR) A (len=2=R({len-1/len]
is just a rewriting of R{len-1/len].
Consider the call for get in the driver and the accept in sort(l).
Again the first premiss is easy to prove, so there remains the proof of

{bag=sent, A 0<|baglgn AL, AR, Alen =1 Ax=here (1) aGI}

kept, :=kept:46ﬁ_here.4 (LD sent, :=sent,0[x]

{bag=sent°em AO0<|bagl¢n ax=min(bag) A L‘\[lenq-l/lenq] AR, Alen, =1 AGI}
This too, 1is a simple exercise. The crusial fact that x=uin(bag), is a
consequence of the following conjunction which is part of the pre-assertion:

bag=sent, A kept, ={[here1 ({)li=1.. lkept, [T lenf!kept4 A

here1(l)$min(sent1) A len4=l Ax=hera4(l) A senc°=sent15kept4 .

The other cooperation tests are left to the reader.

Hence, the proof outlines cooperate and can be combined so as to yield

R({<afzer(m,)>} —bag=sent @(x] ~ 0<|bagl¢n A x=nin(bag) A GI},

which trivially implies x=min(bag), the requirad safety property.

=31~

Next, we show absence of failure. As none of the tasks terminate and all
selects have a branch guarded by true, the only source of failure are the entry
calls in sort(n). However, it is easy to show that these can never be reached,
as: :

(1) R({(at(ln)>})-grestn<n-n arest 30, and
(2) R({<at(mn)>})-»restngn-n‘Arestn>0.

This leaves us with deadlock freedom. Because the tasks do not terminate, the

only blocking f.o.c.”s are of the form

{<at(x°)>,<at(x4)>,...,<at(x”)>}, where xoe{lo,mb} and

x & {k.&’l;’m,:.} (i=1..n).
As we showed that sort(n) cannot be at(ln) or at(mn), this means that the
blocking f.o.c.”s can be partitiomed into segments sort(l..i), sort(i4+l..ig),
oo, sort(ik+l..n) (1$11<1L<...<ik<n), such that in each segment sort(i..j) the
tasks sort(i), ..., sort(j-l) are at one of their entry . calls while sort(j) is
at its select. Consider a segment sort(i..j) (i<j); we show that it cannot be
blocked. If sort(j-1) is at(li_,) no blocking can occur as the corresponding
branch of the select in sort(j) is open. So, we only need to consider b.f.o.c.”s
of the form

X = {<at(x;)>,...,<at(xj_z)>,<at(mi_1)>,<at(kj>} » X, € {lh’mk}'
For such f.o.c.”s

B(X) AR(X)—;»restj_ >0 Arest; | ==|senf:._1 | Aleni=OA rest'l=0 Alen{-=lkeptél A

rest.=_sent.|A sent. =kept @sent.,

which implies false. Consequently, such b.f.o.c.’é cannot be reached. Next, we
should check segment of the form sort(i..i) and we should take the driver into
‘account. However, these are dealt with just as easily and are left to the
reader: .

9. EXTENSIONS

We discuss some additiomal ADA-comstructs which can be accommodated for by the
proof system. We also discuss the nature of some of the restrictions impose¢
upon the proof system.

There is of course a definite bound on what can be added without necessitating
major changes or extensions to the proof system. For one; the fact that a
program consists of a fixed set of tasks is quite essential; otherwise, the
general invariant cannot be formulated. Also, the possibility in full ADA of
having access—-variables referencing tasks 1s quite outside the scope of this
proof system.

It is possible to extend ADA-CF with a rudimentary block-structure by allowing
programs to appear in a task-body. I.e., by defining begin task {;task} end (cf.
section 2) to be a wvalid stat (-ement), too. As it 1is not possible to allow
communication to occur between a task within a block and a task outside that
block (for the reason stated above), such blocks are of limited value and we
will not discuss the extensions needed for our system.

There are some ADA-statements which only need trivial extensions to the proof
system. These are (1) the delay, (2) the conditional and timed entry call and
(3) the conditional and timed accept. The effect of these statements is either
not expressible in our assertion language (as for the delay, wich suspends
execution of the task that executes it for some time) or we do not want to take

-32-

their effect into account (as for the other statements).
Consider, for instance, the conditional entry call
select call st; stats else stats endselact.
This statement has the following semantics?-ig_z_;;hdezvous with the called task
1s immediately possible, it is performed and the statements after the entry call
are executed. Otherwise, the else-part is executed.

Consider two tasks, T and T”. T executes a counditional entry call; at the same
time T” executes a wmatching accept and a rendezvous consequently occurs. By
judiciously slowing down execution of T” or by judiciously speeding up execution
.of T, such a rendezvous can always be caused not to happen. As we certainly do
not want to make any assumptions about the differences in the speed of execution
between the various tasks, thilis means that we can never be sure whether the
entry call or the else-part is taken in a conditionmal entry call. Consequently,
the following proof rule 1is obtained:

R12. cond. call: {p} C;8” {q}, {p} s~ {q}

{p} select C;S” else S" endselect {q}

where “C” denotes an entry call.

