A DIRECT ROUTING ALGORITHM FOR THE BIT-REVERSAL PERMUTATION ON A SHUFFLE-EXCHANGE NETWORK.

Ingrid J.M. Birkhoff

Technical Report RUU-CS-84-3 februari 1984

Rijksuniversiteit Utrecht

Vakgroep informatica

Budapestlaan 6 3584 CD Utrecht Corr. adres: Postbus 80.012 3508 TA Utrecht Telefoon 030-531454 The Netherlands

A DIRECT ROUTING ALGORITHM FOR THE BIT-REVERSAL PERMUTATION ON A SHUFFLE-EXCHANGE NETWORK.

Ingrid J.M. Birkhoff

Technical Report RUU-CS-84-3 februari 1984

Department of Computer Science
University of Utrecht
P.O. Box 80.012, 3508 TA Utrecht
the Netherlands

A DIRECT ROUTING ALGORITHM FOR THE BIT-REVERSAL PERMUTATION ON A SHUFFLE-EXCHANGE NETWORK.

Ingrid J.M. Birkhoff

Department of Computer Science, University of Utrecht P.O. Box 80.012, 3508 TA Utrecht, the Netherlands

Abstract. An algorithm is given for routing the bit-reversal permutation on a shuffle-exchange interconnection network. The algorithm requires 2(log N)-1 stages for N inputs (N is a power of two). The routing scheme is given by an explicit control matrix. Also an adaptation of the bit-reversal algorithm is presented which computes the control bits 'on-line' during the execution of the algorithm.

Keywords and phrases. Perfect shuffle, bit-reversal permutation, interconnection networks, shuffle-exchange, routing algorithm, control matrix.

1. Introduction. The shuffle-exchange interconnection network as proposed by Stone [8] has been shown to be an effective interconnection scheme for parallel computations. Stone [8] presents algorithms for sorting, polynomial evaluation and the FFT, which need log N shuffle-exchange stages on a input of size N (N = 2^n). Wu and Feng [10] show that an arbitrary permutation of N inputs can be realized in $3(\log N)-1$ shuffle-exchange stages, although it is conjectured that $2(\log N)$ stages are always sufficient (Parker [6]).

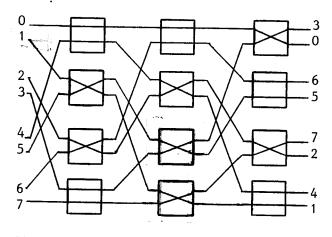
The bit-reversal permutation is encountered in various algorithms. Implementations of the FFT algorithm of Cooley and Tukey [1] on a perfect shuffle interconnection network, as given by Stone [8] and Cyre and Lipovski [2], produce the resulting Fourier coefficients in reversed binary order. Unscrambling the results is done by the bit-reversal permutation. Wu an Feng [10] prove that an arbitrary permutation of N inputs can be done in 3(log N)-1 shuffle-exchange stages. The algorithm starts with a bit-reversal on the inputs, but it is not explained how this permutation is performed on the shuffle-exchange network. Wu and Feng [9] also describe the functional relationships among various multi-

stage interconnection networks. The bit-reversal has an important role in simulating other networks on the shuffle-exchange network. For example, the indirect binary n-cube [7] is simulated by a bit-reversal, followed by a n stage shuffle-exchange and a bit-reversal.

Orcutt [5] gives an algorithm that performs the bit-reversal permutation in $O(\sqrt{n})$ steps on a Illiac IV-type interconnection network.

In this paper we present an explicit algorithm for the bit-reversal permutation that needs 2(log N)-1 shuffle-exchange stages. The routing scheme, given by a control matrix, is presented in section 3. In section 4 we show, assuming some processing power in the switches, how the control bits can in fact be computed 'on-line' during the execution of the algorithm. (Parker [6] already proved that 2(log N)-1 shuffle-exchange stages are sufficient for the bit-reversal permutation, but did not provide an explicit control matrix for the algorithm.)

