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DATA MAPPINGS IN LARGE PARALLEL COMPUTERS *

(Invited Paper)
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P.0. Box 80.012, 3508 TA Utrecht, the Netherlands

Abstract. Parallel computers (such as vector machines and array-processors) feature
the availakility of many, highly pipelined processing units and many memory banks
that can be accessed independently in parallel at great speed. Aside from needing
adequately parallelized ("vectorized") algorithms, their application requires general
storage mappings for distributing vecteor data and retrieving it from memory at low
cost. Data mappings c¢f this kind, also kncwn as "skewing schemes", were first consid-
ered during the design of the ILLIAC IV in the late nineteen sixties. We survey known

results and recent advances of the remarkable theory of skewing schemes. °

1. Introduction. Ever since computers are being built, researchers and manufacturers

have looked for ways of designing faster machines. In the early nineteen fifties and

ur to the present day efforts focused on improving the technclogy and speed of indi-

<

idual components, with the increasing use of hardware overlap and pipelining (see

e.g. Lorin [16]). In the nineteen sixties the insight came that the von Neumann-type
computer architecture itself would have to be changed to achieve further speed-ups
execution. Schwartz [19] wrote in 1965: "The approach of present computers to speeds

at which the velocity of light becomes a significant design factor, and the continued
£zll in the price of computer components have directed attention to the use of paral-
lelism as a device for increasing ccmputaticnal power." The development that led to
vector machines and other "super computers" is cescribed in Hockney & Jesshope [11].
The improvements in computer speed were broucht about both by improved technelegy
and by radically different approaches to computer architecture, which led away from
the "seqguerntial" von Neumann-type architecture and gave rise to parallel (tightly
coupled; and distributed (loocsely ccupled) machine designs. The effectiveness of par-
allel machines was doubted in their early stages of development (see e.g. amdahl [1]
and Thurber & Patton [25]) but it appears that the machines are now viable in most
domains of scientific computing. The impact on e.g. numerical methods will be signii-
icant, although the investments for redesigning {"vectorizing") existincg software

will be high. New techniques of algorithm design for parallel and "systolic" computa-

* To be presented at the GI Jahrestagung, Hamburg, Oct. 4-6, 1983.



tion are only beginning to emerge (see Xung [13], Haynes et.al.[g), van Leeuwen [26].

Underlying each computer architecture is a mcdel of computation, i.e., a notion

of how computations are to proceed and of how components in an architecture interact.

A summarv ¢f thn

[0}

correspondences for present day architectures is given in figure 1

\from Béhm [2]). The following five broad categories of parallel computers are often
Model of Computation Corresponding Computer Architecture

A. Seguential control on | Al. vor Neumann-type computer
scalar data ‘ a2. Multifuncticn CPU

A>. Pipelined computer

B. Seguential control on I Bl. Vector computers
vector data } B2. Array processors
|
C. Incependent, communicating | Cl. Shered memory multiprocessors
processes ! C2. Ultra computers

C3. Networks of small machines

D. runctional and data-driven D1. Reduction machines

computation ] D2. Dataflow machines

Figure 1. Computer architectures and their
underlving computational model

distinguished: pipelined processors (including the CRAY-1/1S and Cyber 203/205), SIMD
machines (including multiprocessor designs such as the ILLIAC IV and the Burroughs
BSP) , array processcrs (a distinguished class of SIMD machines including e.g. the
AP-120B and the ICL-DAP), MIMD machines (distributed processor arrangements) and shared
memory computers (a class cf MIMD machines including e.g. the CRAV-XMP). The distinc-
tion between SIMD and MIMD machines was originally propecsed by Flynn [6] (see also
Stone [23]). all parallel computers fit the global form suggested in figure 2, with
many differences in the way the varicus "sections" are realized. For example, the
transport secticn is a highly pipelined data channel in some computers and a single-
stage or multi-stage processor /memory interccnnection network in other designs (see
e.g. Thurber {24]). Memory is invariably opartitioned, and is éistributed as local

