vakgroep informatica R,U, Utrecht

TRANSITION LOGIC
how to reason about temporal properties

of programs in a compositional way

Rob Gerth

RUU-CS-83-17
November 1983

Februari 1984

0 o Rijksuniversiteit Utrecht
& % .
< L]
& 3. Vakgroep informatica
e 347 "
7 AR Budapestlaan 6 3584 CD Utrecht

Corr. adres: Postbus 80.012 3508 TA Utrecht
Telefoon 030-53 1454
The Netherlands

vakgroep informatica R,U, Utrecht

@3\0/3

TRANSITION LOGIC
how to reason about temporal properties

of programs in a compositional way

Rob Gerth

Technical Report-RUU-CS-83-17

November 1983

Februari 1984

Dspartment of Computer Science
University of Utrecht
P.0. Box 80.012
3508 TA Utrecht
the Netherlands

TRANSITION LOGIC

how to reason about temporal

properties in a compositional way

ROB GERTH
Department of Computer Science, University of Utrecht

P.0. Box 80.012, 3508TA Utrecht, the Netherlands

ABSTRACT.

This paper addresses the problem of obtaining for-
mal proof systems that support reasoning about tem-
poral properties of parallel programs in a way that
is compositional or 'syntax directed' - the distinc-
tive feature of e.g. Hoare style proof systems.

Now, temporal properties of programs express proper-
ties about execution traces of these programs. In
the presence of concurrency, compositionality is ob-
tained by concentrating exclusively on the execution
traces associated with the atomic actiomns of pro-
grams - the so-called transitions of those programs.
To reason about such transitions in a compositional
way, 'Transition Logic' is proposed, expressing prop-
erties of the form "every transition of a program,
say @, that starts in a state satisfying assertion
P, must end in a state validating q": [plalq].
Essential is that these assertions can express prop-
ercies of control locations of programs, too. For
this logic, a compositional proof system is obtained
which is proved to be sound and relatively complete.
An interesting feature of the proof system is the
axiomatization of the flow-of-control of programs,
The relevance of this logic is supported by the

fact that the temporal behaviour of a program is
ultimately provable in terms of properties of its
transitions, as shown by the work of Z. Manna and

A. Pnueli [16],

TO APPEAR AT THE 16th ACM STOC

1. INTRODUCTION.

The motivation for this research originates from the
principle that the development of a program and the
verification that it meets its specification should
proceed simultaneously and should guide each other.

This paradigm has found forceful proponents in,
e.g., E.W. Dijkstra [6] and D. Gries [8]. Whether it
is a practical one is debatable. However, the prin-
ciple is of obvious methodological value and it makes
sense to study its consequences for verification
techniques.

What are those consequences? Firstly, as the veri-
fication effort should guide program development,
it should reflect the way in which programs are com-
posed from its (sub-) programs. I.e., the method
should be syntax directed. Secondly, high-level lan-
guages allow (sub-) programs to be viewed as black
boxes: Only the beliaviour is relevant, not the way
this behaviour is achieved. Hence, verification
should be based on specifications of programs only.

Consequently, the following principle is implied:

The specification of a program should be verifiable
in terms of the specifications of its (syntactic)

subprogranms.

It is not difficult to discern Fregé's notion of

semantic compositionality in this statement nn.
The principle neatly demarcates various approaches

to program verification:

(1) For input-output or partial correctness proper-

ties of sequential programs, one may contrast Floyd's

non-compositional 'inductive assertion method' [7],

These investigations were supported by the Foundation
for Computer Science Research in the Netherlands
(SI0N) with financial aid from the Wetherlands Orga-
nization for the Advancement of Pure Research (ZWO).

with Hoare's compositional 'Hoare logic' [10].

(2) For similar properties of concurrent programs,
one can oppose Owicki's non-compositional notion of
'interference freedom of proofs' [20], against
Lamport's compositional 'Concurrent Hoare Logic' {121,
(3) For general temporal properties of concurrent
programs, there is the work of Manna and Pnueli {16].
They reduce such properties to properties of
so-called transitions - traces associated with ato-
mic actions. To verify such transition properties,
Floyd's inductive assertion method is extended. This
contrasts with the current paper which proposes
Transition Logic, supporting compositional reasoning

about such properties.

The work of Z. Manna and A.Pnueli shows that the
temporal behaviour of programs is provable in terms
of transition properties. The motivation, for the
present paper, to concentrate on transition proper-
ties goes deeper, as they are essential to obtaining
compositionality. In the presence of concurrency,
execution of a program is, in general, influenced
by the (concurrent) actions of its environment, i.e.,
by the actions of the program(s) executing in paral-
lel. Only for atomic, indivisibly executing, programs
does it make sense to consider them in isolation from
the environment.

This is obvious for the interleaving model of
concurrency - adopted in this paper - in which atomic
statements are executed one at the time. It is defend-
able for other models of concurrency, too, such as
A. Salwicki's maximal parallelism [22] or the partial
order semantics of W.Reisig (2!], both grounded in
Petri-net theory: If moves are in conflict, their
execution is mutually exclusive. If they are conflict
free, this intuitively means that execution of one
move does not influence the execution of the others.
In that case, one can view such moves as being execu-
ted in a strict but unspecified order; no change in
the computed values will ensue.

The execution trace of a program within an environ-
ment is construed as being formed from the transi-
tions of the program and the environment. The order-
ing of the transitions in the trace reflects the
flow-of-control during execution., Consequently, in
Transition Logic a program is viewed as offering a
set of transitions which it can perform, subject to

constraints imposed by the syntactic structure of

the program, on the order in which the transitions
can be taken; i.e., as a set of transitions constrain-
ed by the flow-of-control of the program.

Program specifications in Transition Logic take
the form{plalql: Any transition of the program a
that starts in a state satisfying the formula P, must
end in a state satisfying Q. To specify the flow-of-
control, locations within programs will be labeled
and these labels may appear in the formuiae of the
logic. Such labels also allow specifying the behav-
iour of each individual transition.

The next section introduces Tramsition Logic in
more detail and define§ the syntax and semantics of
the logic w.r.t. a simple programming language - es-
sentially while programs with parallel composition
and variable sharing. Section 3 presents a formal
system for this logic. Because validity depends on
control locations too, the proof system contains an
axiomatization of the flow-of-control in the programs
discussed. The connection with temporal logic is de-
scribed in section 4. Section 5 addresses issues of
soundness and completeness. To render the rdle of the
control-flow axiomatization explicit, first the basic
properties on which completeness is based are formu-
lated. Then, relative completeness of the logic is
proved w.r.t., these properties. Finally, section 6
contains a conclusion and discusses some directions
for further research.