A shuffle-exchange interconnection network of size N consists of multiple copies of a shuffle-exchange stage. At each stage the connection pattern is a perfect shuffle followed by N/2 switches (fig. 1.a). The two inputs of a switch are copied, directly or after exchanging them, to the outputs. In practice a switch will (also) implement a function of its inputs. Whether a switch exchanges its inputs at a certain stage depends on the control bit for that switch at that stage (see fig.1.b).



0 0 1 1 1 0 1 1 1 0 1 0

fig.1.a 3-stage shuffle-exchange network of size 8.

fig.1.b The control matrix of the network of 1.a.

An algorithm for solving a particular problem on the shuffle-exchange network must describe how the data are routed through the network. A complete description of the routing is given by the control bits of all switches at each stage. The control bits can be given in advance, in a control matrix, or can be computed during the execution of the algorithm. The

algorithm presented in section 2 applies to a multistage shuffle-exchange network. The 'on-line' computation of the control bits, presented in section 4 requires an iterative one stage shuffle-exchange network. That is, a one stage network with the outputs of a switch connected to its inputs (fig.2).

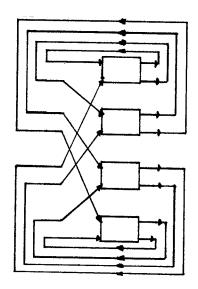


fig.2 An iterative one stage shuffle-exchange network of size 8.

2. The bit-reversal algorithm. In this section we describe the algorithm that computes the bit-reversal permutation for any n-bit integer $x \in \{0,1,\ldots,N-1\}$ $(N=2^n)$.

Definition. For
$$x = (x_{n-1} \ x_{n-2} \ \cdots \ x_1 \ x_0)$$
, $0 \le x \le N-1$, $x \in \mathbb{N}$:
$$\rho(x) = (x_0 \ x_1 \ \cdots \ x_{n-2} \ x_{n-1})$$
, denotes the bit-reversal permutation,
$$\sigma(x) = (x_{n-2} \ \cdots \ x_1 \ x_0 \ x_{n-1})$$
, denotes the perfect shuffle permutation,
$$e(x) = (x_{n-1} \ x_{n-2} \ \cdots \ x_1 \ \overline{x_0})$$
 with $\overline{x} = 0$ if $x = 1$, $\overline{x} = 1$ if $x = 0$, denotes the exchange.

The bit-reversal permutation on an integer x is described in terms of perfect shuffles on x and exclusive-or operations (XOR) on the bits of x. We distinguish between n odd and n even. The algorithms for each of the cases only differ on minor points. An Algol-like notation is used to describe the algorithms.

Algorithm A1 (n odd).

The input to the network is the set of integers $0,1,\ldots,N-1$ in binary, with integer i sent to the ith input of the shuffle-exchange network ($0 \le i \le N-1$). The outputs are the bit-reversed strings, with $\rho(i)$ at the ith output of the shuffle-exchange network.

begin

```
    shuffle ½(n-1) times;
    for j from 0 to ½(n-1) -1
        do shuffle;
        replace x(n-1)/2 -j by y(n-1)/2 -j = x(n-1)/2 -j XOR x(n+1)/2 +j
        do;
    shuffle;
    for j from 0 to ½(n-1) -1
        do shuffle;
        replace x(n-1-j by y(n-1-j) = x(n-1-j XOR y(n+1)/2 +j
        do;
    for j from 0 to ½(n-1) -1
        do shuffle;
        replace y(n-1)/2 -j by z(n-1)/2 -j = y(n-1)/2 -j XOR y(n+1)/2 +j
```

Performing Algorithm A1 on $x = (x_{n-1} x_{n-2} \cdots x_2 x_1 x_0)$ we obtain the following forms after each phase, respectively:

