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Abstract. An algorithm is given for routing the bit-reversal permutation

on a shuffle-exchange interconnection network. The algorithm requires

2(log N)-1 stages for N inputs (N is a.power of two); The routing scheme is
given by an explicit control matrix. Also an adaptation of the bit-reversal
algorithm is presented which computes the control bits 'on-line' during

the execution of the algorithm.

Reywords and phrases. Perfect shuffle, bit-reversal permutation, intercon-—

nection networks, shuffle-exchange, routing algorithm, control matrix.

1. Introduction, The shuffle-exchange interconnection network as proposed

by Stone [8] has been shown to be an effective interconnection scheme
for parallel computations. Stone [8] presents algorithms for sorting,
polynomial evaluation and the FFT, which need log N shuffle-exchange
stages on a input of size N (N = 2™). Wu and Feng [10] show that an
arbitrary permutation of N inputs can be realized in 3(log N)-1 shuffle-
exchange stages, although it is conjectured that:2(log N) stages are
always sufficient (Parker [6]).

The bit-reversal permutation is encountered in various algorithms.
Implementations of the FFT algorithm of Cooley and Tukey [1] on a perfect
shuffle interconnection network, as given by Stone [8] and Cyre and
Lipovski [2], produce the resulting Fourier coefficients in reversed
binary order. Unscrambling the results is done by the bit-reversal
permutation. Wu an Feng [1o]zprove‘that an:arbitrary permutation- of
N inputs can be done in 3(log N)-1 shuffle-exchange stages. The algorithm
starts with a bit-reversal on the inputs, ‘but it is not explained how

this permutation is performed on the shuffle-exchange-network. Wu and

Feng [9] also describe the functional relationships among various multi-



stage interconnection networks. The bit-reversal has an important role
in simulating other networks on the shuffle-exchange network. For example,
the indirect binary n-cube [7] i{s simulated by a bit-reversal, followed
by a n stage shuffle-exchange and a bit-reversal.
Orcutt [5] gives an algorithm that performs the bit-reversal permutation

in O(Vn) steps on a Illiac IV-type interconnection network.
In this paper we present an explicit algorithm for the bit-reversal

permutation that needs 2(log N)-1 shuffle-exchange stages. The routing
scheme, given by a control matrix, is presented in section 3. In section 4
we show, assuming some processing power in the switches, how the

control bits can in fact be computed 'on-line' during the execution

of the algorithm. (Parker [6] already proved that 2(log N)-1 shuffle-
exchange stages are sufficient for the bit-reversal permutation, but

did not provide an explicit control matrix for the algorithm.)

A shuffle-exchange interconnection network of size N consists of
multiple copies of a shuffle-exchange Stage. At each stage the connection
pattern is a perfect shuffle followed by N/2 switches (fig. 1.a). The
two inputs of a switch are copied, directly or after exchanging them,
to the outputs. In practice a switch will (also) implement a function
of its inputs. Whether a switch exchanges its inputs at a certain stage

depends on the control bit for that switch at that stage (see fig.1.b).
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7 1
fig.1.a 3-stage shuffle-exchange fig.1.b The control matrix of
network of size 8. the network of 1.a.

An algorithm for solving a particular problem on the shuffle-exchange net-
work must describe how the data are routed through the network. A complete
description of the routing is given by the control bits of all switches

at each stage. The control bits can be given in advance, in a control

matrix, or can be computed during the execution of the algorithm. The



algorithm presented in section 2 applies to a multistage shuffle-exchange
network. The 'on-line' computation of the control bits, presented in
section 4 requires an iterative one stage shuffle-exchange network. That is,

a one stage network with the outputs of a switch connected to its inputs
(fig.2).
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fig.2 An iterative one stage shuffle-exchange network of size 8.