This paper is clearly influenced by Lamport's work
on invariance properties of concurrent programs, [12].
Lamport was the first to propose axiomatizing the
flow-of-control, in the context of program verifica-
tion. His 'Concurrent Hoare logic' was formalized by
P. and R. Cousot in [5] . That paper contains a care-
ful and abstract, language independent, analysis of
the assumptions upon which completeness of the logic
is based, that is of relevance to this paper, too.
In [2], K. Apt and C. Delporte use similar ideas to
prove certain eventuality properties of sequential
programs.

The idea that control-flow forms an important as-
pect of concurrency is wellknown. That the formal
study of flow-of-control is the fundamental principle
behind compositional reasoning about properties of

concurrent programs, seems to be less often realized.

2. TRANSITION LOGIC

Concurrency poses problems for compositional reasoning.

This is already apparent on a semantical level:
Consider programs asX:=2 and BaX:=l;X:=X+l., For sim-
plicity's sake, assume that the states of both pro-
grams consist of the single variableX, and let any
execution start in the state satisfying x=0, i.e.,
in state 0. Denote the execution traces of & and B
by (0,2) and (0,1,2), respectively. Now, consider
the parallel execution of a and 8: elg. In any rea-
sonable semantics, the moves of a and B will be in-
terleaved. Hence, for alB the trace set {(0,2,1,2),
(0,1,2,3, (0,1,2,2)} is obtained. If the semantics
of a program is defined as the set of its traces,
then the principle of compositionality entails that
the traces of alB8 should be obtainable from the traces
of a and B. But how is one to construct, e.g., the
trace (0,1,2,3) from the traces (0,2) and (0,1,2)?
Such traces simply provide too little informationm,
as state-changes caused by actions of the environ-
ment (B) of program a are ignored.

A similar observation can be made on the level of
program specifications: The assertion x<2 is an in-
variant property of the trace(s) of both & and 8.
This is expressed in a temporal logic like notation
by: a:a(x<2) and B:0(x$2). But although both a and 8
satisfy the same specification, alg:o(x<2) is not
valid, whereas ala:0(x<2) is. Again, too little in-
formation is provided to support compositionality.

The semantics of an atomic program can be defined
as the set of its traces, because no concurrent ac-
tion can change the program's behaviour. This suggests
that the semantics of a non—atomic program may be
cauched in terms of the sequences of atomic programs
it can execute. More precisely: The semantics of a
program will be a set consisting of sequences of
traces; each such trace corresponds to the execution
of an atomic action within the program. The ordering
of the traces in a sequence, reflects the control-
flow within the program. As there is no information
about the actions of the enviromment that may inter-
leave, no relation will be assumed between the values
of the program variables as recorded in the end-state
of a trace and their values as recorded in the begin-
state of the next trace in any trace sequence.

As an example, the trace sequences of the programs
a and B8 above, are (a,2) and (b,1)(c,c+l), where a,
b. and ¢ denote arbitrary values. The set of trace
sequences of glg is obtained, simply by interleaving

the traces in the sequences of its components:

{(a,2(b,D(cre+l) » (b1(a,D(crec+l) 5 (b (crel)
(a,2)}. Once it is decided that alB executes in an
empty enviromment, the execution traces can be recon-
structed: As no actions will interleave, in the sec~
ond sequence necessarily a=1 and c=2. The correspond-
ing trace is obtained by ignoring duplicate states;
hence (b,1,2,3) . These ideas on compositional seman-
tics for concurrency are not original; see €-E:.» (1,
4) and for early references relating these ideas to
the notion of resumptions, [3, 18].

Transition Logic concentrates on properties of
trace sequences. This means that for any program, the
logic must be able to specify the behaviour of its
atomic programs and the (syntactic) constraints on
the flow—of-contrdl that the program imposes. For the
latter, every statement in a program must be labeled
and these labels can be used as propositions in the
(state-) formulae of the logic. The program state is
extended to provide truth-values for the program
labels. Predictably, if a label, %, is true in a state
this means that in this state control within the pro-
gram resides at the location labeled %. A vital obser-
vation is that, whereas the environment can alter the
values of the variables of a program, it cannot change
the values of the labels in the program; i.e., it can-
not modify the location at which control resides in
the program. It is this fact that makes it possible
to axiomatize the flow-of-control, necessary to ob-
tain a complete proof system.

During execution of an atomic program, no actioms
interleave. Hence, two atomic programs are for all
purposes equivalent, whenever they have the same in-
put-output behaviour' . This is reflected in the basic
formulae of Transition Logic, [plalql, in which atomic
programs are viewed as transitions, transforming in-
put-states into output-states: Any transition in a
transforms a state satisfying p into a state satisfy-
ing q (remember that p and q may contain label-prop-
ositions).

‘One last point needs to be considered. If one wants
to prove, say, [pla;8(q]l it would seem sufficient to
show that [plalq] and [p]lBlq]: The transitions of a;8
are just the transitions of a plus the omes of B.

For that matter, the same observation applies to a

'"Having no output (-state) counts as behaviour, too.
Of course, if one wants to distinguish between, e.g.,
failure and divergence, a special divergence (or fail-
ure) state is needed.

proof of [plals{q]. Now a problem arises, because p
and q will, in general, refer to labels im o and in
8. However, in the transition sequences of a, nothing
can be assumed about the truth-values of 8's labels
(and vice versa), as this entirely depends on the
context in which a and B occur. In a context a;8, no
label of B can be true when control remains within a;
this is not so in a context alg. These connections
between the control locations of a and B are quite
important. They form the reason that, e.g., the for-
mula [truel ((x:=1;x:=2)2:)[2==2] is a valid one,
whereas a change of sequential into parallel composi-
tion in this program, invalidates it. Hence, Transi-
tion Logic allows formulae to appear in context:
<B([plalg]l>, where 8 is a context in which a occurs.
Such contexts enforce conditions on the label-valu-
ations of states occurring (in this case) in the
transition sequences of a. Such states must have
label-valuations which are consistent with the syn-—
tactic structure of the context. I.e., a formula
<a;B|in{a)=Tin(8)> will be valid, whereas the formula
<alglin(a)=in(g)> will not be valid (; in{a) ex-
presses that control resides within a).

Introducing contexts solves the problem, but it
is not claimed to be the only feasible solution. An-
other solution might be to disallow formulae [P}e[q],
in which p or g contains labels that do not appear in
a. There is a trade-off here, between simple proof
rules and simple semantics. This paper opts for the

simpler proof rules.

syntax.

Start with some Ist order similarity type t, which
defines the predicate, function and constant symbols
that appear in the programs and formulae, and a se-
cond similarity type 1, which defines a countable set
of O-ary predicate letters (i.e., propositions) %o,

21, ++., disjoint from t, and functioning as labels.