Finally, we consider the terminate~statement. This statement introduces a
so-called distributed termination convention in ADA~CF and requires some less
trivial extensions to the proof system.

terminate

A terminate-statement (abbreviated to termstat) may appear as the sole
statement in a branch of a select. If such a branch is executed, it causes the
task containing the select to terminate (normally). An (open) branch containing
a termstat can only be selected when all other tasks of the program are either
terminated or waiting at an accept with an open branch containing a termstat,
too.

Execution of a termstat results in control being transferred to the end of the
body of the task executing ic. Comsequently, countrol will never arrive at the
location immediately after the termstat. This suggests the following axiom to be
used when comstructing component proofs:

AS. terminate: {p} termipate {false}.

But this is not enough. The post-assertion of a task—-body <characterizes the
state of that task when it terminates. If a task terminates by executing a
termstat, it does so in a state characterized by the pre—assertion of this
termstat. S0, to be cousistent, the post-assertion of a task—body must imply the
pre-assertion of every termstat in the task-body which may indeed be executed.
This necessitates a wmodification of the cooperation test, which has to be
extended with the following additional clause:

(3) For a select “S7, define TP(°S”) = bk1v... kax’ where by, ..., bkg (k,20)
is the (possibly empty) list of boolean expressions, guarding the branches
of “37 that contain a termstat.

Then, for each f.o.c. XN of the form [<x4>,...,<xn>}, where X, is 2 c.p. of
the form after(T;) or at(”s.”), 7S,” a select within task T,, the following
should hold:

Ifzx,, ..., x;k is the list of <¢.p.”s in this f.o.c., referencing selects,
1

-33-

then for each x*e{xﬁ-_ yo++yX; }, the formula
(ROX) ATP(x,)A ... ATP(x;) A post(T))-spre(x.),
1 Ie i A
must hold. 0O

Notice, that the above set of distributed termination f.o.c.”s (d.t.f.o.c.”s)
that has to be considered, is particulary simple, because a task cannot select a
termstat to be executed 1if the program is at a f.o.c. in which a calling chain
exists.

The deadlock freedom test of section 6 has to be adapted too, as a d.t.f.o.c.
can also be a b.f.o.c. (cf. definition 6.0). Comsequently, each b.f.o.c. of this
form which may be reached and may block (cf. definition 6.2), should lead to
termination. This results in the following reformulation of the deadlock freedom
test.

Definition 9.0. A program P is deadlock free w.r.t. a pre-assertion p, 1ff proof
outlines can be comstructed starting in p, such that for each b.f.o.c. X of P,
‘either
(1) = RX) v 3)) holds, if X is not a d.t.f.o0.c., or,
(2) R(X)AB(X)"’TP(X‘- Ya-.eo aTP(x,) holds, if X is a d.t.f.o.c. (notation as
1 “k
in (3) above). : o}

Next, some cf the restrictions of ADA-CF are discussed. For the connaisseur of
ADA, perhaps the most noticable restriction of ADA-CF is the absence of entry
queues. In full ADA, each entry has an entry queue associated with 1t. A task
executing an entry call 1is put on the queue associated with it. When a task is
‘ready to accept a call for anm entry, the call of the task which is on top of the
queue for this entry, is accepted first. An entry queue for some entry e, has an
attribute, e'cdunt, associated with it, which equals the number of tasks
currently on the queue. Let us ignore such attributes for the moment.

Entry queues implement a mechanism for selecting entry calls to be accepted,
which is fair (in the sense of section 7). As 1is well-known, fairness
assumptions about the execution of a program do not alter the set of valid
safety properties of the program. However, as indicated in section 7, the
property of termination does depend on fairness assumptions. Consequently, an
important question is whether there are programs which need not terminate under
the fairness assumption of section 7, but do under the (seemingly) stronger form
of fairnmess as iImplemented by entry queues (;strounger, because when a task
executes an entry call and is consequently put on an entry queue, it is exactly
known how many calls will be accepted before his call is accepted).

In [15] the following theorem is proved:

Theorem. Let P be an ADA-CF program (which consequently does not refer to any
e“count attribute). Then, the set of possible executions for P (under the
fairness assumptions of section 7) is equivalent with the set of possible
executions of P under the explicit queuing model. =

Hence, the above question can be answered in the negative. This theorem is
proved by formalizing the observation that it is impossible for a program (not
using queue attributes) to arrange for a specific order of tasks on an entry
queue.

