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Abstract. Parallel algorithms are normally designed for execution on
networks of N processors, with N depending on the size of the problem to
be solved. In practice there will be a varying problem size but a fixed
network size. In [3] the notion of network emulation was proposed, to
obtain a structure preserving‘simulation of large networks on smaller
networks. We present a detailed analysis of the possible emulations for
some important classes of networks, namely: the shuffle-exchange net-
work, the cube network, the ring network, and the 2-dimensional grid. We
also study the possibility of cross-emulations, and characterize the
networks that can be emulated at all on a given network using some class

of emulation functions.

1. Introduction. Parallel algorithms are normally designed for execu-

tion on a suitable network of N processors (viewed as SIMD- or MIMD-
machine [12]), with N depending on the size of the problem to be solved.
In practice N will be large and varying, whereas processor networks will
be small and fixed. The resulting disparity between algorithm design and
implementation must be resolved by simulating a network of some size N
on a fixed and smaller size network of a similar or different kind, in a
structure preserving and efficient manner. Notions of simulation are
well-understood in e.g. automata theory (see [6]), and suitable analogs
can be brought to bear on networks of processors. In this paper we study
a notion of simulation, termed: emulation, that was recently proposed by
Fishburn and Finkel [3].

* The work of this author was supported by the Foundation for Comput-
er 801ence (SION) of the Netherlands Organization for the Advancement of
Pure Research (ZWO).
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Definition. Let G = (VG,EG) and H = (VH,EH) be networks of processors
(graphs). We say that G can be emulated on H if there exists a function
f: VG > VH such that for every edge (g,28') € EG : f(g) = f(g') or
(f(g),f(g")) € Ey+ The function f is called an emulation function, or in

short, an emulation of G on H.

Clearly, emulation between networks is transitive. We shall only be
interested in emulations f that are "onto",

Let f be an emulation of G on H. Any processor h € VH must actively
emulate the processors € f-1(h) in G. When g € f_1(h) communicates
information to a neighboring processor g', then h must communicate the
corresponding information "internally" when it emulates g' itself or to
a neighboring processor h' = £(g') in H otherwise. If all processors act
synchronously in G, then the emulation will be slowed by a factor pro-
portional to max |f_1(h)|. For a set A, we use |A| to denote the cardi-

hGVH

nality of Aa.

Definition. Let G, H, and f be as above. The emulation f is said to be
(computationally) uniform if for all h, h' € Vy? |f_1(h)| = |f—1(h')|.

Every uniform emulation f has associated with it a fixed constant e,
called: the computation factor, such that for all h € VH : |f—1(h)|= c.
It means that every processor of H emulates the same number of proces-
sors of G. Again, uniform emulation between networks is transitive. When
G can be uniformly emulated on H and H can be uniformly emulated on G,
then G and H are necessarily isomorphic. (Thus uniform emulation estab-
lishes a partial ordering of networks.) For graphs A, B let A[B] denote
the composition of A and B (ef. [5]).

Lemma 1.1. G can be uniformly emulated on H if and only if there exists

a graph G' such that G is a spanning subgraph of H[G'].



=Let f be a uniform emulation of G on H with computation factor .
The sets {f (h)} h € H, partition G into blocks of size c. Let G' be
any graph on ¢ nodes such that the induced subgraph of every block (in

G) is contained in G'. Next observe that for any two nodes g € f 1(h)

and g' € (h') of G: (g,g') € EG =h = h' (and the edge is in G') or
(h,h') € EH' It follows that G is a spanning subgraph of H[G'].
<= From the definition of composition (ef. [5]), by projection on H.

G' can always be chosen to be equal to Kc’ the complete graph on ¢
nodes, When G is uniformly emulated on H, then H can be viewed as a
l)- When [vgl=lvyl, then &

can be uniformly emulated on H if and only if G is isomorphic to a sub-

"factor" of G (and, in particular: [Vl llv

graph of H. With this observation it is not hard to show that the gen-
eral UNIFORM NETWORK EMULATION problem is NP-complete. (Cf. [4]. Reduce
from HAMILTONIAN CIRCUIT. Let H be an instance of HAMILTONIAN CIRCUIT
and let G be a ring with IVHI nodes.) Another useful property is the
following,

Definition. For directed graphs G = (V,E) let GR be the (directed) graph
obtalned from G by reversing the direction of the edges, i.e., R = (v,
ER) with ER = {(g",8)]|(g,8") € E}.

Lemma 1.2. f is a (uniform) emulation of G on H if and only if f is a’

(uniform) emulation of GR on HR.

=Let f be an emulation of G on H. It means that for every edge
(g,8') € E; : £(g) = £(g') or (f(g), £(g')) € Ey. Thus, by simple trans-

lation, we have for every edge (g',g) € E R ¢ f(g) = f(g) or
G
(f(g'),f(g)) € E p- Hence f is an emulation of it on HR.
H

<= By a similar argument, observing that (GR)R = G for all graphs G.

Finally we note that uniformity is preserved in the constructions. o
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The relevant question is whether (large) networks of some class C can be
uniformly emulated by networks of a smaller size within the same class
C. Fishburn and Finkel [3] answered this question affirmatively for the
following classes of processor networks : the shuffle-exchange network,
the grid-connected network, the n-dimensional cube, the plus-minus net-
work, the binary lens, and the cube-connected cycles. (For definitions
of these networks, see [3].) In this paper we shall take a more funda-
mental approach and develop a detailed analysis of all possible emula-
tions in selected classes of networks : the shuffle-exchange network,
the n-dimensional cube, the ring, and the 2-dimensional grid. The
results will be presented in Sections 2 to 4, In Section 5 we consider
the question of emulating networks of some class C on (smaller) networks
of some class C'. In Section 6 we show that there is a natural way to
describe the networks that can be emulated on a given network H, using a
set of permissible emulations. The results lead to interesting charac-
terisations of all networks considered in terms of their emulated

behaviour. Some proofs are deferred to appendix A and B.

2. Emulations of the shuffle-exchange network. Let Sn denote the

shuffle-exchange network with 2n nodes. Our main result will be that

there are exactly 6 different uniform emulations of Sn on Sn— We also

2K ok : "
show that there are at least 2.2 -2 uniform emulations of Sn on
Sn-k (k21). In Section 2.1. we give some preliminary definitions and
results, in Section 2.2 we give the analysis leading to our main result.
The proof of the main theorem is deferred to appendix A. In Section 2.3
we discuss the uniform emulation of S, on Sn—k in general and argue that
the results hold for the uniform emulation of the inverse shuffle-

exchange network as well.

2.1. Preliminaries. The shuffle-exchange network was proposed initially

by Stone [10], and has been successfully used as the interconnection
network underlying a variety of parallel processing algorithms. The
nodes are given n-bit addresses in the range o..2n-1, and there is an
edge from node b to node ¢ if and only if b can be "shuffled" (move

leading bit to tail position) and "exchanged" (flip the tail bit) into



_5-

¢. Computations proceed by iterating through the network some n or more

times, in a synchronised manner. We use the following notations.

% : a bit that can be o or 1

a : the complement of bit (o = 1, 1 = o)

a = B : the 'equivalence' test on bits (0=0 = 1; 0=1 = 0; 1=0 = 03

1=1 = 1)
b : the n-bit address b...b
_ 1 n th
bl; & b,..b, (truncation after the 1™ pit)
i 1 i th

(o b;..b  (truncation "before" the 1“" bit)

1
(6); & b, (the 1" b1t),

For functions f defined on n-bit numbers b we use :

fi(b) : (f‘(b))i (projection on the ith

bit)
We use b, ¢, .. to denote full addresses and X, ¥, .. to denote segments
of bits. Individual bits are denoted Oy By o0 &

Definition. The shuffle-exchange network is the graph S, = (Vn, En) with
0

Vp = L (b)) | Visisn Py = 7} and Bp = L(be) | b, ce ¥n a?d Vasisn
bi = 01—1 }. The inverse shuffle-exchange network is the graph Sn = (Vn’
E)) with E ={ (b, ¢) | b, c € Vpand Yoo by g = ¢y 1.

It f?llows that ;n Sn a node b1"bn 18 connected to b2..bno and b2..bn1,
in S, to ob1..bn_1 and 1b1"bn—1‘ The fact that S, can be (uniformly)
emulated on Sn—1 and, hence, on every Sn—k (k21) derives from the fol-

lowing observation, using lemma 1.1. (Compare [3], theorem 2.)

Lemma 2.1, Sn is a spanning subgraph of Sn_1[K2], for nz22.
Proof.

Consider the mapping h : S, Sn_1[K2] defined by h(b,..b ) =
<b1"bn—1’bn>’ which clearly 1is 1-1 and onto on the set of nodes. Let
(b,c) € E_ with ¢ = b,..b_ $ (necessarily). Then (b,..b ., by..b ) €
En’ hence h(b) and h(e) are adjacent in Sn_1[K2]. Thus Sn is isomorphic
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(K.]. o

to a spanning subgraph of Sn—1 >

Corollary 2.2. Sn is a spanning subgraph of Sn_k[f k]’ for every 1sk<n.
2

By using a mapping h defined by h(b1..bn) = < bn—1‘ b1,b >, a similar
argument shows that Sn is a spanning subgraph of Sn—1[K2] and (hence)

that Sn can be uniformly emulated on § and any smaller inverse

n-1
shuffle-exchange network. Clearly Sn = Sn‘

Lemma 2.3. f is an emulation of S on S -k if and only if for all x €
o,n-

( ) 1 € ( )n k=1 and a,B e (1) : 1f f(ax) = By then (f(x0) = gy V

£(xo) - y2) and (et - BY V £(x1) = y2).

(The proof follows straight from the definitions involved.) For a map-

ping f, define its "companion" F by fi(b) = £,(b) for all 1sisn.

Lemma 2.4, If f is an emulation of Sn on Sn—k’ then so is T,
Proof.

Immediate from lemma 2.3. o

2.2. Uniform emulations of S on S -1 The uniform emulations of S on

Sn 1 will be shown to be "step-31mu1ating" in a very precise sense. Our
aim will be to characterize all step-simulations of S on S -1 and to
derive from it all uniform emulations.

Definition. A mapping g : Sn > Sn__1 is called step-simulating (or : a

"step-simulation" of S on S ) if and only if for all x € (0)n 1, y €

(%)-)n—2 and a,B € ( ) . if g(ax) = By, then g(xo) = y— and g(x1)

2
1 T

Lemma 2.5. Every step-simulation g of Sn on Sn—1 is an emulation,

Immediate. (Compare lemma 2.3.) o

We shall call a step-simulation "uniform" when it is uniform as an emu-

lation. When g is a step-simulation, then so is g.
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Lemma 2.6. A mapping g : Sn +> Sn—1 is step-simulating if and only if for
o,n-1: o,n-

all x € (—) s VY € (T) 2 and a,8 € (%) : if g(xa) = yB then g(ox) = 2

and g(1x) =

_nlo

By verifying equivalence with the definition of step-simulation,
(Use the string character of x and y.) o

Lemma 2.6. can be interpreted as stating that the (uniform) step-
simulations of Sn on Sn—1 act at the same time as (uniform) step-

simulations of §n on §n—1' Note the following useful properties of

step-simulations g:
8(b1'fbn—1°)ln-2 = 2|g(ob1..bn_1)
g, D], = ,lgiv b )
We shall now aim for a characterisation of the possible step-simulations

and uniform step-simulations of Sn on S

n-1°
Definition. For n23, define the operators . [Vn > Vn—1] +> [Vn_1 »>
V- 2] and T" : [V -1 Vn—2] *> [Vn > Vn—1] as follows:
1"(g) (b, ..b 1) = 8(b1..bn_1o)|n )

T (h) (b n) = h(b1..bn_1) h_5(b,..b )

Theorem 2.7. For n23,

(i) if g is a step-simulation of Sn on S then Hn(g) is a

n-1’
step-simulation of Sn-1 on Sn—2‘

(ii) if h is a step-simulation of 3 on S

n-1 n-p» then ™(h) is a

step-simulation of S on Sn 1°
(iii) restricted to step-simulations, 1" and T are inverses.

