REAL-TIME PROGRAMMING AND ASYNCHRONOUS MESSAGE PASSING

Ron Koymans
Jan Vytopil

Willem P. de Roever

RUU~-CS-83-9
June 1983

Rijksuniversiteit Utrecht

Vakgroep informatica

Princetonplein 5
Postbus 80.002

3508 TA Utrecht
Telefoon 030—53 1454
The Netherlands

REAL-TIME PROGRAMMING AND ASYNCHRONOUS MESSAGE PASSING

Ron Koymans
Jan Vytopil

Willem P. de Roever

Technical Report RUU-CS-83-9
June 1983

Department of Computer Science
University of Utrecht
P.0. Box 80.002
3508 TA Utrecht

the Netherlands

REAL~TIME PROGRAMMING AND ASYNCHRONCUS MESSAGE PASSING #*)

Ron Koymans
Department of Computer Science

University of Utrecht, the Netherlands

Jan Vytopil
Philips' Telecommunicatie Industrie B.V.

PTI Hilversum, the Netherlands

Willem P. de Roever
Department of Computer Science
University of Utrecht, the Netherlands
and
Faculty of Science

University of Nijmegen, the Netherlands

Abstract. This paper indicates a method of describing real-time processes
and their asynchronous communicaticn by means of message exchanges.

This description method is based upon an extension of linear time temporal
logic to a special temporal logic in which real-time and asynchronous
message passing properties can be expressed. We give a model of this
logic, define new operators and show amongst others how they can be
applied to specify real-time asynchronous message passing and an abstract

real-time transmission medium.

*)To appear in: Proceedings of the 2nd Conference on Principles of Distributed

Computing, August 17-19, Montreal, Canada, 1983.

§1. Introduction
1. Motivation

In recent years an acute need has arisen for a methodology of real-time
processes, as they occur in telecommunication systems or process control sys-
tems in general. This paper is an attempt to contribute to the development of

such a methodology.

The paper concerns the description of real-time processes and their
asynchronous communication by means of signal (message) exchanges. For
the characterization of these processes and their communication we develop a
special temporal logic with two new operators. By means of these we believe
we are able to express the real-time and asynchronous communication aspects
in a natural way. As a ¢omsequence, by using a proof system for our temporal
logic, one can reason about real-time processes and their communication, i.e.
one can prove that a program meets its real-time specifications.

Of course, a complete real-time methodology is still some time off, but we
believe that our method can be applied to real-time processes in general thus
providing a possible direction in which such a methodology can develop.

We illustrate our study of real-time processes and their asynchronous
communication by means of a very small CHILL-like language in which
the essence of asynchronous real-time communication is present. CHILL
(CCITT HIgh Level Language, see [CHILL]) is the recommended lan-
guage of the CCITT (Comité Consultatif Internationale de Télégraphique et
Téléphonique). CHILL is an interesting subject of study as it is used by
many different PTT’s and industries, such as Siemens, NTT(Nippon Telephone
and Telegraph), ITT(International Telephone and Telegraph) and PTI(Philips’
Telecommunicatie Industrie B.V.) for programming telecommunication SVs-
tems.

In the area of distributed processing recent research has focussed on lan-
guages such as CSP (see [HOARE]) and ADA (see [ADA]) for which safety and
liveness properties etc. have been extensively studied (see e.g. [KUIPER &
DE ROEVER], [MANNA & PNUELI], [PNUELI & DE ROEVER], [GERTH
& DE ROEVER]). These languages, however, are based on the rendezvous
mechanism which requires synchronous communication. Furthermore, the
research has until now almost completely ignored the real-time aspect although
a suggestion has been made for the ADA-case at the end of [PNUELI & DE
ROEVER] and a first step towards a proof technique for real-time properties
of concurrent programs has been made in [BERNSTEIN & HARTER].

2. Problems faced and solutions suggested

We take the following real-time aspects into account:

A. a time-out mechanism:

in some present day concurrent programming languages a timer can be
present for the purpose of restricting the period of waiting for a message
to some fixed amount of time. Usual temporal logics cannot express this
as they consider time qualitatively and not quantitatively. The need for a
time-out possibility is obvious when developing telecommunication systems
as in a certain amount of time there must always be some progression in
the system.

B. a medium real-time property: .- o
we impose the condition that the transmission medium is not "too lazy”,
i.e. the medium may not stand idle for too long if there are outstanding
signals to be transmitted (again this is an obvious requirement in a telecom-
munication environment); the formal expression of this property is given in
§3.

The following technical complication concerning aspect (A) arises: if
program control reaches (an occurrence of) an action (this is the CHILL-analog
of a statement) which can receive a signal (from now omn called receive case ac-
tion), it must be stated that a timer will expire after a specified time. We take
care of this by introducing a special "timerstart”-location (the notion of loca-
tion is explained and refined below) for each receive case action. Similar cases
of introducing "locations” which do not actually occur in a program in order
to reason (prove properties) about that program arise for Brinch Hansen’s DP
(see [BRINCH HANSEN], [ASTESIANO & ZUCCA]) and ADA (see [GERTH
& DE ROEVER)).