2. The bit-reversal algorithm. In this section we describe the algorithm

that computes the bit-reversal permutation for any n-bit integer
x € {0,1,...,8-1} (N = 2™).

it = <x £ N- :
Definition. For x (xn_1 Rog oo X, xO), 0 £x s N-1, x €EIN:
p(x)
o(x)
e(x)

(xo x1 e X o xn_1); denotes the bit-reversal permutation,
(

(xn_1 Ximg =0+ X Eb) withx =0if x =1, X =1 if x = 0,

X -2 t0e Xy Xy xn_1), denotes the perfect shuffle permutation,

| denotes the exchange.
The bit-reversal permutation on an integer x is described in terms
of perfect shuffles on x and “exclusive-or operations (XOR) on-the bits
of x. We distinguish between n odd and n even. The algorithms for each
of the cases only differ on minor points. An Algol-like notation is

used to describe the algorithms.

Algorithm A1 (n odd).‘ . ‘
The input-to the network is the set of integers 0,1,...,N-1 in binary, with
‘integer i sent to the ith input of the shuffle-exchange network (0 < i £ N-1).

. . . e .th
The outputs are the bit-reversed strings, with p(i) at the i output of the

shuffle-exchange network.



begin
1.

1

shuffle 5

(n-1) times;

2. for j from 0 to 3(n-1) -1

do shuffle;
TP X am1)/2 -5 B Tam1)/2 -5 T Fae1)/2 -5 %R Xgaryz 4

od;

shuffle;

for j ££29>0 to %(n—1) -1

do shuffle;

XO0R vy,

replaceth_ n-1-j - Xn—1—j j+1

od;

for j from 0 Eg_%(n‘1) -1

-5 Y ¥

5.
gg_ shuffle;
1 {3 . » . , = .
Tep ace%_y(n—1)/2 -] by Z(n-1)/2 -i ~ Y-1)/2 -] XOR V(n+1)/2 +]
end.

Performing Algorithm Al on x = (xn_1

X g e Xy X, xo) we obtain the

following forms after each phase, respectively:

1.

(x

(-1)/2 Fm-1)/2 -1 =+ ¥ | x_, T @) /2 41 Xaer) 720
2. (xg *n-1 CC E@e) 2 Yaeryy S 1 )
3o Gy Xp-2 V=) 72 Yamy /2 1 00 Yy o)
b O a1y /0 Y(n=1)/2 =1 **+ ¥4 %0 " Y1) /2 +1 Y(nr1) /2)
3. (x V-1 V@) /2 Bty /2t 2 2 )

Algorithm A2 (n even).

The same specification as in Af.

2.

begin
1.

shuffle %n times;

for j from 0 to %n—Z

do shuffle;

repl . i = 3
eplace Xn/2 -1-3 by Tn/2 -1-j = *a/2 -1-3 XOR *n/2 +14j

od;
3. shuffle;



4 for j from 0 to in -2
do shuffle;
replaceiyan_j by yn-1-j = Xn-1-j XO0R Vet
od;
5. shuffle;
6. for j from 0 to in -2
do shuffle;

replacalyn/z ~1=3 PV Zn/2 —1-5 T Yu/o ~1-5 XOR Yoo 4143

Performing Algorithm A2 on x = (xn_1 ces xo) we obtain:

R R R Y S AP *a-1 “* *n/2 41 *aj2 )
2. (x0 X1 EEIE S Yn/2 =1 - Y, 2 )
3. G *n-2 "t Ynj2 o1 Ypgpoop cee Y, X )
he (xp )y *n/2 -1 % Yn-1 "t Yn/2 42 Yn/2 +1?
> Oy o Yn/2 -2 Ypq Yn-2 Va2 +1 *nz2 )
6 (XO Tn-1 *n/2 “nj2 -1ttt %y %1 )

Theorem 2.1. Algorithm A1 and Algorithm A2 perform the bit-reversal
permutation on N inputs in 2(log N)-1 shuffles.