(iv) restricted to step-simulations, " preserves uniformity,

(i) Verify the condition of lemma 2.6. : I (8)(xa) = yg g(xao)

= &— (definition of I ) =>g(oxa) = —YB and g(1xa) = —YB =>g(oxo) = —yT

and g(1xo) = $ 1 (by shifting right and then left) =" (8) (ox) = %y and
T'(g) (1%) = 2y,
(11) Similarly T'(h) (xva) = y68 = h(xY) = y5 = T™h)(oxy) <
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h(ox).h (xY) = 9ya and T"(h) (1xY) = h(1x). h (xY) = 1y6.
(111) Let g be a step-simulation of S on S -1+ Then T o™ (g) (vx¢)
= 1%(g) (vx).1" (8)., (x8) = g(¥x0)]

Txo) n_2.gn_2(x60) = g(YxG)In_z.gn_1(YX6)
= g(vx§) for all Y,x,d. Hence T ol = id, Conversely, let h be a step-
simulation of s _q on S _,. Then 1o (h) (vx) = 1! (h) (vxo)| _
(h(Yx)'h (xo))l = h(Yx) for all Y,x. Hence also I oT" = id. 1t fol—

lows that " and " are inverses to one another when considered as
operators on step-simulations.

(iv) Let g be a uniform step-simulation of S on Sn—1' Suppose
1'(g) is not uniform. Then there must be a y € vy -, Such that
IHn(g) (y)] > 2. Let x(1), x(2), x(3) be distinct nelements of
Hn(g)_1(y). It follows that g(x(1)o), g(x(Z)o), g(x(3)0) € {yo,y1}.

Because g is step- simulating we have, in fact g(x(1)o), g(x(1)1),
(2) (2)1)’ g(x(3)o), g(x(3)

orlg—1(y1)|23. This contradicts the uniformity of g. o

g(x'“’0), glx 1) € {yo,y1} and hence |g_1(yo)|23

Theorem 2.7. (i)-(iii) shows that there is a 1-1 onto correspon-
dence between the step-simulations of S, on Sn~1 and the step-
simulations of S on S for n23. Theorem 2.7.(iv) does not quite

n-1 n-2’
show that this correspondence holds for the subclass of uniform step-

simulations, but in the next theorem we will show that it is the case.

Theorem 2.8. For n22,

(i) there are exactly 16 possible step-simulations of S on S —q*
(ii) There are exactly 6 possible uniform step—slmulatlons of S

n
on S (see table A).

n-1
Proof .
(1) By theorem 2.7.(i)-(iii) the number of step-simulations of S
on S -1 is equal to the number of step-simulations of S -1 on Sn—2’ for

nz23 (because 1 is bijective). By induction this number is equal to the
number of step-simulations of 32 on S1. Clearly every mapping € [V2 >
V1] is step-simulating. There ire exactly 2 = 16 mappings in this set.
(ii) There are exactly ( ) = 6 mappings € [V > V ] that are uni-
form and step-simulating. By theorem 2.7.(i)-(iv) the number of uniform
step-simulations of Sn on Sn—1 (n23) is not larger than the number of

uniform step-simulations of Sn—1 on Sn-2 and thus, by induction, not
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larger than 6. On the other hand at least 6 uniform step-simulations of
Sn on Sn—1 can be explicitly given, see table A. (The verification of
the mappings is immediate from the definition,) o

The remaining problem is to determine whether any other uniform

emulation of S, on Sn_1 exists. Our main result is the following.

Theorem 2.9. (Characterisation Theorem) Every uniform emulation of S on

sn—1 is step- 31mulating, and thus equal to one of the mappings listed in
table A.

The proof of theorem 2.9. is long and tedious, and is given in appendix
A'

Iy e fy(byeby) = Pyebn g

fy s F(byab) =B 0B

f2 f2(b1..b ) = b2"bn

f2 : f2(b1..b ) = b2"bn

fg 33(b1. b)) = _1'ffn—1 with ¢, = (b;sb, ), 1sisn-1
f. : f3(b1..b ) = C1"°n—1 with e = (b b1+1), 18ign-1

Table A. Listing of the 6 possible uniform step-simulations of the
shuffle-exchange network with 2n nodes on the shuffle-exchange

network with 2™ ! nodes.




2.3. Uniform emulations of S on S k' We will extend the notion of

'step-simulation' of S on Sn -k? in order to attempt a characterisation

of the uniform emulatlons in general. We show that the step-simulations

of S, on Sk (which are not all uniform) can again be characterized in

terms of the step-simulations of Sk+1 on S1 (ef. theorem 2.8.). It
remains an open question whether all uniform emulations of S on S -k
are step—simulating, and thus whether a suitable analogue of theorem

] k k-1
2.9. holds for k21. We show that there are at least 2.22 ~22 uniform

step-simulations of S on S n-k* We also discuss the uniform emulations
of S on S -K*
Definition. A mapping g : Sn > sn—k is called step-simulating (or : a

"step-simulation" of S on S _ ) if and only if for all x € &, ye

(g)n—k—1

: do,8 €3 : if glax) = By then g(x2) = y2.

Every step-simulation clearly is an emulation (verify lemma 2.3.) and

also the following analogue of lemma 2.6. holds.

Lemma 2.10. A mapping g : Sn > Sn K is step-simulating if and only |if
for all x € (o)n 1 o)n k-1

g(ox) = Ty and g(1x)

y Y€ (

and a,B € (%) : if g(xa) = yB8 then
O
1

We now aim for a characterization of all step-simulations of Sn on Sn—k'

Definition. For n2k+2, define the operators m™’¥ . fv. - Vn_k] > [Vn_1 »>

n
n,k | .
Vp-g-qJl and T POV P Ve P DY V-] as follows:
(8) (b sebp 1) = 8(?1..bn_1o)|n_k_1 |
K(n) (b n) =h,..by )b (by..b )

Theorem 2.11. For n2k+2,
(1) if g is a step-simulation of Sn on S

n,k
Nk’ then MW ’"(g) is a
step-simulation of Sn—1 on Sn-k—1'

(ii) if h is a step-simulation of § on S

" k1 then T¥(n) 1s
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a step-simulation of Sn on Sn—k'
(iii) restricted to step-simulations, Hn’k and Tn’k are inverses.
(iv) restricted to step-simulations, Hn’k preserves uniformity.

(The proof is virtually the same as for theorem 2.7. and therefore
left to the reader.) o

We conclude the following results (ef. theorem 2.8.) :

Theorem 2.12. For n2k+2,

(i) there is a bijection from the set of step-simulations of Sn

on Sn—k to the set of step-simulations of Sn— on Sn— and (hence) to

1 k-1

K+1 on S1.

(ii) there 1is an injection from the set of uniform step-

the set of step-simulations of S

simulations of Sn on Sn—k to the set of uniform step-simulations of Sn—1

on Sn-k-1 and (hence) to the set of uniform step-simulations of Sk+1 on
S,

Theorem 2.12. is important, as it characterizes the step-simulations of

S on S . Clearly every mapping €[V + V.] is step-simulating, and
n n-k K+1 k+1 1

thus there are precisely 2 step-simulations of Sn on Sn—k'

Corollary 2.13. For n21; Sn admits precisely 2 graph-isomorphisms.

Every isomorphism of Sn must be step-simulating. By theorem 2.12.(i)
the step-simulations of Sn on Sn are in 1-1 correspondence to the step-
simulations of S, on S,. There are four mappings of this kind and thus

1 1

precisely four step-simulations of Sn on Sn : 81(b1"bn) = b1"bn’
82(b1"bn) = b1"bn’ g3(b1..bn) = 0..0, 84(b1"bn) = 1..1. Clearly, only

g1 and g8, are isomorphisms. o

The 1-1 correspondence referred to in theorem 2;12.(1) can be made
s n-k’ the
uniquely corresponding step-simulation g of S on S, is defined by the

) k+1 1
) = g(b1..b o..o)l1. Conversely, given a step-

explicit as follows. Given a step-simulation g of Sn on S

formula é(b1..b

k+1 K+1



simulation h of Sk+1 on S1, the uniquely corresponding step-simulation h

£ i i -
o] Sn on Sn-k is defined by ?(b1"bn) -
h(b1.. k+1) h(b .. k+2)"h(bn—k"bn)‘ While the correspondence g -+ g
preserves unlformlty (ef. theorem 2.11. (iv)), it does not induce a

bijection from the uniform step-simulations of S on S -k to the uniform

step-simulations of Sk+1 to S1 for k>1. The ex1stence of such a bijec-

tion for k = 1 (ef. theorem 2.8.(ii)) was the key to the complete
characterisation of the uniform step-simulations of S on S -1 and of
the uniform emulations of S on Sn 1 (cf. theorem 2.9.). A similar
characterisation of the unlform step-simulations and of the uniform emu-
lations of Sn on Sn-k for k > 1 remains a challenging open problem. We

can characterize a large class of uniform step-simulations,

Theorem 2.14, Let n 2 k+1, and let g be a step-simulation of Sn on S

n-k°
. e = ~ - o, k+1
(i) if g(b1..bk+1) = g(b1b2..bk+1) for all b1"bk+1 € (1) s
then g is uniform.
ii) if g it O, k+1
(ii) irf g(b1..bk+1) = g(b1"bkbk+1) for all b1"bk+1 € (T) ,

then g is uniform.

We only prove (i) as the proof of (ii) is similar. Induct on n. For

n = Kk+1, observe from the assumption that of every pair b1"bk+1’

b1b2..bk+1 é Wwill map one to o € V1 and one to 1 € V1. Thus g = g is

uniform. Assume it holds up to n-1 2 k+1. Let g be a step-simulation of

Sn on Sn—k for which the constraint on g is satisfied. Let g' be the

uniquely corresponding step-simulation of Sn—1 on Sn—k-1 (cf. theorem
i 1 =
2.12.(i)) defined by the formula g (b1 b q) = g(b1"bn—1°)|n—1
o,\n
Observe that for all bo"bn—1 € (—) (bob1"bn—1) =

g(b oPq by ). g(b .. k+1)..g(bn_k 5+ eb ) and llkewise for g (b1"bn—1)’

hence g(bob1..b ) = é(b b ..b ).g (b ..b ). Since g' = g, it follows

n-1 n-1
o,n-k-1
by 1nduct10n that g' is uniform. Thus for every 01..0n k-1 € (T)
k
[@) 7 eyie, ] =

tion it follows that of the pair ob1..bk, 1b1"bk é will map one to o €

. Let b1.. ne1 € (g") (01"°n—k—1)' By assump-

V1 and one to 1 € V1, and thus g will map one of the strings ob1..bn_1,

1b1..bn_1 to 0Cy..C k-1 and the other to 101"Cn—k—1' It follows that



: -k -1 -1
for all cc,.. o)k, -

y 01 Cpo-q € (P |g (egeqevc )| = [(g") N
k—1)| = 2, which implies that g is uniform. This completes the indue-
tive argument. o

2k 2k—1
Theorem 2.15. For n2k+1, there are at least 2.2 -2 uniform step-

simulations of S on § .
n n-k

For k=1 the result follows from theorem 2.8.(ii). For k>1 we use the

characterisation from theorem 2.14. By induction on k one easily derives
k

that there exist 22 functions é : Vk+1 > V1 that satisfy the constraint
k

: 2 - ~ -
2"bk+1)’ 2~ functions g : XETT > V1 that satisfy
ke1) = 8(Dy.DD
satisfy both constraints simultaneously. Using the unique correspon-

e;(b1..bk+1

the constraint E(b1..b

) = §(51b

), and 22 functions g that

dence of é and g, the given bound follows. o

By lemma 1.2. every uniform emulation f Sn > Sn—k (n,k 2 1) also
is a wuniform emulation of Sn on Sn—k’ and conversely. (Note that Sn =
(Sn)R.) It follows that all results concerning the uniform emulations of
Sn on Sn—k hold ipso facto for the uniform emulations of Sn on Sn—k'

3. Emulations of the cube network. Let Cn denote the cube network with

2N nodes. Our main result will be a complete characterisation of the
uniform emulations of Cn on Cn—1’ in terms of the uniform emulations of
C3 on C2. This Section will be devoted to various auxiliary results and
the proof of the main theorem. The argument depends on a crucial lemma
(theorem 3.5.) whose lengthy proof is deferred to appendix B.