Y
storage over the individual processors cr is divided into M memory banks for global

access. In scme machines M is a suitable power of twe (M=8 for the Cyber 205, M=16
for the CRAY-1) whereas in other designs M was specifically chosen to be a prime num-

—

ber (M=17 in the Burrcughs ESP, see also Lawrie & Vora [13]).



processor section - < ﬁ:::i > <<}::::£:> (host contrcl)

l transport & alignment ’ < C:>

control section

T
M memory modules <:}:::i:> <:}:::i:> input/output

Uy

Figure 2. Global block diagram of a
parallel computer

The effectiveness of (SIMD-) machines derives from the fact that in one cycle a
complete vector of M datd items can be fetched by simultaneous access to each of the
M memory Dbanks, which can subsequently be piped to the processor section through the
data charnnel or alignment network. Large vectors must be broken up in chunks of size
SM and are retrieved by multiple "parallel fetches”". Kuck [12] (see also Budnik & Kuck
[3]) has shown that the optimal benefit from "parallel memories" requires non-trivial
Cata-mappings or storage schemes, in order that vectors and blocks of data that are
needed in the course of an algorithm are indeed available from distinct banks.

For example, storing an NxN matrix (NSM) with one column in every bank allows fully
parallel access to every row and diagonal in cone cycle but forces seguential access
for retrieving the elements of every column. On the other hand, a "skewed" organiza-

tion as shown in figure 3 (with M=5) alleviates these difficulties at least for YOWS,

200 %03 %01 |, B %02
%12 %10 213 %11 B

- = 220 23 221
%31 B %32 *30 233

Figure 3. Storing a 4x4 matrix
into 5 memcry modules



celumns and forward and backward diagonals.

Whenever a set of M data items must be retrieved but is not available frem distinect
banks and (hence) cannot be retrieved as an M-vector in one cycle we speak 0f a "con-
flict". Fcllowing the terminology of (121, any storage scheme s that maps the elements
of an NxN matrix to M memory banks and provides for the conflict-free access to various
vectors of interest is called a "skewing scheme". We often assume that M2N (an obvious
condition for conflictfreeness) and number the memory banks from O to M-1. In this
paper we shall survey known results and recent advances in the remarkable theory of
skewing schemes. For most proofs we refer to the published literature and to Wijshoff
& van Leeuwen [28], [2¢], [30] and [31].

Even though M is "small" in current parallel computers (but designs exist with
M up te 321) the thecry will be presented in general terms. Also different interpreta-
tions make the general theory applicable in other domains of parallel computing e.g.
the design of (parallel) raster graphics processors. The assignment of pixels to pro-
cessor chips with the condition that e.g. 8x8 boxes of them can always be updated
rapidly (thus, with parallel processing of the pixel infecrmation) as studied in Chor,
Leiserson & Rivest [4] is just another instance of the theocry cof skewing schemes.
Combined with assumptions of "unbounded parallelism" (see [26]) in processing power,
the use of concrete datz mappings makes the analyses of parallel algorithms more re-

alistic (see e.g. Montove & Lawrie [17]).

2. Data mappings. The theory of skewing schemes was initiated in Budnik & Kuck [3]

and Lawrie [14], and developed further by Shapiro [20]. & skewing scheme s is a mapping
from [C..N-1]x[0..N-1] into [0..M-1] assigning the "cells" of any NxN matrix to the
available memory banks. Shapiro [20] argued that if a valid skewing scheme with some
hereditary property is to exist for every N large enough then we may as well assume
that there is a single, valid skewing scheme defined on the entire 22 (as the ultimate
matrix domain) . Validity almost always refers to the conflictfreeness of s for retriev-
ing any set of elements arranged according tc some specified data template T.