Definition 2.0. The set of programs over t and 1,
PROG(t1), is inductively defined as the smallest set

X such that

(1) (2.x:=e.2')€X and (£.b?.2')€EX for all distinct
labels £ and ', variables X, and terms e and for-
mulae b (atomic, if one wishes) over t

(2) a,86X = (2.c0B8.2')€X where (a) o is of the form
U, ;, *or §, (b) no label in a (B) may appear in 8
(a), and (¢) £ and ¢' are distinct labels not appear-

ing in a or 8.

PROG(t1) is the set of regular programs with merge
over assignments and tests. The program a*8 is equiv-
alent to u;(B;a)t and is introduced for technical
reasons as explained in the next section. Note that
o5 true?*a) .

Definition 2.1. Tramsition Logic, TL{t1), is defined
as the smallest set X such that

(1) <Blp>€ X for programs B and formulae p over t!
(2) <gliplalgl>€ X

of 8 and formulae P and q over tl.

for programs 8 and subprograms &

There is no constraint on the labels that appear in

p and q. Some notation:

(1) LAB(a), LAB(p) ~ the set of labels appearing in
program a respectively formula p,

(2) F{s) - the lst order formulae over S,

(3) <Ble>> -~ a is a subprogram of B,

4) <Blela> - 2 occurs in a subprogram of 8 that can
be executed parallel to a. Formally: There are pro-
grams a and vy and labels m and m' such that Gla>,
2€LAB(y) and either <Bl(m.yla.m')> or <Bl(m.aly.m')>
(5) if a=(1.8.2') then 'a 2¢, o’ 2 ¢' and

& 2 (V(ZITELAB(a)})AR'.

In (5), ‘a, & and ¢°, correspond to the location-
predicates at(a), in{a) and after(a) of [12].

semantics.

A model for TL(t1) is a tuple, <M,5>, where M is some
t-structure (i.e., a model for F(t)) and S is the
class of states over M; each state providing a valu-
ation of the variables and of the label-propositions.
Such models define

(1) a partial function Trs: PRUG(t1)*~ P((SxS)") ,
where the range of Trs is the powerset of finite and
infinite sequences of state-pairs, and

(2) a satisfaction relation b < <M,S>xTL(t1).

With any pair of programs, (B,d), such that <Blo>,
Trs(8,a) associates the set of transition sequences
obtained by executing a within the context B. First,
an auxiliary function Tr: PROG(t1) = P((SxS)¥) is de-
fined, that associates transition sequences with
programs in an empty environment.

The definition of Tr is standard, but for the
label-valuations. The strategy in the inductive defi-
nition below will be to take states (for the induc-
tion base) and transition sequences (for the induc-
tion step) in which all labels whose truth-value will

be affected, are set initially to false. Labels whose

value must change in a state, will be set explicitly.

There is one tricky point. If 2 is some label that
does not appear in a program a, nothing can be as-
sumed about its truth-value during execution of a.
Whether a transition in a will change its value or
not, entirely depends on the context of o and &, of
which nothing is known. Compare, e.g., the contexts
a;(2.8.2') and ol(2.8.2'). This has the curious ef-
fect that any transition in a program must be allow-
ed to change arbitrarily the truth-value of any label
not appearing in the program.

In the definition below, state-variants are indi-
cated as usual.by g{+/+}. This notation is (1) ex-
tended to denote variants of tramsitioms: {-/;-},
{+/;+) - denoting variants of the Ist and 2nd compo-
nent of the state pair - and {+/,,+)} - denoting a
variant of both components; and (2) elementwise ex-
tended to denote variants of sequences. Satisfaction
of F{tl)-formulae, M,okp, is assumed to be understood.

" To define the semantics of (£.a*B.%'), the syntax is
(temporarily) extended to allow for any integer n20,
programs (L.a{n)B.¢'). Abusing notation, we have
(2.0%8.2') 2 u((2.a(n)s.2*) | n30}.

Definition 2.3. For any o€PROG(t1), inductively define Tr(a) by the

following clauses.

(1) ax(2.b?.2")

o, {o, (e)/x}1Var=o, IVar } = Tr(a)
For any a€PROG(tl)}, t.€Tr(ai) i=1,2 and labels %, £’ such that am(2.q,00,.2")
and for i=1,2 lent.=k,, L.=LAB(a,), t.[k.]=(0,,0!), 1.[1}=(5,,0}) and
i i i it i i*i i i7i

[

viEL,

imod2+1 Ti(l)=ri(2)=Ti(£")=ff‘:

(3) oxu { = ll(tt/ll}‘rJ 2:ki-1]“ri[ki](tt/2£‘} Ii=1,2 } < Tr(a)

{ (o, {tt/e},0, {tt/2'}) | ciES, oi(£)=oi(£')=ff i=1,2,
g, [Var=o, {Var, M,o/Eb } = Tr(a)
(2) ex(2.x:=e,2") { (o,{tt/2},0,{tt/2'}) | ciES, oi(1)=o (2')=FF i=1,2,

From this definition, it follows that for any pro-
gram a, the possible valuations of the labels appear-
ing in @, only depend on the structure of a and
(hence) do not change if a is embedded in some con-
text a; provided a remains reachable in a. More pre-

cisely, the following encapsulation property holds:

For any programs a, a and any label 2€LAB(a) such

that <alc> and 37€Tr(a)3oint of ‘a)=tt :
(31€Tr{a)3oint o(L)=w) =« (37€Tr(a)3ainT o(2)=w),
where w denotes either tt or ff.

It is this property that makes the control-flow axi-
omatization in section 3 possible.

Next, to define Trs, the restrictions, imposed by
a context (say, of a), on the values of the labels
which do not occur in a, have to be enforced. This
requires some additional machinery. A context B of
a program a restricts the label valuations of a's
transition sequences, so as to make them consistent
with executing a in that context (8). Hemce, it would
seem that a trace t€Trs(B,a) is obtained by "projec-
ting" a trace TETr(8) on the transitions in a. Such
a trace, however, need not exist; consider, e.g., a
context B=false?;a. The
fact that a cannot be
reached semantically,
is of no concern for
the consistency of a's
i label-valuations, which
should depend on the
syntactic structure of
the context only. In
fact, the straightfor-
ward axiomatization of

the consistency of label-

(4) om; 1 [11{tt/, 2} [2:k =1 "1, [k 1 (o2 (1)/1 2€EL;)7
ul(1 {o! (2)/1 1€L, Yl 2:k -1 "l k] {tt/; 2"} € Tr(a)
(5 0'(0) Tl[1] {tt/l Q}A'ﬁ[2:k| ‘1]“1’1[k]] {tt/z L'} € T?‘(G)