The cube network with 2n nodes (also called an n-cube) has perhaps
been the first proposal ever for processor interconnection. The nodes in
the network again are given n-bit addresses in the range o..2n—1, and
there 1is an edge from node b to node ¢ if and only if ¢ is obtained by
flipping precisely one bit in b. Information can be routed from a source
b to a destination ¢ in at most n steps, by flipping the bits bi to the
corresponding bits ci in some order. Since nodes thus have degree n, the

cube network is considered practical only for small values of n. We use
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b,c,.. to denote full addresses and X,Y¥.. to denote segments of bits.
The 1*® bit of an address b is denoted by b, (1sisn). For [x| = |y]|, let
d(x,y) be the Hamming distance between the bitstrings x and y, L.e., the
number of bit-positions in which x and y differ, (See; for example, Deo

[2] sect, 12-5)

Definition. The cube network (or n-cube) is the graph Cn = (Vn’En) Wwith

0
Vp = L (0y.b )| W, e by = =} and E, = {(b,e) | b,c €V and d(b,ec) =
1 }c
The fact that Cn can be (uniformly) emulated on every Cn—k for k21
easily derives from the following observation; using lemma 1.1.

Propostion 3.1. For k21, C, is isomorphic to C__, [c,J.
Proof.

One verifies that the mapping h : Cn > Cn—k [Ck] defined by the for-
mula h(b1..bn) = < b1"bn—k’bn-k+1"bn > is an isomorphism. o

Lemma 3.2. f is an emulation of C,oncC_ _

v, o if d(b,c) = 1 then d(f(bv),f(c)) s 1.

K if and only if for all b, ¢ €

(The proof follows directly from the definition of emulation. Note that
the condition can be equivalently written as: d(f(b),f(c)) s d(b,c).) We
shall be interested in characterizing the uniform emulations of Cn on
Cn—1'

The distinguishing feature of Cn is that it admits many more isomor-
phisms than e.g,. Sn (cf. corollary 2.13). This immediately has conse-
quences for the characterization of uniform emulations, because of the
following fact.

Lemma 3.3. Let I, I' be isomorphisms of Cn’C respectively., For every

n-1

f, if £ is a uniform emulation of Cn on Cn— then so is I'oefel (and con-

1
versely).
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(The easy proof of lemma 3.3. is left as an exercise.) The isomorphisms
of Cn can be characterized. For permutations I let IH be the isomorphism
d i LN ] = L2 2 i

efined by I1T (b1 bn) bn(1) b“(n), and for index sets J & {1,...,n}
let IJ be the isomorphism defined by

b, iftieyd

b otherwise

for 1£isn. Thus, IJ flips the bits in the positions with index in J.

Theorem 3.4, I is an isomorphism of Cn if and only if there are J, 1

such that I = IJOIH.

The "if"-part is obvious. To prove the "only-if"-part, proceed as
follows. Consider 1I(o0..0) and choose J such that i € J if and only if
Ii(o..o) = 1. Furthermore choose I such that if the ith bit of o..0 is
flipped, then so is the ]I(i)th bit of I(o..0). Observe that such a per-
mutation I must exist. Define the weight w(b) of a bitstring b as the
number of nonzero bits in b. We prove by induction on w(b) that for all
bEV : 131 °I=1I,.Forw() s1 it holds : observe that 151 °
I(o..0) = (0..0) and that if the ith bit of o..0 is flipped, then so is
the H(i)th bit of 131 o I(o..0). Suppose it holds for all b with w(b) £
m for somem 2 1., Consider b € Vv, with w(b)

of weight m, with ¢ = ¢' and d(b,c) = d(b,c')

m+1 and choose c¢,c' € Vn

"

1. Suppose b is obtained
from c¢,e' by flipping the ith, jth bit from o to 1 respectively, for
some i# j. By induction I31 o I(e) = In(c) and 151 o I(e') = IH(c') and
clearly IH(c) and In(c') differ in the r[(i)th and II(j)th position. If
I31 o I(b) is obtained from IH(C) by flipping a bit in a position €
{m(i),n(j) } then it will have a distance 2 2 from In(c'). Contradic-
tion. Suppose 131 o I(b) is obtained from IH(C) by flipping the r[(j)th

bit. Clearly cj = 1. Let ¢" be the string obtained from c¢ by setting the

jth bit to o. In(c") is obtained from IH(C) by flipping the H(j)th bit,

so 131 ° I(b) = I (e"). It follows that w(c") = m-1 and (hence) b # c"
and ( by induction) 131 o I(b) = IH(C") = 1;1 o I(c"), contradicting
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that 131 o I is 1-1. Thus 151 o I(b) is obtained from In(ey DY flipping
the II(:'L)th bit and thus I.' o I(b) = In(b). This completes the induc-

tion. We conclude that IJ oI = IH’ or I = IJ ° IH‘ n]

Viewing Cn as the n-dimensional unit cube brings the analysis of

emulations into the realm of combinatorial topology.

Definition. For osmsn, an m-face of Cn is any subgraph (subcube) of 2™

nodes of Cn that have identical bits in n-m corresponding positions.

Crucial for the characterization of uniform emulations is the following

result, the proof of which is deferred to appendix B.

Theorem 3.5. (Topological Reduction Theorem). Let n24, and let f be a
uniform emulation of C, on Cn—1' Then there exists an (n-1)-face A of Ch
such that f(A) is an (n-2)-face of Cn-1'

let @‘: vn >V be the mapping

Definition. For mappings g : V. » V n-1

. 3 2’
defined by @Yb1..bn) = g(b1b2b3)bu..bn (n24),

Theorem 3.6. (Characterization Theorem). For n23, £ is a uniform emula-
tion of Cn on Cn—1 if and only if there are isomorphisms I and I' of Cn
and Cn— respectively and a uniform emulation gof C, onC, such that f

3 2
=I' og oI,

The "if"-part is obvious. For the "only if"-part we induct on n.
The characterization is obvious for n=3. Assume it holds up to n-123,
and consider a uniform emulation f of Cn on Cn—1' By theorem 3.5. there

is an (n-1)-face A of Cn such that f(A) is an (n-2)-face of Cn . Up to

isomorphisms of Cn and Cn—1 we may assume that A is determine; by ele-
ments b that have identical bn and that f(A) is determined by elements c
that have identical C,_q1- Because of uniformity no elements of the com-
plementary face Ac (i.e., the elements with bit bn flipped) can be
mapped into f(A). It follows that AC is mapped to f£(4)° (i.e., the ele-
ments of f(A) with bit Che1

f(b1"bn—1bn) and f(b1"bn-1bn) are equal in the first n-2 bits for all

flipped) and, because f emulates, that
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Table B. Classification of the uniform emulations of 03 on C2

according to the smallest m for which an m-face is

mapped to an (m-1)-face.
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b1"bn € Vn‘ It follows that, restricted to A = V f reduces to a

n-1°
appi ' i .. .. = f .o

mapping f' depending on b1 bn—1 only and f£b1 bn) f (b1 bn—1)bn for
l L LK ] = ' LN . ® L]

all b1 bn € Vn or f(b1 bn) f (b1 bn—1)bn for all b1 bn € Vn Up to
another isomorphism of Cn-1 we can assume the former., As a mapping from

A = Vn_1 to f(A) = Vn—2’

Cn—1 on Cn—2' The induction hypothesis now applies to obtain the desired

f' is seen to act as a wuniform emulation of

form for f. o

The characterisation of theorem 3.6. is complete once the uniform emula-
tions of C3 on 02 are explicity given. Clearly there are many that are
similar, by lemma 3.3. Characterized by the smallest m such that an m-
face 1is mapped to an (m-1)-face, only three essentially different uni-
form emulations of C3 on 02 can arise. The different types are given in
table B.

It is open whether a similar, complete characterisation can be given of

the uniform emulations of C,oncC . fork> 1.

L, Emulations of the ring and the two-dimensional grid network.

Throughout this Section let n be even, unless stated otherwise. Let Rn
be the ring network with n nodes, and let GRn be the n x n grid network
(with n2 nodes) with wrap-around connections. In Section 4.1. we give a

complete characterization of the uniform emulations of Rn on R In

n/2°
Section 4.2. we show that the number of uniform emulations of GRn on

GRn/Z is at least exponential in n.

4.1. Uniform emulations of R_ on R The ring network is important

n/2"*
in practice (cf. Tanenbaum [11]), but hardly occurs as an interconnec-

tion network for multiprocessor algorithms. Indeed the analysis in this
Section only prepares for the later study of GRn, because GRn = Rn X Rn'

The nodes of Rn are named o,1,..., n-1 in consecutive order.

Definition. The ring network (or n-ring) is the graph Rn = (Vn,En) with

V, = {i]i €N and osisn-1 } and E, = { (1,i+1)|1 € V_}, where "+" is

the addition modulo n.
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By "wrapping" it around Rn/2 twice, it follows that Rn can be wuniformly
emulated on Rn/2' Our aim will be to characterize all possible uniform
emulations of Rn on Rn/2'

It will be helpful to view Rn (hence Rn/2) as a subdivision of the
unit cirele S1 in the plane. Clearly, every emulation of Rn on Rn/2
induces a continuous mapping from S1 to itself, It is well-known that
such mappings can be characterized by their topological degree or "wind-
ing number", The winding number indicates the number of times the image
of S1 i1s wrapped around the unit circle when S1 is traversed once. By

analogy we can speak of the winding number of an emulation.

is

Proposition 4.1. The winding number of an emulation of Rn on Rn/2

-2,-1,0,+1, or +2,.
Let f be an emulation of Rn on Rn/2' If the image of Rn wraps around
Rn/2 3 times or more, then the n nodes of Rn are mapped to a trajectory

of at least 3 n consecutive points on Rn . This is impossible. o

2 /2

It is relatively straightforward to classify the possible uniform emula-

tions of Rn on Rn/2 by their (positive) winding number.

Case I. Winding number = o.
If f(Rn) cannot make a full turn around Rn/2 then the condition of
uniformity forces f to be one of the two forms suggested in table C (a).

We shall refer to the emulations as being of "type 1",

Case II. Winding number = 1.

One verifies that f(R) must be composed of a number of "hooks" and

-
' L

"hook" "zigzag"

"zigzags":,



. ~ ’ -~ N ‘ -~
(a) Type 1. \\\V’,’ R ﬂ,”
y .
N
b

(b) Type 2. N
. ;—
S
)
(c) Type 3. I N
' b 1
A £
| ]
: | "
\\\ /’

Table C. Classification of the uniform emulations of Rn on Rn

/2

by winding number.
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Conversely, any combination of hooks and zigzags defines a uniform emu-
lation of Rn on Rn/2 with winding number 1. We shall refer to the emula-
tions of this kind as being of "type 2". Table C(b) shows two extreme
examples of emulations of type 2,

Case IIT, Winding number = 2,
f(Rn) is necessarily of the kind suggested in table C(ec). We shall

refer to the emulations of this kind as being of "type 3",

We conclude the following.