The simplest and most commonly used skewing schemes are the "linear skewing schemes"

defined bv
s(i,3) = ai+bj (mod M)

for suitable a and b. The theory of such schemes will be developed in section 3. The
use of linear skewing schemes explains why M is preferred to be prime: it makes ZM
a field, and desirable properties of s hcold almost regardless the values of a and

b. (There are algorithmic reasons as well, see e.g. Hockney & Jesshope [11] ch. 3.}
T

raditionally linear skewing schemes are introduced because, when the parameters are

n

et right, they easily provide conflict-Iree access tc common vectors cof interest



such as rows, columns and diagonals of a matrix with almost no computational (or hard-
ware!) ccsts. An additional reason is that "linearly skewed" vectors can be unscram-
bled, i.e., brought back to non-permuted order quite easily as well. If processor(s)
and memcries are connected by a switching network, then it may be harder to compute
the reguired control vectors. Lawrie [14] has shown that this can usually be done for

the Omega network (of order M=2m), the log M-iterate of the common shuffle-exchange

network.

‘ ) - . th .
Definition. A d-ordered k-vector is a vector of k elements whose i logical element

(02i<k) is stored in memory bank c+di (med M), for some constant c.

Theorem 2.1({14], [30]). A d-ordered k-vector can be accessed conflict-free if and

only if M2k.gcd (4,M).

Theorem 2.2 ([30]). & d-crdered k-vector can be accessed in r conflict-free fetches

12 and only 1 M2(|%ZL] +1)gca(a,m .

k=1

(k-1)gcd (a,M) a1
M )
conflict-free fetches (where each fetch operation retrieves a d-ordered subvector),

Hh

It follows that a d-ordered k-vector can be accessed in precisely L

wnich is optimal. The simple results for d-ordered vectors are only of limited use
because aside from xows, columns and diagonals only a few other classes cf vectors
can be mclded into a "d-ordered" form for a given s.

Clearly more general skewing schemes are only practical if they can be described by
a small amount of tabular information or by a simple formula. General skewing schemes
that fit this description were called “"periodic skewing schemes" by Shapiroc [20]. The

thecry of such schemes will be developed in section 4 (from [29).

Definition. 2 skewing scheme s is called regular if and only if the following property

. g - .
is satisfied for &all cells p,c€Z : if s(p)=s(g) then any pair of cells that are in

the same relative position as p and g are mapped to equal banks.

Definition. A skewing scheme s is called periodic if there are M cells a,,...,aM and
ZeL AL 20n 1

d& lattice L such that (i) the "cosets” ai+L (12isM) are all disjoint but cover the
. 2 . . . : .
entire Z , and (1i) s maps all cells in &.+L tc memory bank i. (We shall call s peri-

"

ocdic "with lattice L" and call L the lattice

"

of s".)

For the elementary notions concerning integral lattices (basis, fundamental arallello-
= 2 r

gram, determinant, reduction modulo a lattice) we refer to [7].
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Thecrem 2.3([29]). 2 skewing scheme is periodic if and only if it is regular.

In generzl skewing schemes are designed for obtaining conflict-free access to ar-
. In

k
case of a2 single template T the smellest number of memory banks needed obviously is

rangements of cells that belong to a specified set cf data templates T1,...,T

M=|T| (the size of T) but more banks may be reguired. In general the problem arises
of finding the smallest number of memory banks for skewing data so as to have conflict-
free access for a set of templates of interest. The following result of Shapiro [20]
links the theory of skewing schemes to the combinatorial theory of packing and covering

(a2 simplified proof is given in [28];.

>

Theorem 2.4. There exists a valid skewing scheme for template T using exactly M=|T|

memory banks if and only if T tessellates the plane.

(Here te

0

sellations are assumed not to involve any rotations or reflections of the
template.) Through many combinatorial interpretaticns data mappings that provide con-
flict-Zree access relate tc several deep problems in mathematics.