()

We now refine the notion of location in a program. This is needed to be
able to recognize the difference between occurrences of actions. In Poueli’s (and
also Lamport’s) works location predicates are introduced, i.e. predicates true
in case control resides at a specific location of a program. For the simple kind
of programs that they consider these predicates are characterized syntactically
(e.g. by pointing to a place in the program text). Once (dynamic) process crea-
tion is involved this simple syntactic characterization is not sufficient anymore:
one can still point to a specific place in the text of a process definition but
one can not tell the difference between this textual place in one instance of the
process definition and the same textual place in another instance of the process
definition. To identify uniquely every action of sending or receiving, e.g. as
is required in the expression of "every signal received has been sent before”,
we need a third component (apart from syntactic location, i.e. textual pla.ce
and process instance). This third component contains the number of times
this specific syntactic location in this process instance has been passed (this is
needed because, for example, a send action can textually be placed in a loop
and hence it can be passed several times).

Apart from the real-time property B above, we impose in our formulation
the following constraints on the transmission medium: it may not create ghost
messages (either original or copies of real signals) and it must be fair relative
to the transmission of signals (see below). Furthermore, the medium need not _
be error-free (but fairness, see below, guarantees that it can not be too faulty
either). Summarizing, the medium has the following properties:

- it is not too lazy,

- It may not create ghost messages,

- it is fair relative to the transmission of signals,

- It may loose messages (we assume that corrupted
messages are discarded at a lower level),

- it may reorder messages.

" Fairness of the medium must be imposed, as the properties described
hitherto do not guarantee that anything will be received. The fairness (liveness)
condition imposed on the medium then is classical: if infinitely often a signal
from a collection of signals is sent, then at least one signal from the collection
will arrive at its destination. See §3 for some consequences of this fairness
condition. In some programming languages (such as CHILL) it is possible
that more than one signal is receivable at a time (cf. the accept-statement
in ADA). In that case one might impose another fairness condition, namely
fairness relative to the receipt of signals: if more than one signal is receivable,
we demand that the choice mechanism is fair to all receivable signals (in
ADA a weaker fairness condition, namely that the choice mechanism given
a specific entry is fair, is explicitly defined in the language by entry-queues
but in [PNUELI & DE ROEVER] it was shown how to avoid defining fairness
by such implementation oriented concepts). These two fairness conditions are
illustrated by a programming example in §5.

" In order to describe real-time and asynchronous message passing properties
we use a specialized temporal logic which is obtained by extending linear time
temporal logic (see [LAMPORT]) with the operator < (before), referring to the
past and real-time operators such as <> <t (eventually within real-time t from
now) and (s (always after real-time t has elapsed from now). In this paper
we call this specialized temporal logic real-time temporal logic. We derive all
our real-time operators from the real-time operator U —; (strong until in real-
time t). Together with the before operator <@ this demands a new temporal
logic model. This model has states as in usual temporal logic models but now
a state has a real-time component conceptually representing a kind of global
clock. Therefore a necessary condition for a state transition is that time cannot
decrease {we allow a state transition to leave this real-time component the same:
if program control is at the beginning of a receive case action we stipulate that,
program control transfers immediately, i.e. without any real-time elapsing, to
the above mentioned "timerstart”-location, see §4). The before operator <>
(which is new in the context of program proving) is used for the formulation of
the real-time property of the medium (see §3) and furthermore for the classical
property that a received signal must have been previously sent (see §3). In the
formulation of the latter property we already recognize the natural way we can
express this property by an operator which refers to the past.

3. Related work

The only related work concerning a proof technique for real-time properties
of concurrent programs that we know of is [BERNSTEIN & HARTER).
Because real-time is involved their communication is of asynchronous nature.
However, their work differs from ours in several aspects. Firstly, they do not
consider dymamic process creation. Secondly, they consider only real-time
operators related to the temporal implication operator while we introduce a
general real-time operator U —; from which many more (much needed!) real-
time operators can be derived. Thirdly, their model for program execution is
more complicated than ours due to restrictions concerning interleaved execu-
tion and indivisibility of operations. Also their modelling of execution time
does not in any way correspond to the execution time in reality while our
modelling of execution time can be directly related to real-time execution. In
general, a multiprogramming model contrasts with the practice of real-time
programming in which independent execution on separate processors seems to
be the rule once real-time considerations become critical. Fourthly, their work
concentrates on safety properties while ours is concerned mostly with liveness
properties since these are what real-time programming is about.

Related work concerning asynchronous message passing on its own is more
readily available. We mention [MISRA, CHANDY & SMITH] describing safety
and liveness properties of message passing networks by a hierarchical method
based upon combining the specifications of component processes to obtain the
specification of the network and [SCHLICHTING & SCHNEIDER] concerning
inference rules for proving partial correctness of concurrent programs that use
message passing for synchronisation and communication.