1.
$$(x_{(n-1)/2} \ x_{(n-1)/2-1} \ \cdots \ x_0 \ x_{n-1} \ \cdots \ x_{(n+1)/2+1} \ x_{(n+1)/2})$$
2. $(x_0 \ x_{n-1} \ \cdots \ x_{(n+1)/2} \ y_{(n-1)/2} \ \cdots \ y_2 \ y_1)$
3. $(x_{n-1} \ x_{n-2} \ \cdots \ y_{(n-1)/2} \ y_{(n-1)/2-1} \ \cdots \ y_1 \ x_0$
4. $(y_{(n-1)/2} \ y_{(n-1)/2-1} \ \cdots \ y_1 \ x_0 \ \cdots \ y_{(n+1)/2+1} \ y_{(n+1)/2})$
5. $(x_0 \ y_{n-1} \ \cdots \ y_{(n+1)/2} \ x_{(n-1)/2} \ \cdots \ x_2 \ x_1)$

Algorithm A2 (n even).

The same specification as in A1.

<u>begin</u>

end.

1. shuffle
$$\frac{1}{2}$$
n times;

2.
$$\frac{\text{for j from 0}}{\text{do shuffle;}}$$
 0 $\frac{1}{2}$ n-2 $\frac{\text{do shuffle;}}{\text{replace }}$ $\frac{x_{n/2}}{-1-j}$ by $\frac{y_{n/2}}{-1-j}$ = $\frac{x_{n/2}}{-1-j}$ XOR $\frac{x_{n/2}}{-1+j}$

shuffle;

Performing Algorithm A2 on $x = (x_{n-1} \dots x_0)$ we obtain:

1. $(x_{n/2} - 1 \quad x_{n/2} - 2 \quad x_0 \quad x_{n-1} \quad x_{n/2} + 1 \quad x_{n/2}$ 2. $(x_0 \quad x_{n-1} \quad x_{n/2} \quad y_{n/2} - 1 \quad y_2 \quad y_1$ 3. $(x_{n-1} \quad x_{n-2} \quad y_{n/2} - 1 \quad y_{n/2} - 2 \quad y_1 \quad x_0$

4.
$$(x_{n/2} \quad x_{n/2-1} \cdots x_0 \quad y_{n-1} \quad y_{n/2+2} \quad y_{n/2+1})$$

5.
$$(y_{n/2} - 1 \quad y_{n/2} - 2 \quad \cdots \quad y_{n-1} \quad y_{n-2} \quad \cdots \quad y_{n/2} + 1 \quad x_{n/2})$$

6.
$$(x_0)$$
 y_{n-1} $\cdots x_{n/2}$ $z_{n/2-1}$ $\cdots z_2$ z_1

Theorem 2.1. Algorithm A1 and Algorithm A2 perform the bit-reversal permutation on N inputs in 2(log N)-1 shuffles.

Proof

The y and z were only introduced for notational convenience. For odd as well as even n we defined for all $j=0,1,\ldots,\lfloor\frac{n-1}{2}\rfloor$ -1:

$$y \left\lfloor \frac{n-1}{2} \right\rfloor - j = x \left\lfloor \frac{n-1}{2} \right\rfloor - j \quad XOR \quad x \left\lceil \frac{n+1}{2} \right\rceil + j \quad (1)$$

and

$$y_{n-1-j} = x_{n-1-j} \text{ XOR } y_{j+1}$$
 (2)

and, finally,

$$z \left\lfloor \frac{n-1}{2} \right\rfloor - j = y \left\lfloor \frac{n-1}{2} \right\rfloor - j \quad XOR \quad y \left\lceil \frac{n+1}{2} \right\rceil + j \quad (3)$$

If we define $k = \lfloor \frac{n-1}{2} \rfloor -1-j$ then for all $k = 0, 1, \ldots, \lfloor \frac{n-1}{2} \rfloor -1$ (1) can be written as

(1')
$$y_{k+1} = x_{k+1} \times XOR \times_{n-1-k}$$
Using this for rewriting (2)

Using this for rewriting (2) and (3) we obtain

(2')
$$y_{n-1-k} = x_{n-1-k} \quad XOR \quad y_{k+1}$$

= $x_{n-1-k} \quad XOR \quad (x_{k+1} \quad XOR \quad x_{n-1-k})$
= x_{k+1}

and.