The y and z were only introduced for notational convenience. For

odd as well as even n we defined for all 3 =0, 1, ..., [E%l -1:
yjo=1, _. =xn-1, . XOR xrn+1 . (1D
1551 -3 [—E—J J r‘i‘ *J
and
yn—1—j - xn—1-j XOR yj+1 (2)
and, finally,
z)yn-1 . = y;n—1 . XOR +1 . (3
l_i_' -; yl_i—' - yl-n2 o )



If we define k = [E%lj =1-j then for all k = 0,1, ..., [E%l -1 (1)

can be written as

(1 Vit = Fpey FORx
Using this for rewriting (2) and (2) we obtain
CRE AV S A
=X i XOR (xk+1 XOR xn-1-k)
T X
and,
B 2y = y,, X Yn-1-k
T Ve XORx
= (xk+1 XOR xn-1—k) XOR Xe1
T *p-1-k

Substitution of the y's and z's by the corresponding x values in the

results after applying Algorithms A1 and A2 to x = (xn_1 ce xo) shows
that both algorithms compute the bit-reversal p(x) = (x0 X, e xn_1).

'The number of shuffles performed by Algorithm A1 is 2n~1, since each

of phases 1, 2, 4 and 5 takes %(n—1) shuffles and phase 3 needs one
more shuffle. By simular argument algorithm A2 takes 2n-1 shuffles

as well. (u}

In the next section we show how the algorithms can be implemented on

a shuffle-exchange network.

3. The control matrix for the bit-reversal permutation on a shuffle~

exchange network. A control matrix describes at any stage of the

network the behaviour of the switches (PO,P1,...,ﬁ iN—1)' All switchesA

at a stage must be set at the same time. Every switch has two inputs.

If the switch is set to 0 it simply copies its inputs to its outputs. A
switch that is set to 1 exchanges its inputs before they are output. A
"conflict" occurs if for one input the switch must be 1 and for the other it

must be 0. In assigning values to the switches in a certain stage we have

to avoid such conflicts.



Definition. c®9¢ - [c‘1’dd cgdd cgdd czdd cgdd]

even

even .even _even .even .even _even
¢ R AR A A s
both binary %N x (2n-1) matrices (N = 2%). COdd and Ceven are the control

matrices for phase i of Algorithm A1 and Algorlthm A7, respectively,
i=1,2, ...,75, 6).

The i™ columns of C:dd and Ceven (i=1,2,...,:5, 6){have the values of the
switches after the (j+1)S5t shuffle in phase i (j = 0, [ J 1).

Definition. 6 is the column vector of length EN with all entries zero.
Z is the % F———] matrix with all entries zero.

Lemma 3.1. C?ven = 7Z and COdd zZ.

Trivial, from.the ‘description of the algoritbhms. ~.0

even _ Ceven = 9 and Codd 0.

Lemma 3.2. 03 5 3

Trivial, from the description of the algorithms. . o

Definition. ¢ is a binary %N x (n~-1) matrix with rth row equal to the
binary representation of r (r = 0, ..., %N—1§. Also: wi‘is the (n—2;-i)ﬁh
column of Y (i = 0, «es, n-2),

(1) ' . n-1
lIJ = [[w2j+1] ] = 0, ceey l_—z— —1]
(2) . n~t, _
lp = [[wzj] ] = 0, ceey "T 1]
- - - _ [0 0 0]
Example. N = 16, n = 4, y [wz ¢1 wo] 00 1l°
010
011
100
101
110
111 1]
R B RO TR ]
Note that the value of the bit in position x = (x - x «e. X.) of column
n-2 “n-3 0

vector wi is X i=0,1, ..., n-2).



Assume we started Algorithm A1 with x = (x et "ce X ) After the —(n—1)
shuffles of phase 1 and i (i=0,1, .. ;(n-1) 1) executlons of the shuffle—

replace'-loop the i+t execution of the lpop is started with a shuiffle

(note that the loopcounter j=i). In the resulting sequence:

(x n —(J+1) 0 ¥p—q°-+X O+ +j...x n+tl y n-l...y n— ~(-1) X n 1 —j)
2 2 2
the rightmost bit with value x n-1 -3 should be replaced by
2
yn-f . =xn-1 . XOR x n+{ s> l.eo, if x n+#1 . = 1 then x n-1 _: is
7 J 7 J z * z )
replaced by X n-—1 -3 otherwise no replacement is needed.