(6) om(n+l) { W 1:k-11"1[k] {ff,0 (2)/2 2,26, } o[1) (0" (2)/1 TEL, } 1a[21k =1] =

T2l kel {tt,o; (2)/2 2,260, oy [1] (tt,0) (2)/1 £,2€0, Yol 2:k, -1]~

ulkl {tt/e'} | €Tr((205 (n)op .2")), Tent=k, t[k]=(0,0") } = Tr(a)
Tr((2.0 (n)op .2")) = Tr{c) for all n20
{ 1) {tt/y e} o 2:k-1] "<l K] {tt/y '} | t€Emerge(T, ,L, ,T2,l2), k=lent,
for i=1,2 ;im0d2+1=rimod2+1(ai(I)/‘zzeLi} } < Tr(a)
Imerge(t,r,t',I'') U Imerge(t',r',t,I)

{r'} if len =0,
{{_ o 11T | T€merge(<[2:) ,T,t'{5'(2)/,; 2€T},T"),

1) =(a,0"))

(7) om*
(8) o=l

o

where merge(t,l,t',I'")
and lmerge(r,r,t',r') 2

otherwise

! The value of £,% and &' in any state of T, is false.

valuations in section 3
(LCu) is rendered in-
complete by taking se-
mantic reachability into
account. This suggests,
defining for each pro-
gram a, its "companion"
ac, obtained by replac-
ing each test (2.b?.2")
in a by (2.true?.e')

(; in fact, it suffices
to replace it by a test

that can be passed from

at least one state). In ac, any execution path that
is syntactically possible (in a), is semantically
possible. '

Now, auxiliary predicates, 8-sgcS (called B-state
good) and B-thS2 (called B-transition good) can be
defined, to express that a state or a transition has

valuation(s) that are consistent with 8's syntax:

Definition 2.4, For any BEPROG(tl), o€S, L g LAB(g)

(1) B-sg(o) iff 3t€Tr(8)3i31 t[il=(3,d') =
gll=oll v o'll=cll

(2) B-tg(o,0') iff 3r€Tr(g%)3ixl <[il=(c,q') =
Gll=all A a'll=c'IL

Note the disjunction in (!) and the conjunction in (2).

Definition 2.5. For any a,BEPROG(t1) such that <Bla>
and t€(5x$)” :
1€Trs(8,a) iff t€Tr{a) A Vi(t[il=(o,0')=B8-tgq(c,0'))

Finally, validity and satisfaction in a model can be

defined:

Dafinition 2.6. Let p,qEF(t1), @€TL(t1l), a,BEPROG(t1)
and <Bla>. Then
(1) k¢ iff v models <M,5> of TL(t1) M,k0
(2) <M,S>p<BIp> iff Vo€S B-sg(c) = M,cEp
(3) M,S>p<BllplalQ]> iff Vi€Tr(8,a)vizl
t[il=(0,0') = (M,0Fp = M,0'Eq)

3. THE PROOF SYSTEM, PS(M).
As notation for proof rules, <B|A1,...,An = C> is
used, with the usual interpretation: To infer <B(C>,
prove <BlA;>, oy <BlAn>n

The system consists of three parts, The first part
concerns the composition of program (-proofs) and
consists of the 4 Composition rules, the Test and

the Assignment rule :

For o of the form U, ;, * or I, Co.
<Bl{plailql, [Pleslq] = [pl(2.0100,.2")[Q]>

T. <Bl(pabaa’=q) = [pla[q]> provided a=(2.b?.2")
and LAB(p)=0

As. <Bl(a’Ady(p[y/x]ax=e{y/x])=q) = [p]alq]> provided
aa(e.x:=e.2'), LAB(p)=@ and ygFvar{p,e)u{x}

Next, follow some auxiliary rules and axioms. The

Invariance, Strengthen and the 2 Extension rules,

the Oracle rule and the Propositional tautology axiom:

Inv. <Blp = [true]af pl>

S. <Bllpadlalr], "eq, [qlalqva’] = [plalrl>, Q€F(1)

El' prove <Blp> to infer <B'lp> provided <B'Ig>

and peF(l)

E,. prove <Bl{plalq]>to infer <@'I(pla(q]> provided
<B' 8>
0. <Bip> for any pEF(tl) such that Mkp

Pt. All instances of propositional tautologies

Finally, the control flow axioms (Flow and Label

Consistency).The formulae LC(a) are defined below:

FI,Z' <Bl[-:]a[-b> provided <Bl2lla> and o is atomic
LCG. <g|LC(u)>-for any a€PROG(t1)

The recursiQely enumerable set of label consistency
axioms, LCG, axiomatizes the consistency of label
valuations. The F(1)-formulae LC{a) are recursively

defined as follows (v denotes the exclusive or)

(1) as(2.b?.2') or (L.x:=e.2') = LC(a) 2 292!
if a=(2.a100;.4') then LC(a) R LC(ayaLC(ajAc,
where C is defined by the following clauses:

(2) osU = #+("ayv) A t%(atvas) A K (&1var) A

{d2ves))

(3) om; = 9+¥q; - A a;«a; A az9t' A {a;a(dzvas))

(4) o%* = gefa; A afe{ ave') A a2 A d;Ad:)

(5) o=l = 2 {"aya"as) A 2'o{arras) A (& var «*+davas)

LC(e) expresses that a valuation of the labels of q
is consistent with a's syntactic structure. Such a
recursive definition is possible, because this con-
sistency does not depend on a's environment, i.e.,
because the encapsulation property holds. This would
have not been true, had the usual Kleene-* been used
instead of the binary *: LC((E.a*.L')) necessarily
will allow the inference a’-'a (or ‘a=~a’) in order
to model looping. As 'u,a’eLAB(u), this means that
now, a context of o can induce new relations between
a's labels.

Some useful derived rules and axioms are:

<glpp', [p'lalq'}, q'-g = [plalgl>
A,y BlLPIeLa], [P')a{a'] = (PO P'Io(alq')>
F3. <Bi{ truela{a’]> provided a is atomic
F4. <BIf true]lafava’]>

Axiom F3 easily follows from T and As. Proofs for
the other axiom and the proof rules are constructed
using structural induction w.r.t. ¢ and, for F4,
applying the trivial observation that kyvy*edva®
if <oly> (cf. the definition of & and a”).

example.

Consider Lamport's Concurrent Hoare logic [12]. His
sequential composition rule is a derived rule of

PS(M).