[$21

§2. The logic and its model

Our model is different from the usual temporal logic model, because real-
time must be considered. The model still is ultimately state-based (as for usual
temporal logics) but a state now has a real-time component. This real-time
component will be an element of the real-time domain R :

R is a structure (R, <, 4) with a linear ordering < and addition -+
and the following constraint:

R is a superstructure (an extension) of (w, <, +) where w is the set of
natural numbers (including 0) with its usual ordering and addition. -

Remark: R can be specified to suit certain applications, e.g. an element cc
could be added which denotes an infinite waiting time.

Notation: Let < be the usual analog of <.
' By Ri>o we denote {t € ®I | 0< t}.

For our logic we assume a many-sorted language with the standard
operators L (falsity), — (implication) and V (universal quantifier, for all sorts)
and the temporal operators ¥_; (strong until in real-time t) and <9 (before).
We demand that Rl>, is one of the sorts of the language. We assume ==
(equality) to be part of the language.

The sentences of the language are formed by means of these operators
and atomic sentences which denote state predicates. As usual in temporal
logic models, we have special state predicates, called location predicates, of
the form at(l) and after(l) where 1 is a location (note that we refer here to
the refined notion of location, see §1.2). We will call these location predicates
control points; at(l) is true either when program control is just before the
action belonging to 1 or when | is a timerstart-location (as introduced in §1.2)
and program control is at this timerstart-location; a fter(l) is true either when
program control is just after the action belonging to 1 or when 1 is a timerstart-
location and program control is Just after this location (a fwl discussion of
location predicates requires an operational semantics in the style of [PNUELI
& DE ROEVER]). By our refinement of the notion of location a program can
only be once consecutively at and be once consecutively after a location.

In our model each state has exactly one control point for every process. A
state s is a quadruple

<t,PI,{Cj|ie PI},PS >

where

t € |
PI is the set of process instances,

Cj is the control point for process instance i

and

PS is the program status, i.e. the set of all values
of all program variables.

Note that the real-time domain ® occurs in both the logic and its model;
in fact, we have a new logic and its accompanying model for every specification
of ® to a concrete structure.

In our model, there is a unique initial state I. This initial state has real-
time component O.

A computation is considered as an infinite sequence < s; >3, where s;
is a state for all 7 € w, sp =TI and T1(s:) € w1(s441) for all 7 € w, where 7y is
the projection function on the j-th coordinate (i.e. time cannot decrease). We
demand, furthermore, that one of the following cases applies:
—s;s=s;foralle,j € w,is£y
— there is a 79 € w such that Sig4-n == Sj, for alln € w

and s; 5 s; for allé,j € w, 0<i <5<
(this case corresponds to the case of a terminating

computation wheres;, is the end-state

of the computation; since this end-state

does not change anymore as time elapses,

it is repeated for ever).

Leto = < >72, be a computation. For i € w define 0y to be s;. In this
paper = denotes implication in the meta-language. Quantification in the meta-
language is not indicated by special symbols because it is always clear from the
context whether quantification in the language itself or in the meta-language
is meant.

We now inductively define the relation (¢, 7) k= ¢ for all pairs (,7) (where
0 is a computation and j € w) and any real-time temporal logic formula ¢ as
follows:

(e, 7))EP ek P(o;) = for P a state predicate

(@,/)EL
def.

0. NEP-Q L 0.)EP = (0,))FQ

(c,])EYv €D P(v) df;_f— Yve D ({o,7)F P(v)) for all sorts D

def.
(c,7)EPU~:Q L a3y €EwWloj4n EQ A mi(0jrn) = o)+t

AViEw[0<i < n — 0,4, E P

def.
0,9)F P L €w0<n<j A oj_, E P

In our logic the operator ¥, is considered as a ternary operator with
formulae as its first two arguments and an element from Ri>o as its third
argument.

The operator ¥—; is needed for the expression of real-time properties,
while <@ leads to the elegant expression of properties which refer to the past,
e.g. when a signal is received, it w23 once sent.

We define furthermore the following derived operators for formulae P and Q:

def.
-P :—f Pl (negation)
PAQ df_—]' =(P—=0Q) (conjunction)
PvQ ael. P—Q (disjunction)
PwQ L (P~Q)A (@—P) (equivalence)
iz € D P(z) vz €D =P(z) ' for all sorts D
(existential quantification)
T % -1 (truth)
<>t P /d:-{ "TU:P (eventually in real-time t)
def.
<>P < LER>) <=t P (eventually)
def. .
<> P il FTERIS (<A <op P) (eventually before real-time t)
def.
<> P) IERMSI(t <A <p P) (eventually after real-time t)
def.
<<t P i_-f <>t PV <ot P (eventually within real-time t)
<>>: P o <>=tPV <5 P (eventually from real-time t)
0P =P : (henceforth)
def.
Oz: P =f—|<>2t—wP CforRe { =,<,>,<,>}
(henceforth in/before/after/within/from real-time t)
def

PUQ = 3teERI>o (PU—=:Q) (strong until)
PUQ = OPVPUQ | (weak until)

Concerning precedence of operators we give one-place operators (such as
€ -) highest precedence. The operators ¥ —;, ¥ and & have higher precedence
than A and v which, in their turn, have higher precedence than — and «.