$$(3') z_{k+1} = y_{k+1} \quad \text{XOR } y_{n-1-k}$$

$$= y_{k+1} \quad \text{XOR } x_{k+1}$$

$$= (x_{k+1} \quad \text{XOR } x_{n-1-k}) \quad \text{XOR } x_{k+1}$$

$$= x_{n-1-k}$$

Substitution of the y's and z's by the corresponding x values in the results after applying Algorithms A1 and A2 to $x = (x_{n-1} \cdots x_0)$ shows that both algorithms compute the bit-reversal $\rho(x) = (x_0 \ x_1 \cdots x_{n-1})$. The number of shuffles performed by Algorithm A1 is 2n-1, since each of phases 1, 2, 4 and 5 takes $\frac{1}{2}(n-1)$ shuffles and phase 3 needs one more shuffle. By simular argument algorithm A2 takes 2n-1 shuffles as well.

In the next section we show how the algorithms can be implemented on a shuffle-exchange network.

3. The control matrix for the bit-reversal permutation on a shuffle-exchange network. A control matrix describes at any stage of the network the behaviour of the switches $(P_0, P_1, \dots, P_{2N-1})$. All switches at a stage must be set at the same time. Every switch has two inputs. If the switch is set to 0 it simply copies its inputs to its outputs. A switch that is set to 1 exchanges its inputs before they are output. A "conflict" occurs if for one input the switch must be 1 and for the other it must be 0. In assigning values to the switches in a certain stage we have to avoid such conflicts.

both binary $\frac{1}{2}$ N x (2n-1) matrices (N = 2ⁿ). C_i^{odd} and C_i^{even} are the control matrices for phase i of Algorithm A1 and Algorithm A2, respectively, (i = 1, 2, ..., 5, 6).

The jth columns of C_i^{odd} and C_i^{even} (i = 1, 2, ..., 5, 6) have the values of the switches after the (j+1)st shuffle in phase i (j = 0, 1, ..., $\lfloor \frac{n-1}{2} \rfloor -1$).

Definition. θ is the column vector of length $\frac{1}{2}N$ with all entries zero. Z is the $\frac{1}{2}N \times \lceil \frac{n-1}{2} \rceil$ matrix with all entries zero.

Lemma 3.1. $C_1^{\text{even}} = Z \text{ and } C_1^{\text{odd}} = Z.$ Proof.

Trivial, from the description of the algorithms and even one any

Lemma 3.2.
$$C_3^{\text{even}} = C_5^{\text{even}} = \theta \text{ and } C_3^{\text{odd}} = \theta.$$
Proof.

Trivial, from the description of the algorithms.

Definition. ψ is a binary $\frac{1}{2}N \times (n-1)$ matrix with r^{th} row equal to the binary representation of r ($r=0,\ldots,\frac{1}{2}N-1$). Also: ψ_i is the $(n-2-i)^{th}$ column of ψ ($i=0,\ldots,n-2$).

$$\psi^{(1)} = [[\psi_{2j+1}] \ j = 0, \dots, \lfloor \frac{n-1}{2} \rfloor -1]$$

$$\psi^{(2)} = [[\psi_{2j}] \ j = 0, \dots, \lfloor \frac{n-1}{2} \rfloor -1]$$

Note that the value of the bit in position $x = (x_{n-2} x_{n-3} \dots x_0)$ of column vector ψ_i is x_i (i = 0, 1, ..., n-2).

Lemma 3.3.
$$C_2^{\text{odd}} = C_5^{\text{odd}} = \psi^{(2)}$$
.