The strict reguirement of conflict-free access is a thecretical cne because the
number of memory banks, however large, is fixed and the vectors that arise in any
practical algorithm will be much larger and vary in length. Thus conflict-free access
1s a reguirement to guarantee a "minimum" number of foldings of a vector of interest,
hence the number of parallel fetches regquired to assemble the full vector from memory.
Clearly problems arise 1f a vector is "scattered" and the hardware (as in the CRAY)
needs to transport data in blocks of fixed length to and from a register-file. In this
way hardware-dependent considerations enter into the choice of a data mapping for a
problem and consequently, in the design of the parallel algorithm. A data mapping and
an algorithm that perform well on one machine may do badly on another machine because
of differences in the handling of scrambled vectors by the hardware (and many other
features of the architecture!). As noted by Lawrie & Vora [15] it is likely that future
computers will depend less on minimizing conflicts in array accesses and more

on mere average time considerations. One possibility would be to map data by parallel

nashing
3. Linear skewing schemes. We consider linear skewing schemes s with s(i,3) = ai+bj

(mod M), some a and b, for 02i,j<M. We assume that s uses all memory banks, which is
the case precisely when (a,b,M) = 1. Skewing schemes of this kind will be called
Two linearx skewing schemes s and s' may very well be eguivalent, in the semnse

that one can be obtained Irom the cther by a suitable renaming of the memory banks.
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For example, when M is prime s(i,j) = ai+bj(mod M) is equivalent to s'(i,3; = i+a b3

(mod M) and there are only M essentially different linear skewing schemes. For M arbi-
trary this is no lenger simple. Let s(i,j) = ai+bj(med M) and s' (i,3) = &'i+kb '3 (mod M),

ané let

a

Theorem 3.1 ([30]). Two proper linear skewing schemes are egquivalent if and only if

A(s,s') = C (mod M).
Thecrem 3.2([30]). The number of essentially different (i.e., non-eguivalent) proper

linear skewing¢ schemes using M memory banks is O{(M log log M).

Given a linear skewing scheme s(i,j) = ait+bj (mod M) that is used fcor storing an

-

\

NxN matrix (M2N) it 1s easily seen that (i) rows are kb-ordered N-vectors, (i1i) cclumns

are a-ordered N-vectors, (iii) non-circulant diagecnals of length k are {a+b)-crderad
k-vectors (1sksSN) and (iv, non-circulant anti-diagonals of length k are (a-b)-ordered
k-vectors (12ksN). Using thecrem 2.1. we obtain simple conditions for s in order that

it provides conflict-free access to rows, cclumns and non-circulant diagonals and anti-

diagonals (cf. Lawrie [14]):

N.gcd (a,M)

[\

N.gcd (b,M)

[\

N.gcd {(a+b,M)

2 R R X
Y%

[\

N.gcd (a-b,M) (a#b)

Conditions (*) are clearly satisfied when M is chosen as the smallest prime 2N (for

N>3) .

Theorem 3.3([30]). In crder to have conflict-free access to rows, columns and non-
circulant diagonals and anti-diagonals using a linear skewing scheme, the smallest

number of memory banks reguired is

N if 2/N and 3}N
N+t if 2|N and N=0,1 (mod 3)

M = .
N+2 if 2/N and 3IN
LN+3 1f 2N and N=2 (mcd 3)
Morecver, it is pcssible tc achieve this in all cases using the scheme s(i,3) = 1i+23



Note that theorem 3.3. extends the observation of Budnik & Kuck (3] {see alsc Lawrie
[14])) that there is no linear skewing scheme to store an NxN matrix ‘n N memory banks
and have the desired types of conflict-free access when N is even.

Clearly different conditions will arise when the set of vectcrs c? interest is
changed. We shall study the case of obtaining conflict-free access to rows, columns
and full circulant diagonals and anti-diagonals. (Note that the latter no longer are

"d-ordered".) Shapiro [20] has taken an even more general approach.

Definition. An (x,y)-line in an NxN matrix a is any N-vector cf elements

a , L L. with 0$j<N, some c and 4.
c+vj (mod N),d+x3 (mod N)

Thecrem 3.4([21]). There exists a linear skewing scheme using N memcry banks that pro-
vides conflict-free access to every (x,y)-line with (x,vy) € {(xi,yi) | 1€isk} if and
only if there exist integers a and b such that for all 1S8isk : gcd(axi+byi,N) = 1.