The defined operators <>, [, ¥ and & above correspond indeed to the
well-known operators of the same name. As an example of derivable general
formulae, we give here the interactions of the new operator <@ with the four
old ones (see Appendix B for an informal derivation of these formulae and the
interaction of < with other operators):

1l P > P o ©PY <P

2. 0P 0P and O P—«>P

3. & (PUQ)— P U -9Q (the reverse implication is false)
4 @ (PIQ)— <P i <»Q (the reverse implication is false)

For non-temporal operators, «® interacts the same as <> (<& is the "dual” of
<> in time but for the rest they correspond).

10

§3. An abstract transmission medium

In the following we give an abstract view of asynchronously communicating
processes. We assume the only means of communication to be signals. Signals
are sent by a sending process (the sender) and received by a receiving process
(the receiver). In general there are 5 comsecutive (chronologically seen) phases

for each signal depicted as follows:

1| SEND RECEIVE 15
(send action) (receive
ease : PROGRAMMING
action) LEVEL
TRANSMISSION
3 LEVEL
2 4

the signal is sent (the send action takes place),

the signal is waiting for transmission,

the signal is being transmitted,

the signal has arrived at its destination and is waiting for receipt,
the signal is received.

O 0 po

Note that we view phase 1 and 5 as instantaneous actions, e.g. phase 3
describes the moment the signal is actually accepted by a receive case action
(program control, however, could have already been at the receive case action
much longer).

Because we describe asynchronous communication, the sender simply
moves on after a send action, i.e. after phase 1 the sender will not wait for
phases 2 to 3 to finish.

As already stated in §1.2, we describe a transmission medium with the
following properties: not too lazy, no creation of ghost messages, fair relative

to the transmission of signals, possibly losing messages and possibly reordering
messages.

11

We now illustrate how the properties of the medium can be expressed in
our logic. The most interesting case is the medium real-time property (the
medium is not too lazy):

e € Ri>o OVsy € SEND
[[«@after(location(s,)) A ~ <> arrived(s;,)]
— [3s2 € SEND [~ <@-arrived(sy) A <> <c arrived(sy)]
V Os ¢ ~arrived(s;)]].

In this axiom SEND is a semantic domain (as in denotational semantics) cor-
responding to the send action of the programming language under considera-
tion. In general, SEND consists of several components including for example
a signal identification and a destination (a process instance). We demand
that every s € SEND has a location component, denoted by location(s) which
identifies the location belonging to the send action s (remember that a location
has three components: textual place in the program text, process instance and
number of times this action already has been executed at this place and in
this instance - see §1.2 -); arrived is a predicate which corresponds to signal
transmission phase 4: arrived indicates for a send action s whether the signal
corresponding to s has arrived at its destination. This axiom reads as follows:
there is a non-negative real-time constant ¢ such that whenever there is a sig-
nal that has not yet arrived from a- send action s1 then either some signal will
arrive within real-time c or after real-time ¢ the signal from s; will never arrive,
Note that c is an implementation dependent constant and can be related to the
maximum transmission time of the medium in the real world.

12

A straightforward consequence of the axiom above is: there is a real-time
constant ¢ such that the arrival of a sent, but not yet arrived, signal can not
be arbitrarily long delayed, unless in every period of real-time ¢ some signal
arrives. The expression of this consequence in our logic is as follows:

3¢ € Ri>o 3d € Rixo OVs; € SEND
[after(location(s;)) A = @ arrived(s;)
A3y € SEND [@arrived(sa) A <> < arrived(ss)]]
- [<> <d arrived(s;) v O- arrived(s,)].

This consequence can be informally deduced as follows: take ¢ and d equal to
the ¢ from the axiom above and suppose

> fter(location(s;)) A - <@ arrived(s;)

A-3sy € SEND [~ <@arrived(s) A <> <c arrived(ss)]

for an arbitrary program state and an arbitrary s; € SEND .

According to the above axiom we then have Os ¢ - arrived(s;).

Supposé also O<c - arrived(s,) is valid.

In that case Osc- arrived(s;) A O<c - arrived(s;) holds and this implies
U= arrived(s;) (This implication and many others are easily derived from the
definition of the operators in §2.)

In the other case ~O<c - arrived(s;) is valid.

But from the definition of O<¢ this is the same as <> <c arrived(s;) and as
d==c it thus follows <> <d arrived(s;).

The expression in our logic that the medium may not create ghost messages
is fairly simple due to the presence of the before operator: a condition (among
others, see §4) for a signal to be received by a receive case action is that it must
have previously been sent. In our logic this condition can be formulated as
<> after(location(send)) where send € SEND is the send action corresponding
to the signal. -

et
W

The expression of the fairness property of the medium is classical:

Ovsenders C SEND
[0 <> 3send € senders [after(location(send))]
— <> 3send € senders [arrived(send)]].

It just states that whenever Infinitely often a signal from the collection senders
Is sent, then at least one of these signals will arrive. This implies by classical
temporal logic reasoning that even infinitely many of these signals will arrive.
In this case this fairness condition has an even stronger consequence as the
following corollary shows.