Theorem 4.2. (Characterization Theorem). For n even, f is a uniform emu-

lation of Rn on Rn/2 if and only if it is of type 1, type 2, or type 3.

Corollary 4.3. The number of different uniform emulations of R on R

n/2
is exponential in n.

(Two emulations f and g are said to be "different" if g cannot be
obtained by a rotational shift of f.) Clearly the number of uniform emu-

lations of Rn on Rn/2 of type 2 is exponential in n. o

4.2. Uniform emulations of GR_ on GRq/Z. The two-dimensional grid (or

mesh) has been used as a processor interconnection network, and exten-
sive studies have been made of algorithms to be executed on a grid (e.g.
Nassimi & Sahni [7]). We use a version of the grid with "wrap-around"
connections along the boundaries, which gives the nodes a uniform neigh-
bourhood structure. The nodes of GRn are named by their plane coordi-

nates (i,j) with osi,jsn-1.

Definition. The two-dimensional grid network is the graph GR = (V ,E )
with v,o= 11,9 | 1,5 € N and osi,jsn-1 } and E = { ((1,J) (i',3")) |
(i,3), (l',J ) €V and (i=i' A j=j'+1) or (i- =17+ A\J =j') }, where ten
is the addition modulo n,

By "folding" GRn, it follows that GRn can be uniformly emulated on
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. Every uniform emulation of GRn on GR has computation factor U4,

GR
n/2 n/2
The classification of the uniform emulations is presently open, but some
useful observations can be made.
As GRn = Rn X Rn , it can effectively be viewed as a torus, Let n210
and let f be a uniform emulation of GRn on GRn. Every cycle with 4

nodes, i.e., a "square" in GRn must be mapped on GR by f in one of

. n/2
the ways shown in table D.

From this one easily derives that f induces a continuous mapping of the
torus to itself. Again the notion of topological degree (winding number)
can be introduced; as expounded in homology theory. Let GRn be "spanned"
by the oriented cycles a = { (0,j) | osjsn-1 } and b { (i,0) | osisn~1
} . A closed curve C can be classified by the pair (k,1), where k is the
number of times C is wrapped in the g;direction and 1 is the number of
times C is wrapped in the b-direction. One can now classify (uniform)
emulations by the topological degrees of f(g) and f(g), considered as

closed curves on the torus GRn . The underlying reason is the following

fact from homology theory f2 if closed curves C,C' on the torus have
equal topological degree and f is continuous, then f(C) and f(C') have
equal topological degree on the torus also.

For ns8, the same analysis does not necessarily hold. In fig. 1 we
3 for which £(a) =
£({(0,j)|0sjs5}) has topological degree (1,1) and £({(1,j) | 05js5}) has
topological degree (-1,1). (Hence f cannot induce a continuous mapping
of the torus to itself.)

give an example of a uniform emulation of GR6 on GR

Proposition 4.4. Let f be an emulation of GR on GR_
degree (k,1) of f(3) and £(B) satisfies |k|+|1]s2.

. The topological

/2

(The proof follows by observing that the n points of 3 or 8 can be
)

mapped to a trajectory of at most n points on GRn/z;

Theorem 4.5. The number of uniform emulations of GR, on GR_ is at

/2
least exponential in n.
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Tabel D. Possible mappings of a cycle with 4 nodes by an emulation
f of GRn on GRn/Z’ for n 2 10.
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Let g,h be uniform emulations of Rn on Rn/2' Clearly the mapping f
defined by f£(i,j) = (g(i), h(j)) is a uniform emulation of GRn on GRn/Z'
By corollary 4.3. at least exponentionally many uniform emulations are

obtained. o

For the uniform emulations f defined in the proof of theorem 4.5., the
topological degrees of f(;) and f(g) are of the form (k,0) and (o,l)
respectively. Figure 2 shows an example of a uniform emulation f of GR8

on GR, for which f(g) has topological degree (1,1) and f(g) has topolo-

y
gical degree (1,-1). (The example can easily be generalized to obtain
uniform emulations f of GRn on GRn/Z for which f(g) has topological

degree (1,1) and f(g) has topological degree (1,-1), for all even n26.)

23 32 03 13 35 4y
34 43 30 3 53 55
01 10 02 14 15 25
24 42 20 M 51 52
00 M o 12 05 45
22 33 21 4o 50 54

Figure 1. A uniform emulation of GR6 on GR3 that does not induce a

continuous mapping of the torus to itself.
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o7
43

22
66

10
54

00
4y

Figure 2. A uniform emulation of GR8
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15
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30
T4

37
73

27
63

on GR, that is not the direct

I

product of two uniform emulations of R8 on RH'

Similar results can be obtained for the d-dimensional analogue of

GRn. Let GR: be the d-dimensional grid network (with wrap-around) with

size n in each dimension, i.e., a "hypertorus" with nd nodes.

Theorem 4.6. The number of uniform emulations of GRg on GRg/

least exponential in dn.

The proof is a straightforward

theorem 4.5,

extension of the

5 is at

argument used for

5. Cross emulations. By cross-emulation we refer to the emulation of a
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network G belonging to some class C1 on a network H belonging to a dif-

ferent class C The question of cross-emulating G on H can be important

if algorithmszmust be transported from one type of interconnection net-
work to another. We only consider situations with |G| = |H|, which means
that the resulting uniform (cross-) emulations will necessarily have
computation factor 1. Several results of Parker [8] concerning the
"topological"™ equivalence of some common types of multi-stage networks
are easily put into this framework. We only consider cross—-emulations

between Sn’ c, Rn’ and GRn (as defined in Section 2-4).

In a numbgr of cases the existence of cross-emulations is impossible
by degree arguments. For example Sn’ Cn’ and GRn cannot be emulated on a
ring network of the same number of nodes. Cn and GRn cannot be emulated
on a shuffle-exchange network with a corresponding number of nodes, and
neither can Sn be cross-emulated on the grid network of an equal number

of nodes.

Proposition 5.1. For n22, Sn cannot be uniformly emulated on Cn'

Suppose there was a uniform emulation f of Sn on Cn‘ Clearly
f(oon_1), f(1on_1); and f(on_11) must be adjacent to one another in Cn’
as the arguments are in Sn' Thus Cn contains a triangle. Contradiction.

(w]

On the positive side, consider GR n (with 22n nodes).
2

Theorem 5.2. For n21; GR n can be uniformly emulated on C2n.
2

We prove the following, slightly stronger claim : for every m,n21
there 1is a uniform emulation of the 2m X 2n grid network (with wrap-
around connections) on Cm+n' Putting m=n proves the theorem. To prove
the claim, induct on m and n. For m=n=1 the result is immediate. Assume

the claim holds for some m,n21. Let f be a uniform emulation of the 2m X

. Consider the 2m+1
+n

. . ' .
to Cm+n+1 using the mapping f' defined by

2n grid network on Cm X 2n grid network, and map it
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0.£(i,j) if osi<2™
£1(i,j) =

1.£(2"1-1-1,3) otherwise (2%si<2™")

One easily verifies that f' is a uniform emulation. Likewise the Moy

n+1

2 grid network can be uniformly emulated on Cm+ . This completes

n+1
the inductive argument. o

By a degree argument it easily follows that, conversely, C2n can be uni-

formly emulated on GR,n only for n=2,

2

Theorem 5.3. For values of n as indicated, Rn can be uniformly emulated
on the following networks :
(i) for n=k2; on GR

k,. k.
(ii) for n=2", on S

K and on Ck'

(The results are equivalent to claiming that GR S, and C, are ha-

k’ "k K
miltonian.)

(i) Left as an exercise.
(ii) By the existence of binary de Bruijn sequences ([1]) it fol-
lows that every Sk has a hamiltonian circuit. To obtain the result for

Ck’ write k=k1+k , AS the result is obvious for k=1, we may assume that

2.
k 21. It 1is easy to show that Rn can be uniformly emulated on the

2 © grid network (with wrap-around connections). In the proof of
k Kk

theorem 5.2. it was shown that the 2 1x 2 grid network can be uni-

formly emulated on Ck +k =Ck; By transitivity the result follows. O
1 72
Observe that every uniform emulation of the ring of 2k elements on Ck

corresponds to a Gray code of length k (ef. [9]).

6. Defining networks by emulation. Every network H = (VH,EH) can act as
a "host" under emulation for many different, larger networks. If we res-
trict the class of admissible (uniform) mappings that should act as emu-
lations, then the set of graphs G that can be emulated on H will likely
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be restricted also. Our main result will be that Sn’ Cn’ Rn and GRn are

n-1? Cp-1» Rpyp 8Md GR 5

respectively. In Section 6.1. we derive some general results on defining

uniquely defined by their emulations on S

networks by admissible sets of emulations. In Section 6.2. we prove the

main results.

6.1. General characterizations. Let H = (VH,EH) be a given host net-
work, V a set of nodes with |V| 2 |VH|, and F a collection of functions

from V onto VH'

Definition. A network G = (V,E) is said to be F-emulated on H if every f

€ F is an emulation of G on H.

Our aim will be to characterize all networks G that are F-emulated on H,

given F and H. We assume H and V to be fixed, and F to be variable,

Definition. E, = { (v,v') | v,v' €V, v#v' and Veep f(v) = f(v') or

(£(v),r(v')) € E, }.

Theorem 6.1. (Characterization Théorem) G is F-emulated on H if and only
if G is a spanning subgraph of (V,EF).

Let G = (V,E) be F~emulated on H, and let (v,v') € E. By definition
(of emulation) we have that for every £ € F : f(v) = f(v') or
(f(v),f(v')) € EH. Thus (v,v') € EF' It follows that E E.EF, and G is a
spanning subgraph of (V,EF). Conversely, it is clear that (V,EF) is F-
emulated on H by definition. Clearly, every spanning subgraph is F-

emulated on H also. o

It follows that (V,EF) is the maximal graph that can be F-emulated on H.

Define f : V » V, to be uniform if for all h € Vy |f_1(h)| = ¢, for
some constant c = |V|/|VH| (the computation factor).

Theorem 6.2. Let f£,f' : V + V, be uniform functions. Then (V,E{f}) and
(V,E{f,}) are isomorphic graphs.
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H
elements onto every node of H) there exists a permutation I : V » V such

Since f,f' : V » V_ are uniform (and thus map equal sized piles of

that for all v € V : f(v) = f£'(II(v)). One easily verifies that I is, 1in
fact, an isomorphism of (V,E{f}) and (V,E{f,}). o

We derive a further result to characterize (V,E{f}) when £ is uniform.

Let ¢ be as defined above.

Lemma 6.3. Let £ : V » V_, be uniform. Let d
—— H out

out-degree and the maximum in-degree of the nodes in H, respectively.
(If H is undirected, let dou

and d, be the maximum
in

£ = din be the maximum degree in H.)
(i) the maximum out-degree in (V,E{f}) equals (dout+1).c-1.
(ii) the maximum in-degree in (V,E{f}) equals (din+1).c-1.
(iii) If G and H are undirected graphs, then |E{f}| = %0(0—1)|VH| +
2
LBy
(iv) If G and H are directed graphs, then |E{f}| = cle-1)|v
2
Byl

gl

(i) Consider any node v € V. By uniformity there are precisely c-1
nodes v'#v with £(v) = f(v'), which thus accounts for c-1 outgoing edges
with this property. Next there are at most dout'c nodes v' with
(F(v),f(v')) € Ey- This accounts for a maximal out-degree of c-1+dout.c
= (dout+1)c-1. By choosing v such that f(v) has maximum out-degree, it
is clear that the bound is attained.