Lamport deals with safety properties and his

specifications, {P}a{q}, have the interpretationm:
"If execution is begun anywhere in a with the predi-
cate P true, then executing o will leave P true while
control is inside @, and will make q true if and when
a terminates". Consequently, {p}a{q} translates into
Transition Logic as: [plalé=paa’=q) (in [10] the
context is always left implicit).

In this paper's notation, Lamport's sequential

composition rule becomes:

SC. <81 tlals-taa'-ul, [vIBl BvAB =MW], UA'Bov =
[6t ABw] Y[GotaBvAY W] >,
where y®(2£.a;8.2"') and <Sly>.

To derive SC, it will be convenient to generalize

it to:

SC'., <S!{plefal, [riB[s] = [A}Y[C]>, where Y and §
are as in SC, Asé-paf-r and
Cu(ava=q)a(("7 BA(BVB"))s)

It is not difficult to see that SC' is sound. To
derive SC' requires some more effort:

We want to use the C_ rule. So, first derive
<5 I[Ala[C]>. In the de;ivation, the context is sup-

pressed.

[truelaldva’]

LC(y){ava (" BvY(BVE")))

atrue LC(vy)
------------- Ca mmmmeemessececconoocea-e-Pt
(&lalava’] [plalq] (Gva*)~ "8v(Bv8"))
...................... A
{aaplal (dva"}aq) E __________________ Pt
aAR-aAD (éva® YagsC
................................... 1
[aAR)al C]
Tond (truelalava’]
________________________ S

[AlalC)

The proof of <8([A]8[C]> is completely anélogous.
Now, SC' is obtained by a final application of C .

It temains to show that SC is a derived rule,’too.
To prove this, apply SC' with pst, g={&staa’-u),
r=v and ss B-VAB'-w)., Formula A has the required
form, C not yet. Observe that .
EC o (d=t A a’=u A TBAB-Y A TBAB'-W) and that
ELC(8) —» (a"o'8 A B oy" A B =T8).
Hence, using 0, Pt and LCG’ we obtain
(BI[AJY[CI1>} F <BI[A]Y[G=t A "B A TBABV A B°-W]>.
To obtain the consequent of SC, use the assumption
<5 |UA"B-w>, to replace “B-u by "B-wv.

4, THE CONNECTION WITH TEMPORAL LOGIC.

Transition Logic cannot reason about and specify

temporal properties in a direct way, like the logics

of Lamport [13] and Manna and Pnueli [16] can. This
ability was sacrificed to obtain compositionality.
However, this does not imply a loss in reasoning
power. To wit: Any temporal property, expressible in
Manna and Pnueli's Temporal Program Logic (TPL),
that is true of a program a (a€PROG(t1)), can be
proved hence reasoned about in a suitable extension
of Transition Logic.

This claim follows from a straightforward trans-
lation of results from (15, 16, 17): TPL reduces
proofs of temporal properties to proofs of classical
properties without temporal modalities. These classi-
cal properties are readily translated into Tranmsition
Logic formulae., In [17], rules are introduced for
certain classes of temporal formulae, which are com-
plete in the sense that to prove a formula from any
of these classes, one application of the respective
rule suffices, the rest is classical reasoning (which
can be done in PS(t1)). The claim follows by extend-
ing PS{t1) with these rules and by observing that
(for programs in PROG(t1)) any temporal formula can
be reduced to a formula 1in one of the above classes.

Note that no justness anf fairness constraints
are imposed upon the executions of PROG(tl)-programs.
Hence, although TPL is capable of dealing with such
constraints, this aspect is ignored here. The rest
of the section only states the facts and (hence) the

reader should be familiar with [15, 16, 17].

In TPL, (temporal) formulae are interpreted over
a fixed set of state-sequences; that is, over the
execution trace; of a fixed program. Consequently,
there is no notion of composition of programs in
TPL. Hence, with each program a€PROG(t1), associate
its set of traces, Et{a) (obtained from Tr(a)). As
in TPL, if € is a trace of a (c€Et(a)), then by
definition any non-empty suffix of € is a trace of
a, too.

Temporal logic, TeL(tl), is obtained by extending
classical 1st order logic F(t1), with 3 temporal
modalities: O (next state), ©® (eventuality) and U
(weak until or unless). The formulae of TelL(tl) are
defined as usual, by inductively applying these mod-
alities, starting with F(t1)~formulae. It is a fact

that any temporal modality can be expressed using

O, ¢ and U, The interpretation of Tel(tl) (over

Et(a)) is inductively defined as follows:

<M,Ska:d Lff VeeEt(a) M,cfe
M, ekp iff M,e[1}kp (for pEF(t1))
M, epOp iff lene>l and M,e[2:]F¢
M,ekrot iff 3iglene M,e[i:]F¢
M,epoly iff Vi<lene M,e[i:]F¢ or
3jgienc vigi<j M,efi:]ke A Mie[ji]FY

In {I17] three rules are introduced for proving prop-
erties of the form p-¢q, p=(3 and p-qlir, where p, q
and I are state-formulae, i.e., P,q,réF(tl). Provided
F(t1) meets certain requirements, these rules are
shown to be complete in the above sense that any of
these properties can be proved, using one single ap-
plication of the respective rule as the only temporal
step. I.e., no temporal modalities appear in the
premisses of these rules. In this paper's terminology,

the rules are:

(pAPlalq) , p=h°
‘aop , [Ple[P]

[GAPla[Fvg) , ‘=D ., [Pla[P]
PAP-QVF , QAPmG , TAPOr

[a(n)]af qv(&A3m<n.g(m))]
a=p , [Pla{P] » PAP~qv(&A3n.q(n))

" - > - -

where N and m
are natural
s numbers.

In these rules, the Tl-formula [p}e[q] translates the
TPL-expression "o leads from p to ", with interpre-
tation [17]: For any atomic action T of « and for

any states S and S', p{s)As'€M[t]s - q(s'). Note that
as a consequence, PS(tl) allows formal reasoning
about such TPL-expressions; something that is missing
in (16, 17].

Rules E and N have been changed w.r.t the origi-
nal rules of [17): In TPL, traces of programs are
always infinite (if necessary, the terminal state of
such a trace is repeated); not so for the traces in
Et(a). This accounts for the additional premiss p~h’
in N and for the appearance of & in the first and
last premiss of E. Moreover, the E-rule could be sim—
plified, because justness and fairness issues are
ignored.

The proofs in (15, 17] indicate that, in order to
obtain completeness of these rules, the following
predicates and relation must be F(tl)-definable:

(1) "T is a finite prefix of some t€Et(a)",
(2) "M,okp" (for pe€F(tl)),

(3) "n is a standard natural number" and 'nem".

Rule E uses a well-foundedness argument to show even-
tuality. This explains the third reqﬁirement. Also,
the formula q(n) in rule E, will have in general to
express something like "a will establish q in at most
n more execution steps". Hence, requirements ! and 2.