Corollary: Only a finite number of signals can get lost.
(Peter van Emde Boas)

Proof: Suppose infinitely many signals get lost. Take these infinitely many
signals as the collection senders in the fairness condition above. As
all these signals have been sent (since they get lost), infinitely often a
signal from this collection has been sent. The conclusion of the fairness
condition above is that at least one signal from the collection arrives. A
contradiction.

Remark.: Theoretically, this corollary is more or less unwanted. Such a strong
corollary is possible because of the fact that there is no restriction
on the collection of signals in the fairness condition. A theoretical
alternative would be to restrict this collection, e.g. by demanding
that the signals come from one and the same process instance. Such
solutions, however, appear not to be very convincing in the general
case. We can afford to have such a strong fairness condition as in
practice the difference is immaterial: one can give no upperbound
on the number of lost signals (in other words: ome cannot use in
any way the fact that from some moment op signals will not get
lost anymore). One must realize that this problem arises because we
intend to axiomatize the underlying datastructure (c.q. the medium}
on its own, instead of deriving the axiomatization syntactically by
means of some scheme for all programs which use this datastructure.
This problem deserves further investigation.

The remaining two properties of the medium, namely that it may loose
messages and it may reorder messages need no explicit formulation in our
logic since the absence of any conditions concerning these properties implicitly
acknowledges their possibility.

14

§4 Real-time asynchronous communication properties

In §3 we already described (real-time) communication properties of the
medium. Now we concentrate on the communication properties of the
processes. In the following we consider a programming language P with at
least the following properties: in P it is possible to declare and dynamically
start processes which can communicate by means of signals; the communica-
tion is asynchronous and signals can be sent by a send action and received by
a receive case action (we also assume that a receive case action has an optional
time-out mechanism, see §1.2 real-time aspect A).

In general, we need only the following axiom when describing a send action
in an asynchronous communication environment:

Ovsend € SEND [at(location(send))
— at(location(send)) U a fter(location(send))].

Note that this axiom expresses only that a send action terminates within a
finite amount of real-time (and that is exactly the asynchronous aspect of the
send action: there is no rendezvous mechanism as in CSP or ADA).

(83 {

For a receive case action the situation is far more complex.

Because we consider the possibility of a timed receive case action, we have
to introduce a timer and a "timerstart”-location for each receive case action.
We can describe by the following axiom that the timer expires ezactly at ¢
certain time after the arrival at the receive case action no matter whether a
signal does or does not arrive in the meantime:

OVrec € RECEIVE
[at(location(rec))
— lat(location(rec)) U —¢ at(timerstartiocation(rec))
A <> ~timevalue(rec)timer(rec) = 0]
A =< < timevalue(rec)[timer(rec) = O]]]:

In this axiom RECEIVE is the semantic domain corresponding to the receive
case action of P. Similar remarks about the structure of the domain RECEIVE
apply as in the case of the domain SEND (see §3); location(rec) has an
analogous meaning as for send € SEND ; timerstartlocation(rec) denotes the
associated timerstart-location of rec and timer the associated timer of rec;
timevalue(rec) denotes the maximum real-time during which control waits at
timerstartiocation{rec) for a signal to arrive. This axiom expresses the fol-
lowing: when program control transfers to a receive case action then the as-
sociated timer expires at the associated timevalue and not before. As the
timer expires exactly at the associated timevalue, it is conceptually impossible
(when considering the axiom above) to let in the meantime the control point
remain at the beginning of the receive case action (this would be selfcontradic-
tory as the control point at the beginning of the receive case action identifies
the beginning of the real-time interval in question and this beginning must

be a unique fixed reference point relative to which the timer runs). So the.

timerstart-location had to be introduced and the timerstart-location control
point had to be reached with no real-time elapsing. This accounts for the
clause at(location(rec)) U —g at{timerstartiocation({rec)) in the axiom above.

In general ome needs at least two more axioms for a receive case action to
describe the following:

1. the conditions which cause progress when program control is at a receive
case action

2. the action undertaken when program control is at a receive case action
and a signal arrives.

16

In the special case that the semantics of the receive case action of P is simply
to walit for a signal fo arrive with an optional time-out mechanism specified in
an else part to be executed when the time-out occurs, we can formulate the
following axioms to describe 1 and 2 above:

Ovrec € RECEIVE
[at(timerstartiocation(rec)) _
— at{timerstartiocation(rec)) U
(timer(rec) = OV Isend € SEND receivable(send, rec)]]

Ovrec € RECEIVE
[[at(timerstartiocation(rec)) A timer(rec) =0
A ~3send € SEND receivable(send, rec))
— at(timerstartiocation{rec)) U —q at(else(rec))]

OVrec € RECEIVE
[at(timerstartiocation(rec))
A dsend € SEND receivable(send, rec))
— Jsend € SEND
[[at(timerstartiocation(rec)) A recetvable(send, rec)] U —o
[at(chosenalternative(send, rec)) A I- arrived(send)]]].