(ii) similar to (i).

(iii) E, contains |v

Hl.%c(c-1) edges (v,v') with f(v) = f(v'),

because ¢ nodes of V are mapped to every h € VH. Every edge (h,h') € EH

accounts for 02 edges (v,v') with f(v) = h and f(v') = h'. By definition
EF contains no other edges than the ones that were distinguished.
(iv) Similar to (iii). o

Lemma 6.3. will be useful later because, whenever f € F and G 1is F-

emulated on H, then G is a spanning subgraph of (V,E{f}).



6.2. Characterization of the shuffle-exchange, the cube, the ring and

the grid networks by emulation. We use the definitions and results con-

cerning S , Cn’ R and GR as presented in Sections 2-4. First we con-
sider S s the shuffle—exchange graph on 2 nodes. From table A we recall

the follow1ng uniform emulations of Sn on S

n-1
£,0 £(0 b)) = Db L,
f2 : f2(b1'fbn) = b2"bn’
. = i = = <i -
f3 : f3(b1..bn) CqeeCpy with ¢, (bi bi+1) for 18isn-1

We show that Sn is uniquely characterized by these three emulations on

~ o\n
= =i >
Sn—1' Let V Vn ( (1) ), n22.

Theorem 6.4, (\I,E{f.1’f2 £ }) = Sn‘

Clearly Sn is a spanning subgraph of (V,E{f ), by definition

fz’f }

(or theorem 6.1.). We show that every edge of (V,E{f £Lf.) must be an
3

2’
edge of sn = (Vn’En)' Consider any edge (b1..bn,c1..cn) € E{f1’ 2’f }e
We distinguish the following cases:
= i<
(a) fi(b1"bn) fi(c1..cn) for 1sis2. It follows that D,..b ,
CiesCpq @nd b,..b = c,..C) and (hence) b,..b =L, contradicting

that we had an edge between distinect points.
(b) fi(b1"bn) = fi(c1..cn) for i = 1,3 (and (f2(b n) f (c ..cn))

€ En-1)' It follows that b,..b _, =c ..c _, and (bn_ =b ) = (cn_1:cn),
sob,..b=¢,..c_, a contradiction.

1 n 1 n’ ,

(e) (f1(b1..bn), f1(c1..cn)) e E _, and f2(b1..bn) = f2(c1..cn). It
follows thaz_bz..bn_1a = c1"ﬁn—1 and b2..bnn:02r.1.cn for some a, hence
b1"bn = b1a and Ci.eCp = a. Clearly (b1a ,a ) € En'

(d) f1(b1..bn) = f1(c1..cn) and (fi(b1"bn)’ fi(c .eC )) € En 1 for
i = 2,3. It follows that b1 bﬁ'] = CyeeCpy and b n® = cg..c for
some a, hence b,..b = b.b and Cc,..C = b b oW

1 5 n 1™n 1 n 1™n
(f (b b ) fé(b b alpha)) € E -4 implies b1 = b, and clearly
(b b b1b a) S E .
(e) (fi(b1.. n)’fi(c1"cn)) € E 1 for i = 1,2. It follows that
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c ahd b b B

b2. bn_1a Cyqee n-1 3°+Ppf = CheeCh for suitable a and B, hence
b1"bn = b1c1..cn_1. Clearly (b1c1 Cpqo c1..cn) € En' a
(It can be verified that no subset of {f f } is sufficient to

characterize Sn°) Next consider Cn’ the cube network on 2 nodes. We

select the following uniform emulations of Cn on Cn—1

£, ¢ £,(D,.uD)) = byu.by
fu : fu(b1"bn) = (b15b2)b3..bn
2> =
Theorem 6.5. For nz3, (V,E{f1’fu}) C,

Clearly C is a spanning subgraph of (v, E{f £ }). Consider any edge

(b,..b_,c ..cn) € E We distinguish the following cases :

1 n' {f1,fu}‘
(a) f1(b1..bn) = f1(01..cn). It follows that b,..b _, = c1.;cn_1,
and either b,..b_ = c¢. ..c_(a contradiction) or b,..b_ = cC . ..C c . It
1" 'n 1 n 1 n 1 n-1"n

follows that (b1..bn,c1..cn) € En'
(v) (£, (b,..b, )\t (ey..cy )) € E_, and £),(b, .0, ) = f)(e ..cn). It
follows that d(b n 1,0 -eChy

) = 1 and b1; b1b203 .c with
(b =b ) = (c =C ) It follows that b n=Cn’ and thus (b1.. 0

..C ) e E .
1 n n
(c) (f (b ..b ), f (c ..c )) € E - and (fu(b1..bn),fu(c1..c )) €
En—1' It follows that d(b n 124 n—1) = 1 and d(ab3..bn,803. n
1, Wwith a = (b1=b2) and B = (c1 02). If o= then necessarily b1b2 = C
and d(b1..bn,c1..cn) = 1 thus (b1..b b
03..0n and (hence) d(b1b2,c102)
(b1..bn,01..cn) € En.
We conclude that every edge of (V,E{f £ }) also is an edge of Cn' u]
?

..C .c ) =

1 2
’01"°n) € En' If a#B then b3 =
1. ‘Clearly it follows that

ns

Theorem 6.5. is "minimal™ in the sense that Cn cannot be character-

ized from Cn_1 by means of just one uniform emulation.

Proposition 6.6. There does not exist a uniform emulation f of Cn on

Cn—1 such that (V,E{f}) = Cn'



Proof.
Observe that (the wundirected graph) Cp-q has 2" nodes and
%.Zn_1(n—1) edges; Suppose a uniform mapping f : V » \In_]ll exists with
‘ . n-1
(V,E{f}) = Cn' By lemma 6.3. (iii) (V,E{f}) must have n,2 -2 edges

(c=2), which is more than Cn can have. o

Consider Rn’ the ring on n nodes. Define the following uniform emu-

lations of Rn on Rn/2 (n even) :
. i
31 : 81(1) = Lzl
g, : gz(i) = (1 mod n/2)

Theorem 6.7. For n>8, (V’E{81,82}) =R.

Clearly Rn is a spanning subgraph of (V,E }). Consider any

edge (i,j) € E yo If g,(1) = g,(J) then |i-j|=1 and (i,J) € E . If

(g1(i),g1(j)) e En/2’ then we may assume without loss of generality that
[i/2] = [j/2]+1 (mod n/2). It follows that 1=]+2+6,-8, (mod n), with §,
and Gj Kronecker &§'s. Now, in addition, gz(i) = gz(j) or (gz(i), gz(j))
€ E /o If gz(i) = gz(j) then |i-j|=o (mod n/2), hence 2+61—Gj£o (mod
n/2) and, by the assumption on n, necessarily 2+61-5 = 0 and i=j. Con-
tradiction. If (82(1),82(3)) € E b

2+8;-6,=+1 (mod n/2). Since n>8, we have 2+8;=65 = 1 and i=j+1 (mod n).

J
then i=j + 1 (mod n/2), hence

Thus (i,j) € En; We conclude that every edge of (V,E }) is an edge

{g,,8,

of Rn. o

Finally consider GRn, the grid network on n2 nodes. Define the follow-

ing uniform emulations of GRn on GRn/2 (n even) :
h, : h (i,j) = (L%l Lil)
R 112
h2 : h2(i,j) = (i mod n/2, j mod n/2)

Theorem 6.8. For n>8, V,E ) = GR_.

{h,,h.}
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Similar to the proof of theorem 6.7. O
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Appendix A. The proof of the Characterisation Theorem for the
(theorem 2.9.).

uniform emulations of S on 81—1

We use the notations and terminology of Section 2. Our aim is to

prove the following result.

Theorem 2.9. (Characterisation Theorem). Every uniform emulation of Sn
on Sn—1 is step-simulating, and thus equal to one of the mappings listed
in table A.

The proof is based on the lemma below and a subsequent analysis of
cases, Some further notational conventions will be helpful to deal with

the elements of (—19)n and similar sets as strings:

[o] : zero or one occurence of bit o (i.e., "empty" or "o")
[1] : zero or one occurence of bit 1 (i.e., "empty" or "i")
(0o1)* : zero or more repetitions of the string ol (as required)

(10)* : zero or more repetitions of the string 10 (as required)

The length (n) of a bitstring will always be clear from the context, and
is wusually not given by separate indices. For example, the notation

(o1)*¥[o] for n odd will denote the string (ol)Ln/zlo. For n even it will

denote the string (o1)n/2. Assume n>2.

For the proof of theorem 2.9., assume that there exists a wuniform
that is not step-simulating. It follows that

emulation f of S on S
n n—1 o,n-3 0
, ¥V & (T) and o,B,Y,8 € (T) such that
f(ax) = Bys and f(xY) = ByS, with By = y§. (Cf. lemma 2.3. and lemma

there must be an x € (%)n—
2.6.) We will fix the notation throughout the remainder of this section.

Claim 2.9.1. Under the assumption stated, one of the following situa-
tions must hold

(1) x = o™ ! and (a=0 V Y=0)

(11) x = 1" and (a=1 V ¥=1)

(iii) Bys = (o1)*[o]

(iv) Bys = (10)*[1]
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Proof
In addition to f(ax) = F(xY) = Bys we must have : (f(ax) = Bys V
f(ax) = %By) and (F(xY) = By§ V F(xY) = yG%), from the emulation pro-

perty. Because f is uniform, only two nodes can be mapped to BY§. The

following situation can be distinguished :

(a) F(ax) = f(ax) = Bys. Because f£(xY) = Bys also, we have XY = ax
(= x=on-1 and a=1 and Y=0, or x=1n—1 and a=0 and Y=1) or xY = ax (>
x=0""1 and a=0 and Y=0, or x=1""1 and o=1 and v=1).

(b) £(xY) = F(xY) = Bys. Now also f(ax) = ByS§, and the same cases as
under (a) result.

(c) f(ax) = %By and f(xY) = yG%. Clearly f(xY) = %By or £(xY) = Bys,

hence %By = yd% or BjE = yG%. Because By=y$ only the former case can
arise : 28y = ys=. It follows that gys = (o1)*[o] or gys = (10)¥[1].
(The "solutions™ By§ = on_1 and Byé$§ = 1n-1 are not valid, because it

would yield By=y6.) O

We now obtain the basic step for the further case analysis,

Lemma 2.9.2. Under the assumption stated, one of the following six cases
must hold :

(1) £((o)*[o]) = o™, £((10)*[11) = o™

(I1)  £((o1)*[0]) = 171 £((o)*11) = 1!

(III) f£((o1)*[0]) = (0o1)* [o], £((10)*[1]) = (o1)*[o]

(IV)  £((o1)*[0]) = (o1)* [0, £((10)*[11) = (10)*[1]

(V) £((o1)*[o1) = (10)* [11, £((10)*[1]) = (o1)*[0]

(VI)  £((o1)*[0]) = (10)* [11, £((10)*(11) = (10)*[1].

Proof .
Let £((o1)*[0]) = u1;.un_1 and £((10)*[11) = v ..v .. Because

(01)*[o] and (10)*[1] are adjacent in Sn and f is an emulation, the fol-
lowing situations can arise :

(a) Ugeolp 0= VooV oo Write u,oou = ByS. (Note that we cannot
assume that By=ys§.) By the analysis under claim 2.,9.1. it follows that

%By_= yé% (hence gys = o™ ', 1™ 1, (01)*[0], or (10)*[11) or §y3 = yG%
(hence Bys = on-1 or 1n—1)' This proves cases I, II, III, and VI.
o o)
(b) Ugoelp o #Voo oV gy DU WU = VooV LT = VeV . It



follows that VieoVig = on-1, 1n—1, (01)*[0o], (10)*[1] but only for the
latter two cases can Uy .ol o be chosen to satisfy the constraint
(namely u, ..u =(10)*[1], (01)*[o] respectively). This proves cases IV

1 n-1
and V. 0

We proceed by analysing the cases of lemma 2.9.2. and showing that in
each case a contradiction must arise. (Recall the assumption that f is

uniform and not step-simulating.)