It easily follows that no valid linear skewing scheme for conflict-free access to rows,
columns, circulant diagonals and anti-diagonals with M=N exists when 2|N or 3|N. (We
will see shortly that a scheme does exist in all other cases.) Of great interest is

the Zcllowing result of Shapirc [22] that requires a deep analysis.

Theorem 3.5([22]). If there exists an (arbitrary!) skewing scheme using N memory banks
at all that provides conflict-free access to every (x,v)-line with (x,v) belonging

to & given set L, then there exists a linear skewing scheme using N memory banks that

\Q

is conilict-£free on these lines.

The case of M=N that we consider here has interesting connections tc other mathematical
roblems. In the statistical analysis of experiments any assignment of the numbers

I tc N to the cells of an NxN matrix such that (in our ¢ rminology) conflict-free ac-
cess 1s provided to rows, columns and all circulant diagonals and arnti-diagenals, is

called a Knut Vik design {after Vik [27]). In 1973 Hedayat & Fecerer [10] showed that
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columns and all circulant diagonals and anti-diagonals can be translated in terms of

1
the pecsitioning of (ncn-attacking) "superqueens” on a chessboard. Supergqueens were

et

introduced a

w0

caxy

n

y as 1218 by Polya [18] and defined to have the nermal attacking
moves of a chess queen extended by "wrap around". Shapiro [22] proved essentially the
same result as Hedayat's (but independently of it) in his "Polya Superqueen Theorem":

N non-attacking superqgueens can be placed on an NxN chessboard if and only if 24N and



3/N. By Theorem 3.5. it follows that in this case there will even be a linear skewing
scheme. Interestingly enough the construction of Hedayat [9] &id exactly previde such

& scheme, using some observations due to Euler [5].

Theorem 2.6([9], [22]). There exists a (proper) linear skewing scheme using M=N memory
banks that provides conflict-free access to rows, columns and all circulant diagenals

and anti-diagonals if and only if 2/N and 3}N.

For all other values cf N we will need a number of memory banks strictly larger than
N to have the same effect. Wijshoff & van Leeuwen [30] show that M can be bounded by
the smallest prime >2N+1 (when 3/N then the smallest prime 22N+! will do).

The more practical case when M<N and vectors must retrieved by multiple (conflict-

free) fetches has been studied in [30].

Theorem 3.7([{30]). Given N and M, there exists a linear skewing scheme to stocre an
NxN matrix 1into M memory banks such that every rookwise connected template of t cells
can be retrieved by means of at most Lt/VMj +1 conflict-free fetches of vectors from

the M memory banks.

4. Periodic skewing schemes. Originally Shapirc [20] defined "periodic skewing schemes”

through the reguirement that they be determined by some KxK table to which all arguments
{2,]) are recuced modulo K. We now know that the proper approach is through the theorvy
cf integral lattices. Let s be determined by the lattice L generated by the vectors

=

u = {u, ,u,) and v = (v_,v.), and let
1772 1772

AlL) =

be the (absolute value of) the determinant of L. A fundamental relationship is express-

ed in the follewing result.

Theorem 4.1([29]). The number of memory banks used by a periodic skewing scheme is

egual to the determinant of its underlying lattice, i.e., M=A(L).

We shall see in a moment how the thecry of integral lattices is applied further.

Theorem 4.2([31]). Every linear skewing scheme is periodic.



There are several indications for the centrzl role of periodic skewing schemes in
the general theory. If cne wants to achieve conflict-free access to (x,vy)-lines by
some skewing scheme, then theorem 3.5. (due to Shepirc [22]) expresses that it must
be possible using a linear, hence a periodic skewing scheme. It appears that alsc for
many other templates that can be skewed there exists in fact a valié periodic skew-
ing scheme. Define & polvomino tc pe any rookwiss connected arrangement (template) of

cells with no "holes". By a deep analysis Wijshcif & van Leeuwen [28] were able to con-

firm the following conjecture of Shapire [20].