Assume we started Algorithm A1 with $x = (x_{n-1} \cdots x_0)$. After the $\frac{1}{2}(n-1)$ shuffles of phase 1 and i $(i=0,1,\ldots,\frac{1}{2}(n-1)-1)$ executions of the 'shuffle-replace'-loop the i+1 execution of the loop is started with a shuffle (note that the loopcounter j=i). In the resulting sequence:

In the following bits in a bitsequence will be numbered starting with the rightmost bit at 0. Whether a replacement of the rightmost bit is needed only depends on bit number 2j+1 in the sequence. The same observation holds for the replacement of the rightmost bit after the shuffle in the i+1st execution of the loop in phase 5 of Algorithm A1.

Divide the N bitstrings of length n in disjunct subsets of size 2^{2j+2} . Each subset is divided in two also disjunct parts (fig. 3):

$$S_{k} = \{(x_{n-1} \cdots x_{2j+2} \ x_{2j+1} \cdots x_{0}) | (x_{n-1} \cdots x_{2j+2}) = k\},$$

$$for \ k = 0, 1, \dots, 2^{n-2j-2} - 1.$$

$$S_{k}^{(0)} = \{(x_{n-1} \cdots x_{2j+2} \ x_{2j+1} \cdots x_{0}) \in S_{k} | x_{2j+1} = 0\}.$$

$$S_{k}^{(1)} = \{(x_{n-1} \cdots x_{2j+2} \ x_{2j+1} \cdots x_{0}) \in S_{k} | x_{2j+1} = 1\}.$$

The only pairs of sequences that can be exchanged in a certain stage of the shuffle-exchange network are those that are equal in all but the rightmost bit. Both sequences in such a pair belong to the same S_k and both are in $S_k^{(0)}$ or both are in $S_k^{(1)}$. This follows from the even number of sequences in S_k , $S_k^{(0)}$ and $S_k^{(1)}$.

$$S_{k} \begin{cases} \begin{bmatrix} x_{n-1} & x_{n-2} & \cdots & x_{2j+2} & 0 & 0 & \cdots & 0 & 0 \\ x_{n-1} & x_{n-2} & \cdots & x_{2j+2} & 0 & 0 & \cdots & 0 & 1 \\ x_{n-1} & x_{n-2} & \cdots & x_{2j+2} & 0 & 0 & \cdots & 1 & 0 \\ x_{n-1} & x_{n-2} & \cdots & x_{2j+2} & 0 & 0 & \cdots & 1 & 1 \\ \vdots & \vdots & & \vdots & & \vdots & \vdots & \vdots & \vdots \\ x_{n-1} & x_{n-2} & \cdots & x_{2j+2} & 0 & 1 & \cdots & 1 & 1 \\ \end{bmatrix} \\ S_{k} \begin{cases} x_{n-1} & x_{n-2} & \cdots & x_{2j+2} & 1 & 0 & \cdots & 0 & 0 \\ x_{n-1} & x_{n-2} & \cdots & x_{2j+2} & 1 & 0 & \cdots & 0 & 1 \\ x_{n-1} & x_{n-2} & \cdots & x_{2j+2} & 1 & 0 & \cdots & 0 & 1 \\ x_{n-1} & x_{n-2} & \cdots & x_{2j+2} & 1 & 0 & \cdots & 1 & 1 \\ \vdots & \vdots & & \vdots & & \vdots & \vdots & \vdots & \vdots \\ x_{n-1} & x_{n-2} & \cdots & x_{2j+2} & 1 & 0 & \cdots & 1 & 1 \\ \vdots & \vdots & & \vdots & & \vdots & \vdots & \vdots & \vdots \\ x_{n-1} & x_{n-2} & \cdots & x_{2j+2} & 1 & 1 & \cdots & 1 & 1 \end{bmatrix} \end{cases}$$

$$2^{2j+1} \text{ bitstrings}$$

fig. 3. Partition of the set of bitstrings of length n.