Prohibiting queue attributes is quite essential. If a program may use them, it
can influence the ordering of tasks on entry queues and consequently, even its
set of valid safety properties may change. This is illustrated in the following

-34=

Example 9.1. Consider the program below (due to Job Zwiers):

task T task T int ¢;
SEEEh call T".e(l) end begin c::6?
while ¢=0 do call T".f(#c) endwhile;
task T" entry e, f; int x, y; call T".e(2)
begin x:=0; end

while x=0 do
accept £(fu) do x:=e count; u:=x endaccept
endwhile;
accept e(v) do x:=v endaccept;
accept e(w) do y:=w endaccept

end

In this program, task 7T~ suspends executing its entry call wuntil T has
executed his. It does so, by inspecting the entry queue of entry e and by
looping wuntil the queue 1s not empty anymore. Consequently, the following
formula is valid:

{true} begin task T; task T7; task T" end {x=1a y=2}. jm)

Such queue attributes act as a set of hidden variables which are shared
between the component tasks of a program. So, one might expect that using these
attributes will force the proof system to be extended with some form of
interference freedom test ([14]). We did not follow up on this suggestion as
yet.

Finally, consider the symtactic restrictions in section 2 on the actual and
formal parameters. As a result of these restrictions, parameter transfer can be
modelled using s}ntactic substitution. Recent research ([6] and [10]) has showm
that these restrictions can be relaxed (for sequential procedure calls) and that
some forms of aliasing in the actual parameters can be allowed, by refining the
gotion of syntactic substitution in assertions. These techniques can be applied
in the current context, too. The resulting rendezvous rule will be somewhat less
elegant, as the second clause of theorem 3.12 breaks down if aliasing occurs in
the actual parameters. This 1s however outside the scope of this paper.

ACKNOWLEDGEMENTS.

We would like to thank the members of the RUU-MC working group on semantics
for the privilege of presenting an earlier version of the proof system to them;
Marly Roncken, Adrie van Bloois and Job Zwiers for some fruicful discussiom and
A. Salwicki for pointing out the difference between “interleaving semantics” and
“maximum paralellism semantics”. Finally, the first author would like to thank
the Dutch and German railways and the occupants of compartement 224 of the ICl24
from Munchen to Utrecht on october 24, 1981 for the hospitable and inspiring
athmosphere in which the initial stage of the research culminating in this paper
was carried out.

REFERENCES.
(L] ADA: The Programming Language ADA. Reference Manual. LNCS 106, Springer
Verlag, New York, 1981.

[2] Apt XK.R: Ten Years of Hoare"s Logic: A Survey - Part 1. TOPLAS 3-4,
p.431-484, 1981.
(3] Apt K.R., N. Francez, W.P. de Roever: A Proof System for Communicating

Sequential Processes. TOPLAS 2-3, p.359-385, 1980.

(4]

-35-

Astesiano E., E. Zucca: Semantics of Distributed Processes Derived by
Translation. Proceedings of the 11lth GI-Jahrestagung, Informatik
Fachberichte 50, p.78-87, Springer Verlag, New York, 1981.

Brinch Hansen P.: Distributed Processes: A Concurrent Programming Concept.
CACM 21-11, p.934-941, 1978.

Cartwright R., D. Oppen: The Logic of Aliasing. Acta Inf. 15, p.365-384,
1981.

Dijkstra E.W.: A Discipline of Programming. Prentice Hall, 1976.

Gerth R.T., W.P. de Roever, M. Roncken: Procedures and Concurrency: A study
in Proof. Proceedings of the Vth International Symposium on Programming,
LNCS 137, p.132-163, Springer Verlag, New York, 1982.

Gerth R.T.: A Sound and Complete Hoare Axiomatization of the ADA
Rendezvous. Proceedings of the 9th ICALP, LNCS 140, p.252-265, Springer
Verlag, New York, 1982.

Gries D., G.M. Levin: Assignment and Procedure Call Proof Rules. TOPLAS
2-4, p.564-579, 1980.

Hoare C.A.R.: Communicating Sequential Processes. CACM 21-8, p.666-677,
1978.

Kuiper R.: Private Communicatiom, 1982.

Lamport L.: The Hoare”s Logic of Concurrent Programs. Acta Inf. 14,
p.21-37, 1980.

Owicki S., D. Gries: An Axiomatic Proof Technique for Parallel Programs I.
Acta Inf.-6, p.319-340,.1976. : '
Pnueli, A., W.P. de Roever: Rendezvous with ADA - A Proof Theoretical View.
Proceedings of the ADATEC Counference, 1982.

Roncken M., N. van Diepen ,M. Kramer, W.P. de Roever: A Proof System for
Brinch Hansen”s Distributed Processes. Technical Report RUU-CS-81-3,
Department of Computer Science, University of Utrecht; 1981.

Salwicki A.: Critical Remarks on MAX Model of Concurrency. Proceedings of
the Logics of Programming Workshop 1981, LNCS 131, p.397-405; Springer
Verlag, New York, 1982.