Case I. £((01)*[0]) = £((10)*[1]) = o™ .

We show that this forces f to be equal to f3, one of the six step-

simulations listed in table A.

Claim 2.9.3. For 1Sisn-1 and b € (%)“, £,(b,..b ) = (b,=b

: ).

i+1

. n _ . seio] o\n n-1
Define B, {b1..bn|v‘j : 183i8i-1 = bjatb. }g(1) and C;_,

- J+1
fegerey gy 1858171 = cj-0} < (™. Note that B) - ((o1)¥[o],
(10)*[1]} and cn 1 n—1}’ and hence that f(B )= Cn 1 and f_1( n- 1
n n

Bn (by unlformlty). We claim that for all 1$1$n, f(B )= C and
f_1(Ci:1)=B?. For a proof, use downward induction starting w1th 1-n, for

= {o

which the claim clearly holds. Suppose it holds for some i21. Consider

any b1"bn € 82_1. It follows that b1b1 b -1 € BP and thus that

- n-1i
f(b1b1.. n—1) € Ci—1'
n-1 n-1

Since f is an emulatlon we must have f(b1..b ) €

1 A or f(b .b ) € Ci " In either case f‘(b1 .b ) € Cl e and we have
£(By 1)5502_12. Because |B = 2|C | and f is unlform we have in fact
f(Bl 1) C?:; and ipso facte f (C 1) B1 _q- This completes the inductive
argument.

We immediately conclude (take i=2) that for all x € (o)n 2 f1(o1x)
= 0 and f (10x) = o. Because of unlformlty this forces f (oox) f1(11x)
= 1 for all x € (o)n 2. Define B = {b1"bn|bn" 1 € Bi} and 5?:1 =
{c . cn 1|cn 1..c € CT ! As Dbefore one shows that for all 1<isn,
f(B )= Cn ! and f_1( ¢t 1) }3}l We now argue by downward induction on i

-1 i1
that for all x € B , £(x)= f (x) (with f3 as in table A). For i=n we have

= {(o1)*[o], (10)*[1]} and f((o1)%[0]) = £((10*)[1]) = 0n_1, which

1ndeed coincides with f3. Suppose it holds for some i21. Consider any
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M _ co
x1..xn_i+1(o1) [o] € Bl -+ If X_i4q = 1 then £ and f3 coincide on the

argument by induction, Let X -1 +1 = 0. Observe that
(o1)*[0]) € f£(B))=C],] and that f(x S S CL LIS DI
\B ) Cn ! C? 1, where the latter holds because x = 0 and uni-

n-i+1
formlty of f. It follows that f(x1..x (o1)*[0]) *

n-i+1
f(x2..xn_i+1(o1)*[o]) and thus, because f is an emulation, necessarily
M _ x . .

f(x1..xn_i+1(01) [o]) f(x PR S i+1(01) [o])|n_2. Using the inductive

* * =
assertion it follows that fi(x1"xn—i+1(°1) [oD)

*

()3 (XyeeXp 54 (ODXOD) por 211 2gisn-1. At the beginning of this

paragraph we showed that this must hold also for i=1. Thus f and f3

coincide on 5?_1, which completes the inductive argument. Because ﬁ? =

Vn this shows that f and f3 coincide for all arguments, which proves the

claim. o

Because f was assumed ndt to be step~simulating, claim 2.9.3. clearly
proves that case I is contradictory.

Case II. f((o1)*[0]) = £((10)*[1]) = 1771,

The proof of claim 2.9.3. can be completely dualized to show that in
this case f must be equal to ?3, another one of the six step-simulations
listed in table A. Because f was assumed ndt to be step-simulating, this

case is also contradictory.

Case III. f((o1)*[0]) = £((10)*¥[1]) = (o1)*[o].

We show that for n>2 no emulation f of Sn on Sn—1 with this property
exists. Suppose on the contrary that an f does exist. We derive a con-
tradiction as follows.

First let n be odd, which implies that the assumption turns into
f((o1)*0) = f((10)*1) = (01)*. Since f is uniform no other nodes can be
mapped to (o1)*, and we necessarily obtain: f(oo(10)*1) = —(01)*0,
£(1(o1)%00) = 1(o1)*2, f£(11(o1)%0) €{1(o1)*2, 11(01)*}, f(o(1o)*11) €
{%(01)*0,(01)*00}. Observing that necessarily (f(11(o1)*0), f((10)¥1)) €
E,-q, and (£((10)*1), f(o(10)*11)) € E -1 1t follows that f(11(o1)%o0) =
1(01)*% and f(o(10)*¥11) = —(01)*0 and the emulation property now forces
that £(1(o1)*00) = f(11(o1)*o) 1(01)*1 and f(oo(10)¥1) = f(o(10)*11) =
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%(01)*0. From the assumption one easily derives f(11(o1)¥*0) = %(01)*0
and f(o(10)*11) = 1(01)*%, thus forcing all four nodes to be mapped to
1(o1)%0. This contradicts uniformity.

For n even we have £((01)¥) = £((10)*) = (o1)*o. By uniformity again
no other nodes are mapped to (o1)¥o, and we necessarily obtain:
f(oo(10)*) = 2(on)*, f((o1)%00) = (10)*¥2, £((10)*11) (10)%2,

f(11(o1)*) = %(01)*. The emulation property forces f(oo(10)¥*) and

f((o1)*¥00) to be adjacent in Sn— (impossible) or equal, hence

1
f(oo(10)*) = f((o1)*o0) = 1(o1)%*. By the same argument f((10)¥11) =
f{(11(o1)*) = 1(01)*, Thus four nodes are mapped to 1(o1)¥*, contradicting

uniformity;

Case IV. f((o1)*[0]) = (o1)¥*[o], £((10)*[1]) = (10)*[1].

A more tedious argument is required to show that in this case again
every uniform emulation f that satisfies the contraint must be step-
simulating, contrary to our basic assumption.

First let n=3, which turns the contraint into f(olo) = o1 and f(101)
= 10. We show that f must be equal to the step-simulations f1 or ?2 from
table A. By emulation f(oo1) € {ol1,00,10}, f£(100) € {01,10,11}, f(011) €
{10,00,01}, f(110) € {10,01,11}. Uniformity is heavily used in the fol-
lowing further analysis:

(a) Suppose f(oo1) = f(o10) = o1, Then f(100) = % = 1%, hence

1
£(100) = £(101) = fo. It follows that f(o11) = 12 = oz, contradiction.

(b) Suppose f(o01) = oo. It follows that f(1lo) = 10 (=f(101)) and
f(ooo) € {00,110}, hence f(ocoo) = f(001) = oo and thus f(o11) = o1
(=f(010)) and f(110) = 11. Necessarily f(111) = 11, and f is proved to
coinecide with f‘1 from table A.

(c) Suppose f(oo01) = £(1o1) = 1o. It follows that f(1o0) € {o1,11}.
If f(1oo) = f(olo) = o1, then f(110) = 00 and this is impossible. Thus
f(100) = 11 and necessarily f(110) = o1 (=f(o10)) and f(o11) = oo0. It
follows by emulation that f(ooo) = f(100) = 11, and £(111) = oo. This
proves f equal to ?2 from table A.

Now let n24. We shall first derive a number of auxiliary facts that

are needed later.
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n

Claim 2.9.4. For n2l, f(o") € {on_1,1 "1 and r(1M e (o1, 40t

}.

We only consider f(on), as the argument for f(1n) is similar. Let
n-1
Then f£(1o ) € {u1..un 1 1 u, . } and f(o™ 1) €

} The following cases can arise :

f(on) = Uu,..u

1 n—1'

Uy ooy qolpe ety g
) = f(o ) =u,..u . Because of uniformity we must have

(a) f(1o .
n-1 o ! “'1 n-2
that f(o 1) = n-17 * Y1+ Y-y and also f(o1o
f(1o 1) € {—u u Y u1:éu 57 . o1
then by unlformlty f(o 10) = Ugealp o7 and f(o
hence f(on—21o) = £(o 11) = Uu,..u Thus f(o" 1) = Ug..u = =

2 n-1°
and necessarily u = o ? or u = 1n 1. In either case unifor-

n-1

) = zu

9}. If £(107°21) = (oo™

2. ..u
1717 ""n-2 e
mity is contradicted. Thus f(1o 1) = U.au g
n-2 n-2
that f(1o 1) = u15:u _o4,.q and hence f(o 10) € {u1..un—% n-1°
1) = U ..u then f(o 1) =

n-2
n- 2 n- 11}. If f(o 10) = f(10 ? 2 -1
n-1

n- 11 = 1 Upeol 5 and necessarily u = or u =1 . In either
case unlformity is contradicted again. Thus f(1o" 1) = u ..u_ .u and

- o n-1 1 n-2 n-1
f(o 10) = u n-2Yn-17» a@nd  thus  f(o” "1) = wu,..u

2. n_2 2 n_1 =
1 2 n 2 ? 1 It follows that u2..un_1 = q (With @ = 0 or o =

U 1, which implies in fact

u «olU

u e ol

u °
* 1
1)
and f(o = o Za If u1 = o then we are finished. Thus assume that
u, = a, hence f(on) = f(1o ) = Ean_z. Consider b1"bn € f—1(an_1),
thus f(b1..bn) = an—1; Because of wuniformity it follows that
f(ob1..bn_1) = f(1b1..bn_1 * 1 n-1

l;f§w1se f(o1b1..bn_2) = f;11b1..bn_2) = q and, provided Dyeeb 5
o} , also f(°°b1"bn-2) = . This shows that at least 3 nodes are
mapped to an—1; contradicting uniformity.

n-1 n
(b) f(o© 1) = f(o) = Upeeu o

(a) by 'reversing' the orientation of the strings.
0 n-1 :
(c) £(10" ) TUyeY,, and o 1) = Useetp ,3. I f£(107 7)) =

£(o" 1) then necessarily Upeely = (aB)*[al. Because of uniformity a=8

(otherwise one of (01)*[o] and (o1)*[1] would be mapped to (aB)*[a]
too), and thus Upeau o= o or u1.;un_1 = 1771, It follows that
f(1on_1) = f(o 1) = (o), contradicting uniformlty. Thus f(1on_1)

) = ™' (using that b...b - ", and

The argument is analogous to case

0 n-1

f(on—11) and by emulation necessarily f(o 1) = U ..U = =u,..u 2
-1 e 1 2 n—11 1" 'n-27

hence Uypeeu, =0 or u..u ., = 1 . 0
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(The condition n2l4 was used in case (a), to make sure that on—21o #

o1on—2 and (hence) 1on_21 # (10)*[1] and on_2 10 # (o1)*[o0].) Next
observe from f((o1)*[o]) = (o1)*[o] that f(oo(10)*[1]) € {(o1)*[0],
(10)*[1],00(10)*[1]} and from £((10)*[1]) = (10)*[1] that £(11(o1)*[o])
€ {o1)*[o], (10)*¥[1]1, 11(o1)*[0]}.