The predicate recetvable(send, rec) in the axioms above indicates the conditions
for a signal corresponding to send € SEND to be received by the receive case
action rec € RECEIVE . In §3 we already stated that one of these conditions
is for example < afier(location(send)) which excludes the creation of ghost
messages. A further condition is of course arrived(send) (see §3 for the predicate
arrived). Other conditions are strongly dependent on P. In the second axiom,
else(rec) denotes the location belonging to the else part of the receive case
action. In the third axiom, chosenalternative(send,rec) denotes the location
belonging to the point whereto program control is transferred when receiving
send € SEND by rec € RECEIVE ; the clause - arrived(send) expresses
that this particular signal corresponding to send is uniquely identified (by the
location, in our refined semse, of send) and therefore will never arrive anymore.
The first axiom describes 1 above: when program control is at a receive case
action, progress can only be caused by a time-out or the arrival of a signal.
The second axiom then describes what happens when a time-out occurs and no
signal has arrived and the third axiom describes what happens when a signal
has arrived (i.e. it describes 2 above).

When P allows more than one signal to be receivable at a time, we can
impose a second fairness condition, namely fairness relative to the receipt of
signals (see §1.2).

Of course, a real programming language (e.g. complete CHILL) will
probably offer more possibilities to receive signals. However, practical ex-
perience at PTI has shown that the incorporation of axioms for such specific
cases is usually straightforward.

Other real-time features such as wait-constructs can be easily incorporated
in an axiom system. E.g. for a wait action we can add the following axioms:

Ovwait € WAIT
[at(location(wait)) .
— [at(location(wait)) U —¢ at(timerstartiocation(wait))
A <>=u/a'z'z‘\va.’ue(wait) after(timerstartiocation(wait))
A =< cwaitvalue(wait) @fter(timerstartiocation(wait))]]

Ovwait € WAIT
[at(timerstartiocation(wait))
— at(timerstartlocation(wait)) I

a fter(timerstartiocation(wait))].

The notations in these axioms are analogous to those in the axioms for a
receive case action. Comparing the first axiom above with the first axiom for
the receive case action, we see that the only difference is that a timer expires
after a certain period of time in the latter case while in the former the walt is
ended after a certain period of time. The second axiom is needed to describe
the situation where program control is really waiting at the wait action, i.e.
program control stays at the same location while it is still waiting. Notice that
vhe two axioms for the wait action could alternatively have been expressed in
one:

Ovwait e WAIT
[at{location({wait))
— at(location{wait)) U—o
lat(timerstartiocation(wait)) U= waitvalue(wait)
after(timerstartiocation(wait))]].

However, we consider the two axioms above easier to understand as they contain
no nested until operators.

18

§5. A programming example

As an illustration of the two fairness conditions (fairness of the medium
relative to the transmission of signals and fairness relative to the receipt of
sicnals), we now give a programming example written in a very small CHILL-
like programming language (see Appendix A for a complete syntax).

See next page for the programming example.

We first explain the syntax of this program.

A program consists of a single module with its body. A body comnsists of
data statements followed by action statements. A data statement is either a
declaration statement or a process definition statement. In this program the
variables i1,i2,i3 and source are declared. Variables always range over process
instances. pl,p2 and p3 are the names of the 3 process definitions of this
program. A process definition consists of a body and it can have several active
process instances at a time.

stands everywhere in this program for an arbitrary sequence of ter-
minating actions that do not interfere with the communication pattern already

given in the example.

A signal can be sent by a send action. A send action must specify a signal
identification (a number) and a process instance (the destination).

The do for ever action has an obvious meaning.

example:
MODULE

DCL i1,i2,i3,source;
pl: PROCESS,

SEND 1 TO i3;
DO FOR EVER,
RECEIVE CASE
SEND 1 TO i3;
ELSE ..-;
SEND 1 TO i3;
ESAC;
OD;
END;

p2: PROCESS;

DO FOR EVER;
RECEIVE CASE
ELSE AFTER 10

SEND 1 TO i3;
ESAC,
OD;
END;

p3: PROCESS:

DO FOR EVER;
RECEIVE CASE SET source;
SEND 2 TO source;
ESAC,
OD;
START p3 SET i3;
START pl SET il;
START p2 SET i2;

END;

A receive case action must specify a number (at least ome) of signal
identifications followed by a colon and some actions. We say that a signal
is receivable for a receive case action if its signal identification is one of the
signal identifications listed in the receive case action. If program control is
at the beginning of a receive case action there are two possibilities: at least
one receivable signal for the receive case action has arrived or mo such signal
has arrived. In the first case a unique signal (from the receivable signals for
the receive case action) will be received and control transfers to the actions
specified in the receive case action after the signal identification of the received
signal. In the second case (no signal arrived) the action undertaken depends on
the presence of an else part in the receive case action. If no else part is present
control will stay at the receive case action until (possibly never!) a receivable
signal for the receive case action arrives. If on the other hand an else part
is present program control will be transferred to the actions in the else part.
Real-time is incorporated in this minilanguage by allowing an additional after
part in the else part which specifies for how long (measured in some real-time
unit) the arrival of a receivable signal for the receive case action will be awaited
before control is transferred to the actions in the else part. A further option
for the receive case action is the identification of the sender of a signal. This is
done by the SET-option (see p2). It is used here to send a signal back to the
sender. :

Processes can be started by a start action. A start action must specify the
name of the process definition of which the started process becomes a process
instance and a start action may optionally specify a (declared) variable to which
the process instance of the started process is assigned (see the 3 start actions
at the end of the example).