For Algorithm A1 we have to exchange pairs of sequences with bit number 2j+1 equal to 1. The set of sequences with this property is $2 {n-2j-2 \choose k=0} {s\choose k}$. No conflicts will occur because only pairs from this set will be exchanged. The sequences of $s_k^{(1)}$ are input to the switches $s_k^{(2k+1)} = s_k^{(2k+1)} = s_k^{(2k+1)}$

Lemma 3.4.
$$C_4^{\text{odd}} = \psi^{(1)}$$
, $C_2^{\text{even}} = C_4^{\text{even}} = C_6^{\text{even}} = \psi^{(1)}$

In the $(i+1)^{st}$ execution of the loop of phase 4 of Algorithm A1, and phases 2, 4 and 6 of Algorithm A2 the decision on replacing the rightmost bit of the current sequence is made according to the current value of bit number 2j+2. Define

$$T_{1} = \{(x_{n-1} \cdots x_{2j+3} \ x_{2j+2} \cdots x_{0}) | (x_{n-1} \cdots x_{2j+3}) = 1\}, \ 1 = 0, \dots, 2^{n-2j-3}-1,$$

$$T_{1}^{(0)} = \{(x_{n-1} \cdots x_{2j+3} \ x_{2j+2} \cdots x_{0}) \in T_{1} | \ x_{2j+2} = 0\},$$

$$T_{1}^{(1)} = \{(x_{n-1} \cdots x_{2j+3} \ x_{2j+2} \cdots x_{0}) \in T_{1} | \ x_{2j+2} = 1\}.$$

Now we divide the N bitstrings of length n in 2^{n-2j-3} disjunct subsets of size 2^{2j+3} , and we split these T_1 as we did before in the proof of Lemma 3.3.

All sequences in which the rightmost bit must be replaced are in $2 \stackrel{n-2j-3}{=} 1$. These sequences are input to the switches $P(21+1)2^{2j+1}$, ..., $P(21+2)2^{2j+1}-1$. The corresponding entries in the j^{th} column of C_4^{odd} , C_2^{even} , C_4^{even} and C_6^{even} are 1, the other entries are 0. This results in a column vector ψ_{2j+1} ($j=0,1,\ldots,\lfloor\frac{n-1}{2}\rfloor-1$), and the control matrix $\psi^{(1)}$ for each of the phases mentioned. \square

Theorem 3.5. The control matrix for the bit-reversal permutation on the shuffle-exchange network with 2^n inputs is given by:

$$c^{\text{odd}} = [[Z] [\psi^{(2)}] [\theta] [\psi^{(1)}] [\psi^{(2)}]]$$
 for n odd, $c^{\text{even}} = [[Z] [\psi^{(1)}] [\theta] [\psi^{(1)}] [\theta] [\psi^{(1)}]]$ for n even. $\underline{\text{Proof}}$.

From Lemma 3.1., 3.2., 3.3., and 3.4.

4. Runtime computation of the controlbits for the switches. In this section we assume we have an iterative one stage shuffle-exchange network in which the switches have some processing power and some registers. The processors in the switches execute in parallel. Each of the processors has seven registers. ID is a n bit register which contains the number of the processor. Bit number i in register ID is denoted by ID[i]. Four registers of size n are used for input and output (IN1, IN2, OUT1, OUT2). The value n is kept in a register LOGN. LOGN and ID are read-only registers. One more register CNT is used for counting.

```
Algorithm A1* (n odd).
 begin
          CNT := 0;
 label 1: (*phase 1*)
          read inputs;
          OUT1 := IN1 ; OUT2 := IN2;
                                           (* copy input to output *)
          write outputs;
          CNT := CNT + 2;
         if CNT < LOGN -1 then goto label 1 fi;
          CNT := 0;
label 2: (*phase 2*)
         read inputs;
         if ID[CNT] = 0 then OUT1 := IN1; OUT2 := IN2 (* copy *)
                         else OUT1 := IN2 ; OUT2 := IN1 (* exchange *)
         fi;
         write outputs;
         CNT := CNT + 2;
         if CNT < LOGN -1 then goto label 2 fi,
label 3: (*phase 3*)
         read inputs;
         OUT1 := IN1 ; OUT2 := IN2;
                                                            (* copy *)
        write outputs;
        CNT := 1;
```

```
label 4: (*phase 4*)
         read inputs;
         if ID[CNT] = 0 then OUT1 := IN1; OUT2 := IN2
                                                         (* copy *)
                         else OUT1 := IN2 ; OUT2 := IN1
                                                           (* exchange *)
         fi;
         write outputs;
         CNT := CNT + 2;
         if CNT < LOGN -1 then goto label 4 fi;
         CNT := 0;
label 5: (*phase 5*)
         read inputs;
         if ID[CNT] = 0 then OUT1 := IN1; OUT2 := IN2
                                                         (* copy *)
                         else OUT1 := IN2 ; OUT2 := IN1 (* exchange *)
         fi;
         write outputs;
        CNT := CNT + 2;
        if CNT < LOGN -1 then goto label 5 fi
end.
```