We tackle a particular combination first, because it will be central in

the remainder of the proof,

Claim 2.9.5. For n2l,

(1) if £(00(10)*[1]) = 00(10)*[1], then for all b ..b . € (%)n'3
. . 1] 1 2 n—3 _
there exist 01..cn 3, CieeCp_ 3, € (1) such that f(b1..bn_3ooo) =
CyeeCp 300 and f(b 3001) =y cn -3° o n-3
(ii) if f(11(o1)*[ N = 11(01)*[0], then for all b,..b . e ()
'
there exist CyeeCpgs CqeeCp_ 3, € '( 2)%73  such that f(b eb_ 3110) =
01..cn_311 and f(b1.. n-3 1M11) = CieeCho 3

We only prove (i), as (ii) is similar. First we induct on i to show

that for all b ..b, € (D! there exist a c,..c; € (TO)i with
f(b1..bioo1(o1)*[o]) = c1..cioo(1o)*[1]. Since f(oo1(o1)*[o]) =
oo(10)*[1] by assumption, we have for 1i=1 : f(b1oo1(o1)*[o]) €
{oo1(01)*[o], %00(10)*[1]}. If f(b1oo1(o1)*[o]) = f(ool1(o1)*[0]) =

0o(10)*[1] then one easily verifies that claim 2.9.1. is contradicted.
(Use a=b1, x=001(01)*[o], Y=0 or 1.) Thus f(b1oo1(o1)*[o]) =
c1oo(1o)*[1], for some c, € 2. Suppose it holds for some i, 1 =i<n-3.

1 1
i *

anilder f(b1. bi+1oo1(o1) fo0]). By induction there exists a CoeeCyyy €

(—) such that f(bz.

bi+1oo1(o1)*[o]) = c,. i+100(10)*[1], and thus
o
f(b b...b, ,001(01)¥[0]) € {02..ci+1oo(1o)*[1], Tcz..ci+1oo(1o)*[1]}.

172°°71#1
f(b,b...b, ,001(0o1)*[0]) = f(b2..b oo1(o1)*[0]) = 02..ci+1oo(1o)*[1],

172°"7i+ i+
then one easily verifies again that claim 2.9.1. is contradicted. Thus
0
* 2= * — 3

f(b1..bi+1oo1(o1) [oD) 0102..ci+1oo(1o) [1], for some c, € T This

completes the inductive argument. We conclude in particular (take i= n-3)

that for every b,..b _ € (o)n 3 o)n 3
that f(b bn 3001) 1..cn 30.

Next consider f(b .eb n- 3ooo) Since f(b2..b

. o)

suitable 01..cn_3 € (T)

.C

there exists a ¢, ..cC € ( such

1 n-3

n_30001) = Cq..Cp 300 for

, it follows that f(b1b2..bn_3ooo) €
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0 n-3 .
{01..cn_3oo, 101..0{}:?0}. If b n 3 = o , then necessarily
f(b1..bn_3ooo) = 0 by clalm 2.9.4. and the form claimed under (i)
n-3 B
holds. Thus let b1"bn-3 20 ~.If f(b1..bn_3ooo) = Cy..cp 300, then
the form claimed under (i) holds too. Hence let f(b1..bn_3ooo) =
)
Bc1..cn_3o and, cgnsequently, f(g b1"bn oo) € {Be 1°°Cn- 3o, TBc1..cn_3}
for some B € T and bo € T (Note that necessarily b b n 3
b1..bn_3ooo.) if f(bo..bn_3oo) = f(b1. n_3000) = Be, _30, then it

follows from claim 2.9.1. that Be,..c 50 € o, (o1)*[o], (1o)*[1]}
In each of the three cases uniformity is contradicted. (Note that o €

f—1(on-1) by claim 2.9.4. in this case, and (o1)*[o] € f-1((o1)*[o]) and

(10)%[1] € f_1((1o)*[1]).) Thus £(b_..b _ 3oo) - 28c,..0 4+ Since
f(b1..bn_3oo1) = c 3?0 for sslta?le CpeeCpg € (o)n 3, it follows

"nAtt
that f(bob1..booo) G {c «eCp 3oo,1c1 o} and thus ends with a "o".
Hence Ch-3 = O and f(b1..bn_3ooo) = 1"cn—400 as claimed. o

We now begin our case analysis.

Claim 2.9.6. For n2l4, the case f(oco(10)*[1]) = oo(10)*[1] and
£(11(01)*[0]) = 11(o1)*[o] is contradictory.
Proof

By claim 2.9.5. the 2n—2 strings of (%)n-3ooo U (%)n—3oo1 are

n-3 3oo By uniformity it follows that no

n- 3O

mapped to the 2 strings of ( )

other strings can be mapped to (1)
the elements of (%)n_311o U (%)n_3111 are mapped ¢to (

o,n-3 ; =
b1"bn-3 € (T) . By clal? 2.?.5. we have f(b 50 b 30110) CieeCp_ 3

and f(bz..bn_31ooo) = Cy..c 300 and, consequent%y, f(b ?n 3<'>11) €

cn_31} and f(b1..b 100) € {c

0. Likewise no other strings than
o)n 311, Let

{c1..c 00, 3¢, ..c. .o}.

n-3 °h-3 171°° n 3

ol1 = f(b,..b o11o = Cy..Cp or
n-3 ) ' (, n-3 ) 3
f(b1..bn_31oo) = f(b2.. no31000) = CjeeCy 300 clash w1tho ?lalT 2.9.1.
Thus f(b1..bn_3o11) = Tc1..cn_31 and f‘(b1 b 31oo) = 71 ++Cp_3° and,
since neither one can "end" with oo or 11, we have 1in fact that

. ] 1
f(b1..bn_3o11) = d1"?n 3o1 and f(b1..bn_31oo) = d1..dn_31o (for suit-
able d1"dn-3 and d n 3). By a very similar argument one now shows
\J 1

that f(b1..bn_3o1o) - e1;.en_3o1 and f(b1..bn_31o1) = e1..en_31o, for

suitable e, ..e and e, ..e . (It follows that f ‘'resembles' f of
1 n-3 1 n-3 1

(o]
n_311 ,TC,l .o
The cases that f(b1..b
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table A.)

As f was assumed not to be step-simulating, there must be x € (0)n !
and y € (%)n 3 and a,B,Y,8 € (T) such that f(ax) = f(xY) = Bys and By =
y8. By claim 2.9.1. one of the strings ax, XY is on or 1n and hence (by
claim 2.9.4.) pgys € {o™,1"}, or Bys € {(o1)*[o], (10)*[11}. In the
former case the condition By = yé§ is violated. In the latter case we
necessarily have By§ = By'EG (for a suitable y') and hence, by our ear-
lier analysis, necessarily oax = ax'Esg for suitable x'. It follows that
XY = x'Eé%Y and thus f(xY) ends in GT, contradicting that it equals ByS$

and thus ends in 36, O

Next let f(oo(10)*¥[1]) = (o1)*[o] and £(11(01)*[0]) = 11(o1)*[o].
Observe that £(0o(10)*[1]) = f((01)*[0]) = (o1)¥[o] and thus by unifor-
mity, £(100(10)*[1]) = %(01)*[01.

Claim 2.9.7. For nz4, the case f(oo(10)*[1]) = (01)*[ 0] and
£(11(01)*[0]) = 11(o1)*[o] is contradictory.
Proof

We distinguish two further cases.

(a) £(100(10)*[1]) = o(o1)*[0]. As in the proof of claim 2.9.5. one
shows by induction that for all 1sisn-3 and b1;.bi € (%)l there exists
c1..c. € (%) such that f(b ..b 100(10)*¥[1]) = ..cio(o1)*[o]. Thus for
DyeeDp 5 € ( )""> we have f(b1..bn_31oo)o— ey . -Cp_300. It also follows
1

that for every b € ( ) £(b_Db .bn_31o) = 7% ++C%p-3°" For bn_3=1 this

g

contradicts clalm 2.9.5. (11)

(b) £(100(10)*[11) = 1(o1)*[0] = £((10)*[1]1). By uniformity one must
have f(oloo(10)*[1]) 11(o1)*[o0]. By induction one shows that for all
1Sisn-h and b ..b, € (' there exists o ..c; € &' witn
f(b1..bio1oo(1o)*[1]) = c1..ci11(o1)*[o]. Thus for i=n-4 we have
f(b1"bn—u 110, and it follows that also for every bO €
that  £(b_b,..b _ u O, e0, i1 (For if f£(bb..b

f(b b 40100) -eC_ M11°’ one easily derives a contradlctlon with

1]

0100) = CieeChy

o010) =

1 =lo

o10)

clalm 2.9.1.) By clalm 2.9.5. and a uniformity argument (cf. the proof
of claim 2.9.6.), no other strings than the elements of ( ) 11o U

(%)n_3111 can be mapped to (%)n_311. This contradicts the assertlon for



- B} -

f(bob1"bn—u°1°)' o

By a similar argument the following cases are proved contradictory as
well: f(oo(10)*[1]) = (10)*[1] and f£(11(o1)*¥[0]) = 11(o1)*[o],
f(oo(10)*[1]) = oo0(10)*[1] and f(11(o1)*[0]) = (o1)*[o], and
£(00(10)*[1]) = oo(10)*[1] and £(11(01)*[0]) = (10)*[1].

Claim 2.9.8. For n24, the case f(oo(10)*[1]) = (01)*[o] and
£(11(o1)*[o]) = (10)*[1] is contradictory.

By uniformity (recall that f((o1)*[o]) = (o1)*[o] and £((10)*¥[1]) =
(10)*[1]) we necessarily have f([1](o1)¥00) = [1](o1)*00, and also
£([01(10)*11) = [0](10)*¥11, Thus we have a situation similar to the one
considered in claim 2.9.5. and 2.9.6., with the orientation of the

strings involved "reversed". Clearly a contradiction is again derived. o

The case F(0o(10)*[1]) = (10)¥[1] and £(11(o1)*[0]) = (o1)*[o] 1is proved
contradictory in the same way. By noting that the cases f(oo(10)*[1]) =
£(11(01)*[0]) = (01)*[o] and f(oo(10)*[1]) = f(11(01)*¥[0]) = (10)*[1]

cannot occur because of uniformity, the case analysis is complete.

case V. £((01)*[0]) = (10)*[11, £((10)*[1]) = (o1)*[ol.

This case is "dual" to case IV, which was shown to be contradictory.

Case VI. f((o1)*[0]) = £((10)*[1]) = (10)*[1].

This case is "dual" to case III, which was shown to be contradic-

tory.

This completes the proof of theorem 2.9. O
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Appendix B. The proof of the topological reduction theorem for

emulations of C_on C _ (theorem 3.5.)

Y 1

]

-

We use the notations and terminology of Section 3. Our aim is to

prove the following result.

Theorem 3.5. (Topological Reduction Theorem). Let n24, and let f be a

uniform emulation of Cn on Cn—1‘ Then there exists an (n-1)-face A of C
such that f(A) is an (n-2)-face of C _,.

The proof proceeds by way of contradiction. Let n2l, and let f be a

uniform emulation of Cn on C Suppose that there does not exist an

n-1°
(n-1)-face A of C such that f(A) is an (n-2)-face of C__,.

Claim 3.5.1. For every k with 1sksn-1, there does not exist a k-face A
of C  such that f£(A) is a (k-1)-face of C__,.