Now, what about the proof of general temporal
properties? Observe that no transition sequence in
Tr{a), hence no trace in Et(a), has infinite length,
This implies that "t€Et(a)" is F(tl)-definable, too.
Consequently, "M,tk¢" is definable for any ¢€Tel(tl)
and t€Et{a), so that any temporal formula can be
reduced to one of the standard forms p~>(3, h>¥q or
p~qlr.

We agree that the use of such coding tricks is
unsatisfactory but observe that such tricks have to
be used in TPL, too.

As an example, let pe be the signature'of Peano-
arithmetic, extended with a unary predicate (symbol)
nat, Let M be a class of models in which nat is in-
terpreted as the defining predicate of the standard
natural numbers (and in which the symbols in p re-
ceive their usual interpretation). Clearly, F(pel)
satisfies the definability requirements 1, 2 and 3.
Hence, assuming for the moment that PS{M) is complete
(w.r.t. M), then

Mba:o « PS(M)U{N,U,E}'F o, a€PROG(p,1), €Tel(p 1).

This can of course be generalized to any signature

that allows an arithmetical model (cf. Harel's [9]).

5. SOUNDNESS AND COMPLETEMNESS.
PS(M) is an ordinary Hilbert-style proof system.
Consequently, to establish soundness, it suffices to
show that each individual proof rule is sound and
that every axiom scheme is valid.

In this section, references to models, M, are usu-
ally suppressed. Also, if £ is a label then ZEF(1)
denotes uniformly either the formula & or R, in

expressions.
Lemma 5.0. El’ 0, Pt, FI,Z and LCa are valid.

Proof.

Rule El' Remember that <M,S>k<B'|p> o (Vo€S
B'-sg(c) = M,okp). Now, observe that B'-sg=B-sqg.
This is a consequence of the encapsulation property

and the fact that for 2¢LAB(B), 8~Sg imposes no con-

'Strictly speaking, an additional rule is needed,
allowing the substitution of equivalent formulae in

temporal formulae, so as to be able to reduce to
standard form.

straint on their values.

0,Pt. Trivial and uninteresting.

F1,2' By definition of <Bltla>, there is a subpro-
gram of B, p®(m.y16.m') such that <yla>and LELAB(S)

or vice versa. W.l,0.g., assume that <yla>., The en-

capsulation property implies that it suffices to prove

that for any transition (0,0') caused by an action
in vy, o-tg{o,0')=0(4)=c'(2). This follows directly
from the definition of merge,

LCa. This is proved using structural induction.
If a is atomic, LCG is easily seen to hold. The in-
duction step amounts to a depressing analysis of how
composite transition sequences are constructed and

is left to the reader.

Lemma 5.1. Co’ T, As, Inv, S and E2 are sound.rules.

Proof,
As, Choose any {o,0')€Trs(8,a) such that okp. To
show: o'kq.
Assume that o'ka’Ady(...). As o'ka’, this implies
o'{v/yMe(...) for every Vv€IM|; in particular
o' {v/y)e(...), where v=0(x). Because o'{v/ylkx=¢{ y/x]
(y€Fvar(e)u{x}), also o'{v/yMeply/x]. Consequently,
o' {S/x}ep (ygFvar(p)). As LAB(p)=@, this implies okp;
a contradiction. Hence o'ka’A3y(...), so that o'kq.
Co’ T, Inv, S, EZ' These rules are even more triv-

ial to prove sound and are left as exercises.
Theorem 5,0, PS(M) F ¢ = Mk ¢ for any ¢€T1(t1).

Proof. An easy induction w.r.t. the complexity of

the proof.

completeness.
PS(M) is complete relative to the theory of M (cf.

the Oracle axiom)., Notably, no further restrictions
on models M are needed, such as Cook's notion of

expressiveness., The completeness proof does rely on

the definability of the strongest post condition (spc)

for atomic programs. However, in TL this is definable
in any (lst order) model. Of course, section 4 indi-
cated that in order to prove interesting properties,
models do have to meet additional criteria.

The following two properties are essential for

obtaining completeness:

(A) LC{B) defines B-5g: Vo€S M,okLC(B) + 8-sg(o)
(B) Let a,BEPROG(t1), o atomic, <Bla> and 2€ELAB(B).
If <gltla> then the value of £ remains unaffected by

executing a : V(g,0')ETrs(8,a) o(2)=c'(2).

If kBltle> then the value of £ in a state produced
by a is independent of the state in which a was
executed: For W either tt or ff,

(3(0,0')€Trs(B,a)va" (0,0")ETrs(B,a)=c"(2)=w) =
v(a,0')€Trs(8,a) o' (2)=w

The proofs of these properties are straightforward
but very lengthy analyses of the construction of the
label valuations in the definition of Tr and will

not be given in this paper.

The completeness proof splits into a number of cases.

The easiest case is the subject of
Theorem 5,1, Mk <Blp> = PS(M} F <BIp> (peF(t1)).

Proof. Property (A) implies that MkLC(g)-D. Now, use
o, LCB and simple propositional reasoning to obtain
k<8lp>.

Completeness for transition formulae is based on the

definability of spc. Hence:

Lemma 5.2. Let a,BEPROG(t1), a atomic, <Bla> and
PEF(t1). Then the spc of p w.r.t. <Bla>, sp(p,<Bla>),
is F(tl)~definable.

Proof. As usual M,oksp(p,<Blo>} # 3(o,0')ETrs(8,a)
M,okp&c'=0. Define L 2 A{avR12€LAB(p)} and bring L

into disjunctive normal form'

le...an. Each Li is
a conjunction of atomic formulae of the form £ or

% and LAB(Li)-LAB(p). Obtain assertions pi€F(t) by
substituting in p, true or false for any 2€LAB(p)
depending on whether £ or "% appears in Li’ By defi-
nition LAB(pi)sﬂ. Clearly, F<3|Li-(p€pi)>'hence
F<3lp«v{piALili=1..n}>u Now, for any p,, let 5i de-
note the formula p,Ab in case as(£.b?.2') and the
formula ay(pily/xle=e[y/x]) in caseam(L.x:=e,2")
(ygFvar(p,e)u{x}).

Let for any Li’ Ei denote the F(1)-formula
A(£|k<BI[Li]u[1]>}AA{‘EIL<3I{Li]a[_h]>4. Then it is
a simple exercise to show that)

sp(p,<Bla>) 2 a*aLC(8)AVIL,AB, li=1..n).

This representation will be used in the sequel.

Lerma 5.3. PS(M) F <BI{L]ef sp(L,<Bla>)]>, where «
is atomic and LEF(1),

Proof. Let L denote the spc. There are two cases.