2

In the following bits in a bitsequence will- be numbered starting with
the rightmost bit at, 0. Whether a replacement of the rightmost bit is
needed only depends on| bit number 2j+1 in the sequence. The same obser-
vation holds for the replacement of the rightmost bit after the shuffle
in the i+1° execution of the loop in phase 5 of Algorithm Af1.

’ D1v1de the N bltstrlngs of length n in disjunct subsets of size 2 2+ 2 Each

subset is divided in two also disjunct parts (fig. 3):

Sk {(X - 2J+2 2j+1...X0)|(Xn_1.,,x2j+2) = k},
for k = 0’ 1: .5 2n_2J_2 ~-1.
s{0 {x__ .. .x x x,) €8 | x = 0}
k 0177772542 25417 % k | %2541 :
) _
Sk = {(Xn—1“'x2j+2 x2j+1...x0) € Sk , X2j+1 =1},

The only pairs of sequences that can be exchanged in a certain stage of
the shuffle-exchange network are those that are equal in all but the right-

most bit. Both sequences in such:a pair belong to the same Sk and both are

(0)

in Sk or both are in Sé ). This follows from the even number of sequences
in Sk’ Séo) and S(1)



— =
rkn—1 X _o e x2j+2 00 ... 00
X 1 Xpog eee X2j+2 00 ... 01
X X9 e x2j+2 00 10
X X . X, . 0o 11 .
séo) =1 n=2 23+2 } 22J+1 bitstrings
ﬁ Lén_1 X _o - X2j+2 o1t ... 1 [J
k —~ ~
X 4 X 5 e X2j+2 10 . 00
Xioqg X9 oeo x2j+2 10 ... 01
o X1 Xpop o x2j+2 10 10 -y
Sk q X x 10 1 1? 2] bitstrings
*n-1 *p-2 - 2§42
i \?n-1 X g «oo X2j+2 LIRS
fig. 3. Partition of the set of bitstrings of length n.
For Algorithm Al we have to exchange pairs of sequences with;bit number
Conm2j-2 (1)
2j+1 equal to 1. The set of sequences with this property iS'kgo Sk .

No conflicts will occur because only pairs from this set will

be exchanged. The sequences of S£1)are input to the switches"

P(2k+1)22j con P(2k+2)22j—1' The corresponding entries in the jth column

of the control matrix are 1, the other entries P(2k)22j cen P(2k+1)22j~1

are 0 (k =0, ..., 2n—23-2). The resulting column vector is ij
G=0,1, ..., [E%lj ~1). Thas, ngd = w(z), and ngd = w(z). o
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de - l‘)(1), ceven _ geven _ .even _ w(1)

Lemma 3.4. C 2 4 6

In the (;',+1)St execution of the loop of phase 4 of Algorithm Al, and
phases 2, 4 and 6 of Algorithm A2 the decision on replacing the rightmost
bit of the current sequence is made according to the current value of
bit number 2j+2. Define
T = {(xn_

1

(0)
T1 {(Xn
{(x

= - n-2j-3_
1-.-X2j+3 X2j+2..-xo)|(Xn_,|-o.x2j+3) = 1}, ]' = 0,---,2 1,

~17*Xpi43 x2j+2...x0) € Tll x2j+2 = 0},

il

(1) -
T, 1" X243 x2j+2...x0) € Tll Xpie2 = 1}.

Now we divide: the N bitstrings of length n in 2n_2J-3 disjunct subsets of

size 22J+3, and we split these T1 as we did before in the proof of Lemma 3.3.

n-2j-3

All sequences in which the rightmost bit must be replaced are in 121 Tf1).