- Now we can indicate the purpose of the two fairness conditions. In an
axiom system based on the temporal logic of §2 (used in a development group
of PTI) we can derive the following properties for this fragment:

1. in both il (the only instance of pl) and i2 (the only instance of p2)
infinitely many signals 1 are sent (see below for an informal deduction

hereof);

o

infinitely many signals 1, coming both from il and from i2, arrive at
their destination, c.q. i3, the only instance of p3 (this follows from 1
and the fairness condition for the medium);

3. in the receive case action of i3 infinitely many signals 1 coming from i1
and infinitely many signals 1 coming from i2 are received (this follows
from 2, the presence of the do for ever action in i3 and the fairness
condition for the receipt of signals);

4. infinitely many signals 2 will be sent, both to il as well as to i2 (this
follows from 3 and the fact that i3 sends its signals back to the sender):

We shall now informally derive point 1 above (the rest has already been
informally deduced from point 1). The case is easy for il as in every execution
of the do loop a signal is sent. This is however not the case for i2.

Now suppose that point 1 does not hold for i2. This means that only
finitely many signals 1 are sent in i2. Because in the else part of the receive case
action of i2 a signal 1 is sent, this else part is executed only a finite number of
times. But since the receive case action of i2 will be executed infinitely often,
this means that in i2 signals 2 must be received infinitely often. Therefore,
signals 2 have been sent to i2 infinitely often.

The only place in the program where signals 2 are sent is i3 (the only
instance of p3). However, i3 only sends a signal to some process after it has
received a signal 1 from this process (see the structure of the receive case
action in p3). This would mean that i2 has sent infinitely many signals 1. A
contradiction!

Hence point 1 is also valid for i2.

§6. Future work

A proof system for our logic will be worked out and a soundness and
completeness proof will be given. In particular a study of the consequences
of the introduction of the operators «® and U, will be made. Furthermore,
real-time arithmetic should be studied in our logic, e.g. U=¢ Oy P+ Oty p P
could be a theorem of our logical system.

Further study should be devoted to the application of the logical ideas
presented here to several other areas such as practical languages concerning
real-time processes and their (a)synchronous communication.

Acknowledgements

We would like to thank participants of a Dutch Working Group in
Semantics, especially Peter van Emde Boas and Jan Bergstra from the
Mathematical Centre in Amsterdam, and members of the Computer Science
Department of the University of Nijmegen for their helpful comments and sug-
gestions at the presentations of an earlier version of the paper. Furthermore,
we are grateful to PTI Hilversum for providing financial support to one of the
authors, R.Koymans, while working on this paper.

Q]
(%)

24

References

[ADA] " The Programming Language ADA, Reference Manual”,
Lecture Notes in Computer Science 106,
Springer Verlag, New York, 1G81.

[ASTESIANO & ZUCCA] Astesiano,E. and Zucca,E.
»Semantics of Distributed Processes Derived by Translation”,
Proceedings of the 11th GI-Jahrestagung,
Informatik Fachberichte 50, pp. 78-87,
Springer Verlag, New York, 1931.

[BERNSTEIN & HARTER] Bernstein,A. and Harter Jr.,P.K.
»Proving Real-time Properties of Programs with Temporal Logic”,
Proceedings of the 8th Sympesium on Operating Systems Principles,
pp. 1-11, ACM Special Interest Group on Operating Systems,
Vol. 15 No. 3 December 1981, New York.

[BRINCH HANSEN] Brinch Hansen,P.
"Distributed Processes: A Concurrent Programming Concept”,
CACM 21-11, pp. 934-941, 1978.

[CHILL] " CHILL Recommendation 7.200 (CHILL Language Definition)”,
C.C.LT.T. Study Group XI, The International Telegraph and Telephone
Consultative Committee, Geneva, November 1630.

[GERTH & DE ROEVER] Gerth,R.T. and de Roever,W.P.
" A Proof System for Concurrent ADA Programs”,
to appear in Science of Programming.

[HOARE] Hoare,C.AR.
" Communicating Sequential Processes”,
CACM 21-8, pp. 666-677, August 1973.

KUIPER & DE ROEVER] Kuiper,R. and de Roever,W.P.
"Fairness Assumptions for CSP in a Temporal Logic Framework”,
TC2 Working Conference on the Formal Description of
Programming Concepts, Garmisch, June 16932.

ILAMPORT] Lamport,L.
" 'Sometime’ is Sometimes 'NOT Never’' 7,
A Tutorial on the Temporal Logic of Programs,
SRI International CSL-86, January 1879.

no
(951

[MANNA & PNUELI] Manna,Z. and Pnueli,A.
"How to Cook a Temporal Proof System for your Pet Language”,
Proceedings of the Symposium on Principles of
Programming Languages, Austin, Texas, J anuary 1983.