!Strictly speaking, true is a d.n.f. of L, too. What
is meant, here and in the sequel, is to apply the
well-known algorithm which (syntactically) transforms
a formula into normal form.

(1) B<Bl'a=1L>: In the following derivation, the

context is suppressed..

{false]of []
Lal-false

e e

(LAl af 0} a'=1L

- - - - - - P - T . - . - e - .

[truelof a’}]
a'=a’vh

(2) kBl ar1>: If k<gi[-false>, then a has no
output-state. This is only possible if aw 2. false?.s").
But then, T can be used to obtain F<BI[L]of false]>.
Hence, assume k<Bl[~false>, This means that there
exists at least one transition (o,0')ETrs(B,a) such
that o'kL. Consequently, property (B) implies the
following facts:

(1) if <Bltle> then k<BI[L]of 21> = k<Bi[1] o 2]>, and
(2) if 1<Bitlc> then B<BI[L] o[2]> =k<Bla">1>.

We intend to use the representation of [as in the
proof of lemma 5.2. So, bring L into disjunctive nor-
mal form le...an and let s denote either the for-
mula b or 3y.x=e[y/x]! depending on whether a is a
test or an assignment. Then, using the notation of
lemma 5.2: E«SA&'ALC(B)A(EIV...th). Now, it is easy
to obtain k<Bi{L]of SALC(B)]>. Facts (1) and (2) above,

.imply that the conjunction [i can be restricted to
the labels £ such that <Bli2lo>. But for such labels,
if k<BI[L]e[Z]> then this can actually be derived,
using Fl or FZ and the fact that h<BIl-I> (a conse-
quence of property (B)). This implies that
F@I[L]a[tlv...vfn]> holds and hence that F<BI[L]a[[]>

Theorem 5.2. Me<BI[plal q]> = PS(M)<g8I[pl o[q]>, where
p,q€F(1) and a is atomic.

Proof. Lemma 5.3 and theorem 5.1
of I).

(and an application

Definition, Let peF(1), «,BEPROG(t1), « atomic and
<Blw>. Then Lo(p,<Bl@>) is the set of labels whose
truth-values are not determined by p; i.e., it is the
set {2 | ®<BI[plaf 2]>, k<BI{pla[RR]>].

The following lemma states the basic property of such
labels:

Lemma 5,4, Let KEF(1), p,qeF(t1), a«,BEPROG(t1), a
atomic and <B|c>. Assume that Mi<B| K>, LAB(p)=§
and LAB(q)L’(p,<Bla>).

Then Me<8![Kap)a[q]> implies Mb<BI{ p]of ql>.

1Note, that the pre—assertion L states nothing about
the values of the program variables.

- Proof. Let L = L%(p,<8la>). Suppose k<Bi{plafql>.

Then, there is a transition {o,0')€Trs{8,a) such that
okp and ¢'kq. By assumption, there is a state g such
that 8-59(d0) and ok'aaK. As LAB(p)=8, ok aaKap holds,
too. Now consider the states ¢' such that (g,0')€E
Trs(B,a). By definition of L, there is a ' such

that '] (LUVar)=o'[(LUVar). Because LAB(s)cL, this
means that o'kq and hence that k<BI[Kaplalq]>; con-

tradiction.

Finally, completeness for general transition formu-
lae, <Bl[plalql> (p,€F(t1)) can be shown. The intu-
ition behind the proof is simple: Consider all (con-
sistent) control locations in a. For each control
location, L, derive from p the constraints on the
variable values at this comtrol point. Next, derive
from q the constraints on the variable values in any
state that can be reached by a single transitiom,
when control resides at L. Finally, show that these
constraints are met, if the transition is taken from
a state satisfying p, too. Observe that this strategy
corresponds td the way in which analogous program
properties are proved in the temporal logic proof
system of Manna and Pnueli [16].

Theorem 5.3. Mk <gl[plalql> = PS(M) F <gI[plal ql>,
p,qeF(t1).

Proof. Because of the Co-rules, it suffices to show
completeness for atomic a. Let L D 1D(8)Aa analavrl
26LAB(p)~LAB(8)}. By definition F<B! o>, It suffices
to show that F<BI[palla[q]>, because:

[truelala’]

‘a-l [paLllel ql
-------------- S Y
[plalql

Now, bring L into disjunctive normal form le...an.
Because of the Cv-rule, concentrate on F<B|[pALi]a[q]>.
By definition,LAB(p)-LAB(Li). Hence, as in the proof
of lemma 5.2, formulae pieF(t) can be (effectively)
found, that satisfy LAB(pi)-Q and F<BlL{*(pﬂpi)>.
Consequently, it suffices to derive <B|[piALi]a[q]>z

As the next step, define Mi D sp(Li,<Bld>). By
theorem 5.2 (and I), F<3l[piALi]a[Mi]>. Bring Mi
into conjunctive normal form MiIA"'AMim' Let ﬁi be
the conjunction of those Mi' that are of the form
2 or "k (or true if no such Mij exist). Clearly
F<3l[piALi]u[ﬁi]>. Again, construct formulae qi€F(t1)

that satisfy F<BIM,~(qeq;)> and LAB(q,)nLAB(H,)=f.
The following derivation justifies our concentrating
on proving (I): L<B|[piALi]a[qi]>.

[piALi]a[qi] [piALi]u[ﬂi]

JUPED DI JEI . T C

[piALi]a[q]
1f F<Bl'6*rLf> then (I) reduces to <B|[false]a[qi]>

which is easily proved using As or T. Next, assume
that P<3l'6—ﬂLi>. Moreover, suppose that (II)
LAB(qi)S;O(Li,<BIa>). Then, lemma 5.4 applies: As
b<£l[piALi]u[qi]>, we obtain P<B|[pi]a[qi]>'and hence
F<B|Sp(pi,<3ld>)*qf>. Because LAB(pi)=¢, the repre-
sentation of the spc in lemma 5.2, simplifies to
a'ALC(B)AEi, so that h<ﬁla'AEi*qf> holds. This is the
premiss of the As or T rule. So, finally we obtain
F<3|[pi]a[qi]>, hence (using I) F<Bl[piALi]a[qi]>.

It remains to show that .(II) actually holds; i.e.,
that K 2 LAB(q)NLAB(R,) < L2(L, ,<Bla>):
Take any 2€K. Because z(LAB(ﬁi), h<3|ﬁi*£> and
#<B|ﬁ{¥1£> hold and therefore k<BIMi*£> and
b<BlMi*rE>. By definition of Mi’ this means that
Lel® (L, <Blo>).