These sequences are input to the switches P 2j+1,

(21+1)2 e Plogayp2ivt_

The corresponding entries in the jth column of Czdd, C;ven’ Zven and
even

C6 are 1, the other entries are 0. This results in a column vector
w2j+1 (j=0,1, ..., [E%l -1), and the control matrix w(1) for each of

the phases mentioned. o

Theorem 3.5. The control matrix for the bit-reversal permutation on the shuffle-

exchange network with 2" inputs is given by:

™ =112 21 101 1 1 for n oaa,
c®Ve™ = (121 1v¢"7 [e] "] [e] [w(i)]] for n even,
Proof

From Lemma 3.1., 3.2., 3.3., and 3.4. o

_ N _Jooooo
EEEEBEEE‘ n=3 N=8, C= 0100 1
00010
01011
._[oooo0000
n-4,N—16,C=0000000
0010101
0010101
0000000
0000000
0010101
(001010 1]
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4. Runtime computation of the controlbits for the switches. In this section

we assume we have an iterative one stage shuffle-exchange network in which

the switches have some processing power and some registers. The processors

in the switches execute in parallel. Each of the processors has seven registers,
ID is a n bit register which contains the number of the processor. Bit number

i in register |ID is denoted by ID[i]. Four registers of size n are used for
input and output (INT1, IN2, OUT1, OUT2). The value n is kept in a register
LOGN. LOGN and ID are read-only registers. One more register CNT is used for

counting.

*
. Algorithm A1 (n odd).

begin

CNT := 0;
label 1: (*phase 1%)
read inputs;
OUT1 := IN1 ; OUT2 := IN2; (* copy input to output *)
write outputs;
CNT := CNT + 2;
if CNT < LOGN -1 then:goto label.1 f
CNT := 0;
label 2: (*phase 2%)
read inputs;
Af IDJCNT] = O then OUT1 := IN1 ; OUT2 := IN2 (* copy *)
else OUT1 := IN2 ; OUT2 := IN1 (* exchange *)

we

we

fi;
write outputs;
CNT := CNT + 2;
if CNT < LOGN -1 then goto label 2 fi;
label 3: (*phase 3%)
read inputs;
OUT1 := IN1 ; OUT2 := IN2; (* copy *)
write outputs;
CNT := 1;
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label 4: (*phase 4%)

read inputs;

if ID[CNT] = O then OUT! := IN1 ; OUT2 := IN2 (* copy *)
else OUT1 := IN2 ; OUT2 := INT (* exchange *)

fi;
write outputs;
CNT := CNT + 23
if CNT < LOGN -1 them goto label 4 fi;
CNT := 0;
label 5: (*phase 5%)
read inputs;
if ID[¢NT] = O them OUT1 := IN1 ; OUT2 := IN2 (* copy *)
else OUT1 := IN2 ; OUT2 := IN1  (* exchange %)

fi;

write outputs;

CNT := CNT + 2;

if CNT < LOGN -1 then:goto'label 5 fi

Lemma 4.1. Algorithm A1* computes the bit-reversal on N = 2n§(n odd) inputs
in 2(log N)-1 shuffles. The control bits are computed at eachnstage of the
shuffle-exchange network in 0(1) time.

In phases 2, 4 and 5 the decision on exchanging the inputs is taken
according to the value of a bit in register ID of the switch. The number

of the bit in ID to inspect is in the register CNT., This is the implemen-—
tation of the note in section 3 after the definition of { (p. 7). The

rest of the algorithm is identical to Algoritlm. Af. o

For even n Algorithm A2 can be adapted similarly. Finally we note that
Lang and Stone [3] introduced a shuffle-exchange network with simplified
control. In this network switches perform a binary operation on the two
control bits that enter the switch with the inputs. | The procegsing power
required by Algorithm A1* is more complex. We need integer additibﬁ,
selection of a particular bit in a register, and comparisons. Also the

different phases of the algorithm execute different statements.
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5. Conclusion. We presented a routing algorithm that produces the bit-

reversal permutation of N inputs in 2(log N)-1 shuffle-exchange stages.

The control bits of the switches are given in a control matrix or can

be computed during the execution of the algorithm. Consequently,

the FFT algorithm, including the unscrambling of the results, can

be computed in 3(log N)-1 stages on the shuffle-exchange network, and

the indirect binary n-cube can be simulated in 5(log N)-1 shuffle-

exchange stages.
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