Lemma 4.1. Algorithm A1* computes the bit-reversal on N = 2^n (n odd) inputs in $2(\log N)-1$ shuffles. The control bits are computed at eachestage of the shuffle-exchange network in O(1) time.

Proof.

In phases 2, 4 and 5 the decision on exchanging the inputs is taken according to the value of a bit in register ID of the switch. The number of the bit in ID to inspect is in the register CNT. This is the implementation of the note in section 3 after the definition of ψ (p. 7). The rest of the algorithm is identical to Algorithm. A1.

For even n Algorithm A2 can be adapted similarly. Finally we note that Lang and Stone [3] introduced a shuffle-exchange network with simplified control. In this network switches perform a binary operation on the two control bits that enter the switch with the inputs. The processing power required by Algorithm A1 is more complex. We need integer addition, selection of a particular bit in a register, and comparisons. Also the different phases of the algorithm execute different statements.

5. <u>Conclusion</u>. We presented a routing algorithm that produces the bitreversal permutation of N inputs in 2(log N)-1 shuffle-exchange stages. The control bits of the switches are given in a control matrix or can be computed during the execution of the algorithm. Consequently, the FFT algorithm, including the unscrambling of the results, can be computed in 3(log N)-1 stages on the shuffle-exchange network, and the indirect binary n-cube can be simulated in 5(log N)-1 shuffle-exchange stages.

References.

- [1] Cooley, J.W. and J.W. Tukey, An algorithm for machine calculation of complex Fourier series, Math. Comput., vol.19, pp. 297-301, April 1965.
- [2] Cyre, W.R. and G.J. Lipovski, On generating multipliers for a cellular fast Fourier transform processor, IEEE Tr. on Comp., vol.C-21, pp. 83-87, Jan. 1972.
- [3] Lang, T. and H.S. Stone, A shuffle-exchange network with simplified control, IEEE Tr. on Comp., vol.C-25, pp. 55-65, Jan. 1976.
- [4] Lenfant, J., Parallel permutations of data: A Benes network control algorithm for frequently used permutations, IEEE Tr. on Comp., vol.C-27, pp. 637-647, July 1978.
- [5] Orcutt, S.E., Implementation of Permutation Functions in Illiac IV-Type Computers, IEEE Tr. on Comp., Vol.C-25, pp.929-936, Sept.1976.
- [6] Parker, S.D. jr., Notes on the shuffle-exchange-type switching networks, IEEE Tr. on Comp., vol.C-29, March 1980.
- [7] Pease, M.C., The indirect binary n-cube micro processor array, IEEE Tr. on Comp., vol.C-26, pp. 548-573, May 1977.
- [8] Stone, H.S., Parallel processing with the perfect shuffle, IEEE Tr. on Comp., vol.C-20, pp. 153-161, Feb. 1971.
- [9] Wu, C-L. and T-Y. Feng, The reverse-exchange interconnection network, IEEE Tr. on Comp., vol.C-29, pp. 801-811, Sept. 1980.
- [10] Wu, C-L. and T-Y. Feng, The universality of the shuffle-exchange network, IEEE Tr. on Comp., vol.C~30, pp. 324-332, May 1981.