[NHSPA,CHANDY & SMITH] Misra,J. ,Chandy, K.M. and Smith,T.
"Proving Safety and Liveness of Communicating Processes,
with Examples”, Proceedings of the ACM SIGACT-SIGOPS

Conference on the Principles of Distributed Computing,
Ottawa, Canada, August 1982.

[PNUELI & DE ROEVER] Pnueli,A. and de Roever,W.P.
"Rendezvous with ADA - A Proof Theoretical View”,
Proceedings of the AdaTEC Conference, Crystal City, 1932,

[SCHLICHTING & SCHNEIDER] Schlichting,R.D. and Schneider,F .B.
" Using Message Passing for Distributed Programming:
Proof Rules and Disciplines”, Proceedings of the ACM
SIGACT-SIGOPS Conference on the Principles of
Distributed Computing, Ottawa, Canada, August 1982.

Appendix A: the syntax of the minilanguage

To describe the context-free syntax of the minilanguage we use an extended
Backus-Naur Form, in which [T] denotes that a syntactic element T is optional
and {T}* denotes repetition of T zero or more times and {T }+ denotes
repetition of T one or more times.

<program> := [<name>:] MODULE <body> END;

<name> = <letter> { <letter> | <digit> }*

<letter> = a{b{c{d]e]f}g]h[i]j{kf1{m|n|o{p1q]r]s]t[u]v]w]x]y{z
<digit> = 0]1]2|3]4[5]6/7|8|9

<body> ::= <data statement list> <action statement list>

<data statement list> = { <data statement> }*

<data statement> = <declaration statement > |
<process definition statement >

<declaration statement> 1= DCL <name list>;
<name list> = <name> {,<name> }*

<process definition statement> ::= <pame>: FPROCESS; <body> END;

<action statement list> :1== { <action statement> }*

<action statement> == <start action>| <send action> |
<receive case action> |
<do for ever action>

<start action> = START <name> [SET <location>];

<location> 1= <name>

<send action> = SEND <signal identification> T0O <location>;
<signal jdentiﬁcation> 1= <unsigned integer>

<unsigned integer> = { <digit> }+

<receive case action> =
RECEIVE CASE [SET <location>;]
{ <signal receive alternative> 3t
[ELSE [AFTER <timevalue>>]
< action statement list>]
ESAC;

<signal receive alternative> 1=
< signal identification>: <action statement list>

<timevalue> ::= < unsigned integer >
<do for ever action> ::== DO FOR EVER;

<Laction statement list >
OD;

- - Appendix B: interactions of the operator <

In this appendix we describe the interactions of the operator < with all

non real-time operators. Let P and ¢ be formulae, then the following holds:

1.

0%]

-1

P — P
This is similar to <> (<@ is the "dual” of <>).

> PP

This is similar to <.

0P -0OP

See 1 for the reverse implication. The forward implication holds as the

“futare of the past includes the future of the present!

[P - P

The forward implication holds as 0Q — @ is a valid formula. The reverse
implication holds as the past in the present will also be the past in the
future! 4

> P e PPy <P

This states that € <> P or <> P is the same as P holding sometime
(in past,at present or in future)!

PV Q) PV a0

This is similar to <> .

> (PAQ)— < PAD>(Q

This is similar to <> (the reverse implication is false).

P - > P

This is similar to <> (the reverse implication is false). We can derive
8 from 1 by applying it twice (the first time in opposite direction}:
“«»P - -FP—- <P,

9. @ 3v€E D Plv)~3ve D o Pv) for all-sorts D
This is similar to <> .

10. Vv e D Plu)>Vve D < P(v) for all sorts D
This is similar to <> (the reverse implication is false).

11.(®»P—-©Q)»>(P—Q)
This is similar to <> (the reverse implication is false). We can derive 11 as
follows: if ~«® P, then according to 8 €& - P and hence - (P — Q) (as
=P — (P - @)); suppose therefore that <« P holds, then according to
the premiss we have <@ Q and hence «@(P— Q) (as@—(P—Q)). We
can furthermore remark that neither side of the equivalence is valid if we

replace — by +. -

12. & | ~ L

This is obvious as for every pair (¢,7) (c,]) ¥~ L.

13.T+~T

This is obvious as (0,7)F = L, hence (¢,7) E T for every pair (c,7).

4. @ (PUQ)—»=>P U ©(Q
The reverse implication is false. We can derive 14 as follows: remark that
S (PUQ)+~<>QVPUQ and <P U «» Q< o>QV (P)UQ are
valid; as PUQ — («>P)UQ 14 immediately follows.

15. @ (PiQ)— > Pli<Q
We will derive this and show that the reverse implication is false. Notice
that according to the definition of i, respectively 6 and 3, the following
holds:
©(PUiQ)~<(OPVPUQ)~
—~-@dPyv o (PUQ)~OPVv(PUQ).

For <« P { <« (Q, now according to the definition of i, respectlvely 4, we
have a similar property: .
Pl U PYV<SPlaQ-<>PVaPliQ.

Because OP — P — < P holds and <> (PU Q) — «» P I <> holds
according to 14, 15 immediately follows. Furthermore we see that the reverse
implication of 15 is false.