- 1 -

Theorem 4.3([28]). Let T be a polyomino. There exist a valid (arbitrary) skewing scheme
for T using |T| memory banks if and conly if there exists a valid periodic skewing

scheme for it using |T| memory banks.

Combined with theorem 2.4. it follows that whenever a polyomino T tessellates the plane

z,
e
ct
by
t
=y

it can tessellate the plane periodically, i.e. e instances c¢f T arranged ac-

cording to & lattice. This fact leads to an interesting corollary.

,r

Theorem 4.4([28]) here exists a polynomial time algorithm to determine whether a
vpolycmino tessellates the plane or not. (Recall that no rotations cr reflections of

the polyomino are allowed.)

Using elementary lattice thecry it is possible to prove a kind of converse to thecrem

4

w
W
3
[oN
t
O

link tessellations and periodic skewing schemes in a strong sense.

]1). For every periodic skewing scheme £ using M memory banks there ex-
ists & data template T of size M such that s is valid for T (cr: T tessellates the

plilane periodically with the underlying lattice ¢f s). T can in fact be chosen to be

a rectangle.

The intriguing conclusion is that polyominos thet tessellate the plane are always
eguivalent tc a rectangle, modulo the propér lat

Linear skewing schemes have the desirable prcoerty that they are extremely easy
to evaluate. (We have only shown the mapping to memory banks, but the assignment of

thin the banks follows a simple algcrithm as well.) For periodic skewing

Jr

addresses w
schemes this is not necessarily much harder. Let the lattice of s be generated bv the

vectors u = {u, ,u.; and v = (vl/vz), and assume the lattice is strictly 2-dimensional
< <

{i.e., non-degenerate).



N

Theorem 4.6{[31]). A periodic skewing scheme s is essentially linear (i.e., linear
after a suitable renumbering of the memoryv banks) if and only if (ul,uq,vl,vﬁ) = 1.

< Z
The procf involves scme elementary number theory. For general periodic skewing schemes
there exist Zairly simple evaluation methods as well. The following result reconciles

our notion of periodicity using geometric lattices with Shapiro's.

Theorem 4.7 ({29]). Every periodic skewing schere s using M memory banks can be com-

pletely described by an MxM table a such that s{i,3) = al[i mod M,3 mod M].

2 e o C . -
Thus a table of size M~ is sufficient to "drive" any pericdic skewing scheme. To do
better, observe from theorem 4.5. that every lattice has a fundamental region that

is a rectangle. It has the "natural" form of a table and by theorem 4.1. it must have
g ),

size M. One can show that the rectangle can be chosen to be of size gcd(u2,v2) by
M/gcd(uﬁ,v2> using the earliier noctation.

V4
Theorem 4.8([29]). Every periodic skewing scheme s using M memory banks can be com-

pletely described by a table of size M and a simple look-up procedure.

The look-up procedure is given in [29] ang essentizlly performs the required reduction

modulo the lattice to the fundamental rectangle.

5. Conclusion. Parallel algorithms reguire that processors and memories communicate
data at great speed. Depending on the architecture of a machine, data may be communi-
cated over an interconnection network or through a data channel to and from the pro-
Ccessor section. To achieve optimal simultazneity of the transports, parallel algorithms
heavily depend on a suitable initial and runtime distribution of the data over the pro-
cessors and/or the memories. In systolic algorithms the data are more or less rhythmi-
cally paszsed among the processors but in vector machines entire klocks (vectors) of
data must be stored in and retrieved from a specified number of memory banks. Sui;able
segmentations and data mappings are crucial to the success of these machines, together
with the availability of algorithms that cperate efficiently con the parallelized data
sets. As almost nc two high-speed parallel computers are similar from the architectural
viewpoint, non-trivial machine-dependencies characterize the domain of "vectorization".
Some machines (such as the Cyber 205) need relatively large start-up times and thus
become competitive with the larger "sequential" computers only when sufficiently large
vectors are nanipulated. In this paper we have shown some of the results that are

emerging towards a general understanding cf (static) parallel data structures.
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