6. DISCUSSION.

The paper introduces compositionality into proofs
of temporal properties of concurrent programs. The
key-observation to view programs as sets of sequences
of atomic actions, leads to the proposal of Transi-
tion Logic as supporting compositional reasoning.
Essential features of the deductive system for this
logic - as exemplified in the completeness proof -
are (1) the axiomatization of the flow-of-control
and (2) the expressibility of the strongest post-
condition of atomic programs.

Transition Logic is developed here, for a rudi-
mentary language, i.e., for regular programs with
merge over assignments and tests. It would be inter-
esting to consider languages with more intricate
syntactic structure and introduce, e.g., recursion,
synchronization commands or a comstruct, <>, to
execute arbitrary programs o, as indivisible ac-
tions. The logic can be straightforwardly extended
to deal with the latter two constructs; no basic
difficulties are envisaged in treating recursion.

Another possibility is introducing communication
actions. Of course, there is an easy way to deal
withﬂsuch commands, as is illustrated by Lamport and

Schneider [13]) in the context of CSP. However, that

solution ignores the interesting fact that for such
languages (without variable sharing) there is a
clear distinction between the internal behaviour of
a program and its external behaviour, i.e., the
sequences of communications it is willing to par-
ticipate in. A distinction that should be reflected
in Transition Logic, thus making a connection with
{19] and [23] on partial correctness of netwo?ks of
communicating processes.

Transition Logic concentrates on (input-output)
properties of atomic actions. While this suffices
for proving any temporal property, it is at the
same time unsatisfactory because ong would like to
reason about temporal properties in a more direct
way. The basic problem is to define the execution
sequences of programs when interleaving occurs. In
the current set-up, this is impossible to do in a
compositional way. Hence, satisfaction of temporal
formulae cannot be defined. A possible extension
would be to first formulate a set of assumptions,
specifying the way the environment of a program may

alter the program state. Relative to such assump-

" tions, execution sequences of programs can be de-

fined and temporal properties can be reasoned about
using temporal modalities. Such an extension of
Transition Logic, would be a first step in providing
Lamport's modular specification method {14] with a
compositional deductive system.

Finally, an obvious question is, whether the
logic can be extended to deal with just and fair
executions of programs. A problem arises here: For
a transition to be justly taken, it should eventually
become continuously enabled. Hence, it should be
certain that no move of the enviromment - of which
nothing is known = can disable this transition from
some time onwards. Similar reasoning applies to
fairness, as a move need not be fairly taken, if
that move eventually becomes continuously disabled.
It follows that justness and fairness, too, only
make sense relative to assumptions about the behav-

iour of the environment.

ACKNOWLEDGEMENTS.

I thank Willem Paul de Roever for keeping me on course
while developing these ideas and for the unfailing
way in which he, time and again, homed in on the

weak spots in both the proofs and the presentation.
This paper has benefited, too, from some remarks by

Amir Pnueli.

(1]

(2]

(3]
(4]
{5]

{6]

[7]

{8]
(9]
(10]

(11]

[12]
{13]
[14]
{151
[16]
[17]
(18]
(19]

[20]

[21]

{22]

(Z 50C252-X

K. R. ABRAHAMSON. Modal logic of concurrent

nondeterministic programs. LNCS70, G. Kahn ed.,

pp.21-33, Springer Verlag, New York, 1979.

K. R. APT, C. DELPORTE. An axiomatization of
the intermittent assertion method using tem-—
poral logic (extended abstract). LNCS154,

J. Diaz ed., pp.15-27, Springer Verlag, New
York, 1983.

H. BEKIC. Towards a mathematical theory of
processes. Report TR25.125, IBM Laboratory,
Vienna, 1971.

E. BEST. A relational framework for concurrent
programs using atomic actioms. Proc. IFIP TC2

Conference, D. Bjdrner ed., North-Holland, 1982.

P. and R. COUSOT. On the soundness and com—
pleteness of generalized Hoare logic. Report
CRIN-82-P093, Nancy, 1982.

E. W. DIJKSTRA. A discipline of programming.
Prentice Hall, 1979.

R. W. FLOYD. Assigning meaning to programs.
Proc. Symp. in Appl. Math.-19, J. T. Schwartz
ed., pp.19-32, AMS, 1967.

D. GRIES. The science of programming. Springer
Verlag, New York, 1982.

D. HAREL. First order dynamic logic. LNCS68,
Springer Verlag, New York,1979.

C. A. R. HOARE. An axiomatic basis for com-

puter programming. CACM12-10, pp.576-580, 1969,

T. JANSEN, P. van EMDE BOAS. Some observations
on compositional semantics. LNCS131, D. Kozen

ed., pp.137-170, Springer Verlag, New York, 1982.

L. LAMPORT. The "Hoare logic" of concurrent
programs. Acta Inf. 14, pp.21-37, 1980.

L. LAMPORT, F. B. SCHNEIDER. The "Hoare logic"

of CSP, and all that. Comp. Sci. Lab., SRI, 1982.

L. LAMPORT. Specifying concurrent program
modules. TOPLAS 5-2, pp.190-223, 1983.

D. LEHMAN, A. PNUELI, J. STAVI. Impartiality,
justice and fairness: the ethics of concurrent
termination. LNCS115, pp.264-278, Springer
Verlag, New York, 1981.

Z. MANNA, A. PNUELI. How to cook a temporal
proof system for your pet language. Proc.
POPL, Austin, ACM, 1983.

Z. MANNA, A.PNUELI. Proving precedence prop-
erties - the temporal way. LNCS154, J. Diaz
ed., Springer Verlag, New York, 1983.

R. MILNER. An approach to the semantics of
parallel programs. Proc. of the convegno di
Informatica Teorica, Pisa, 1973.

J. MISRA, K. M. CHANDY. Proofs of networks of
processes. IEEE SE-N, SE-7, no.4, pp.417-427,
1981.

S. OWICKI, D. GRIES. An axiomatic proof tech-
nique for parallel programs I. Acta Inf. 6,
Pp.319-340, 1976.

W. REISIG. Partial order semantics versus
interleaving semantics for CSP-like languages
and its impact on fairness. Proc. ICALPS84,
LNCS, . Springer Verlag, New York, 1984.

A. SALWICKI, T. MULDNER. On the algorithmic
properties of concurrent programs. LNCS125,

[23]

E. Engeler ed., pp.169-177, Springer Verlag,
New York, 1981.

J. ZWIERS, A. de BRUIN, W. P. de ROEVER. A proof
system for partial correctness of dynamic net-
works of processes (extended abstract). Proc.
2nd Workshop on Logics of Programs, LNCS,

D. Kozen, E. Clarke eds., Springer Verlag, New
York, 1984.