Without loss of generality let k<n-1. Suppose the claim is false.
Let Kk be the largest integer € 1..n-2 for which there exists a k-face A
of C  such that f(A) is a (k-1)-face of C _,. Without loss of general-
ity we may assume that the elements of A have identical bits in the last

n-k positions, hence A = {xou|x € (%)k} for certain a € (%) and u €

("', consider the (k+1)-face Ar=(xulx & (D} = (xau|x @ (3"
{xou|x € (%)k}. For every b = xau € A, let b' = xau. Because of unifor-

mity no elements b' can be mapped into f(A). It follows that f(b') is
obtained from f(b) by flipping one bit. We claim that for all b,c € A
one has f(b)-f(b') = f(ec)-f(ec'), where "-" denotes the component-wise
subtraction, i.e., (b ..b)-(c;..c) = (bj-c,..b,~c,) € {-1,0,11%. It is
sufficient to prove this for pairs b,c € A with d(b,e) = 1. Note that
£(b'), f(c') & £(A). Suppose f(b') = f(e'). If f(b) = f(e), then
f(b)-f(b') = f(c)-f(c') and we are finished. If f(b) = f(c), then neces-
sarily d(f(b),f(ec)) = 1 and (f(b),f(ec)) is an edge of Cn—1 (in fact, of
£(A)). However, both f(b) and f(c) are connected to f(b') = f(c') & f£(A)

too, It follows that Cn— contains a triangle, which is impossible. Next

1
suppose f(b') = f(c'). If £(b) = f(c), then one easily argues again that
Cn—1 contains a triangle, and a contradiction arises. If f(b) = f(e),
then the nodes must form a 4-cycle and hence (necessarily) a 2-face of
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Cp-q+ 1t follows that f(b)-f(b') = f(e)-f(c').
£(b) £(b') = f(e") £(b) £(b")
? ? °
O O
f(e) f(e) f(e')

Using the claim we now argue that f(A') is a k-face of Chm1® Note that

A' = A U ({b'|beA}. Fix a b € A and assume that f(b') is obtained

th bit, where i belongs to the bit-positions

from f(b) by flipping the i
with fixed values for face f(A). For arbitrary ¢ € A, the identity
f(b)-f(b') = f(c)-f(c') forces that f(c') is obtained from f(c) by flip-
MM bit. Thus £(A') > f£(A) is a k-face of C._,-

This contradicts that k was the largest integer for which a face of Cn

ping exactly the same i
with this property exists. o

We shall now prove a number of results that will eventually contradict

claim 3.5.1., which thus proves that our initial assumption was false.

Definition. For 1sksn-1, a k-face A of Cn is called stable if f(A) is a
k-face of C .
n-1

Claim 3.5.2. There exists a 2-face A of Cn that is stable.
Consider the 2-face A = {xoo..olx € (%)2}. Suppose A is not stable,

i.e., f(A) 1is not a 2~face of Cn By uniformity f(A) contains at

least 2 elements, but by claim 3.5.1. 1t can not be a 1-face. It follows
that f(A) contains precisely 3 elements. Observing adjacencies, the fol-
lowing two cases can arise:

(a) f(0000..0) = £(1100..0) and f(0100..0) = f(1000..0). Consider
f(ool10..0). By wuniformity it cannot be equal to f(oo0o0o0..0) and

f(1100..0). If f(ool0..0) = f(oloo..0), then either f(1010..0) =
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f(1000..0) or f(1o01o..0) is different from f(o0o0o0o..0), f(oolo..0), and
£(1000..0). In the former case f(0000..0), f(ol100..0) and f(1000,.0)

will form a triangle, which is impossible in C In the latter case

one verifies that B = {aoBo..o|a,B € %} is a stabl]r.]e1 2-face of Cn' If
f(0010..00) = f(1000..0), then a similar argument shows that
B'={oaBo..0|a,B € %} must be a stable 2-face again. If f(o00l0..0) =
f(o100..0) and = f(1000..0), then observe the following. If f(1010..0)
would coincide with either f(o100..0), f(1000..0), or f(ool0..0), then
triangles are formed in Cn-1' Contradiction. Thus f(1otlo..0) is dif-
ferent from all these, and one verifies again that B is a stable 2-face.

(b) £(0000..0) # £(1100..0) and f(0100..0) = f(1000..0). Consider
f(1o1o..0) and distinguish cases as under (a). Once again triangles in
Cn—1 are formed (contradiction), or B = {aoBo..oIa,B € (%)} or B' =

{oaBo..o0|a,B € (%)} is proved a stable 2-face of C .

The cases "f(0000..0) = f(0100..0) and f(1100..0) # f(0o100..0)" and
alike cannot arise, because it would lead to 1-faces being mapped to o-
faces (points), contradicting claim 3.5.1. o
The proof of claim 3.5.2. shows, in fact, that either (%)2on_2,
( o ( %)™ 3 or o( )20n 3 must be a stable 2-face of Cn'

Claim 3.5.3. For every k with 2sksn-2, there exists a k-face A of C
that is stable.

n

We induct on k. The case k=2 follows by claim 3.5.2. Assume it holds
up to some k with 25k<n-2. Let A be a stable k-face of C . Without loss
of generality we can let A = {xaulx € ( ) } for some a € ( ) and u €
(g)n—k—1. Let A' = {xau|x € ( ) } (a k- face), and for every b Xau € A'
let b' = xau € A'. We show that there must exist a stable (k+1)-face.

Suppose first that f(A) A f(A') = 6. As in the proof of claim
3.5.1. one shows that for all b,c € A : £(b)-f(b') = f(e)-f(ec'). Now
note that f(A) is a k-face of Cp—1+ As in the proof of claim 3.5.1. one
shows that for all b € A f(b') is obtained from f(b) by flipping the
same bit (in a position with fixed value for the elements of f(A)). Thus

f(A') is a k-face of Cp-q tO0, and one easily verifies that A U A' =
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{yuly e (%)k+1} is a stable (k+1)-face of C .

Suppose next that f(A) N f(A') = 6. If f(A) = £(A'), then A U A'
is a (k+1)-face of Cn whose image is a k-face (namely, f(A)) of Cn—1 and
a contradiction with claim 3.5.1. arises., Thus f(A) = f(A'), and it
easily follows that b',c' € A' must exist with d(o',e') = 1 and f(b') &
£f(A) and f(c') € £(A). (We assume that b,c are the corresponding nodes
in A.) Let b * c be any other node € A adjacent to b, and let ¢ € A be
obtained from ¢ by flipping the same bit (as the one flipped to obtain b
from b). We now claim : (i) f(b) = f(e'), (ii) f(b') € f£(A), and (iii)
f(c') € f(A). For the proof, observe the following.

(i) Suppose f(b) = f(c'), and consider f(c). If f(e) = f(c') then
f(b), f(b'), and f(ec) from a triangle in Cn-1
cies). Contradiction. If f(c) = f(c'), then note that also f(b) = f(c)

(by observing adjacen-

(because f 1is necessarily 1-1 as a mapping from k-face A onto k-face
£(A)). Thus f£(b), £(b'), f(c'), and f(c) form a 4-cycle, hence a 2-face
of Cn—1' But with f(b),f(c'), and f(c) belonging to f(A) the entire 2-
face must belong to C hence f(b') € f(A). Contradiction. We conclude
f(b) = f(ec").

(i1) Suppose f(b') €& f(A). By uniformity f(b') = f(b) = f(e'). If
f(b') = f(b) then f(b), £(b'), and £f(b') form a triangle in Cn—1' Con-
tradiction. If f(b') = £(b) then f(b),f(b"),f(b), and £(b') form a 4~

cycle, hence a 2-face of Cn—

n-1’

1 with three nodes in the k-face f(A). It
follows that also £(b') € f(A). Contradiction. We conclude f(b') € f(A).

(iii) Note that f(c) = f(b), (else a contradiction with claim 3.5.1.
arises), so f(c¢c) is adjacent to f(p), and f(b) 1is adjacent to
f(b)=f(c'). Hence the distance between f(c') and f(c) is 2. f(e') must
be adjacent to f(c') € f(A) and f(c) € £(A), hence f(c') € f£(A).

From the claim we derive that b',c' is a pair exactly like b',c' and
the argument can be repeated. In this way we can let b' range over all
of A', and obtain that f(A') must be a k-face of C _, and £(a) N f£(a")
is a (k-1)-face (because nodes are paired in adjacent couples with one
mapped to f(A) N f£(A') and the other to f(A') - f(A)). Now consider
two more k-faces A",A''' adjacent (parallel) to A obtained, say, by
flipping the first and second bit of u respectively. (Note that |u] 22,
because k<n-2.) Either f(A) N f(A") = 6 or £(A) N f(A''') = 6 and we
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would be finished by the first part of the proof, or both £f(A) n f£(am")
+ ¢ and f£(A) N f(A''') = 6. In the latter case one derives the same
conclusion for f(A") and f(A''') as for f(A'). It follows that f—1(f(A))

contains at least Zk-1 elements of each A',A", and A''', thus at least

2--%.2](—1 elements in all. This contradicts the uniformity of f.

This completes the induction argument. o

We now derive a contradiction as follows. By claim 3.5.3. there

exists a (n-2)-face A of Cn that is stable. Without loss of generality

we can let A = {xoo|x € (%)n—z}. Let A' = {xlo|x € (%)n-z}, A" = {xo1|x
€ (%)n_z}, and A''! = {x11|x € (%)n-Z}. From the proof of claim 3.5.3.
one derives that A',A", and A''' must be stable (n-2)-faces of Cn as

well, and that the f-images of adjacent (parallel) faces are either dis-
joint or intersect (pairwise) in a (n-3)-face. We distinguish the fol-
lowing cases for the pairwise intersections :

(a) £(A) N f(A') is an (n-3)-face, f(A) n f(A") is an (n-3)-face.
If f(A') N f(A''*) = o6 or f(A") N f(A''') = 6, then A' U A''' =
{x1%|x € (%)n—z} or A" U A''' = {x%1|x € (19)n“2

(as is its one parallel face A U A" or A U A', resp.) and either f(a)

} is stable (n-1)-face

and f(A") or £(A) and f(A') must be disjoint respectively. Contradic-
tion. We conclude that f(A') N f(A''') and £(A") N f(A''') both are
(n-3)-faces too, in this case. Let b = x00 € A and c' = ylo € A' be
such that f(b) = £f(c') € £(A) N f(A'). Without loss of generality let
£(A) = (%)n_3(%)3 and f(A') = ($)n-3a($). Because f[A and f[A' act like
isomorphisms of Cn—2 theorem 3.4. applies, and there must be literals li
and 1i corresponding to bi (1$isn-2) and permutations I and II' such that
f$b1..bn_2 ln(1)"1n(n-3)ln(n-2)8 and f(b1..bn_21o) =
lg,gl%..ln,(n_3)altn,(n_2). By letting the argument b1"bn-2 range over
() and observing that f(b1..bn_200) and f(b1..bn_200) and f(b,..b _

00)

210) must have distance £ 1, one easily concludes that N=I' and ln(i)

1
ln(i) for 1sisn-3. If f(xoo0) = f(ylo) then necessarily x=y or a(x,y)
1. Now let b' = x1o0 € A', b" = x01 € A", b''' = x11 € A''', and let c

yoo € A, ¢" = yol € A", c''' = y11 € A''", If x=y, then one obtains that
the 1-face of Cn spanned by b and c¢' is mapped to a o-face (a point),
contradicting claim 3.5.1. for k=1, If d(x,y) = 1, then b and c are



adjacent and likewise are their primed companions. By a similar analysis
of f(A') n f(A''') and alike, one shows that necessarily : f(b') =
f(e'''), £(b") = £(c), and f(b''') = f(c"). It follows that the 3-face
of Cn spanned by b,b',b",b''',c,c',c",c''' is mapped to a 2-face of Cn—
. (The case that more f-value coincide is excluded by uniformity.) This

1
contradicts claim 3.5.1. for k=3.

(b) f(A) N f(A') is an (n-3)-face, f(Aa) N £(A™) = B, If
f(A') N f(A'*'') is an (n-3)-face, then one can use the argument under
case (a) and derive a contradiction. Thus let f(A') N f£(A''') = 6. It
follows that both A U A" = {xo(3)|x € (%)“—2} and A' U A" = (x1(x

e (%)rl"2

follows that f(A) N £(A''') and f(A") N £(A''*') cannot be empty, and

} are stable (n-1)-faces, thus their images each span Cn—1‘ It

thus must be (n-3)-faces. Now a similar argument as given under case (a)
applies to derive a contradiction.

(e) f(A) N f£(a) = o, f£(A) N f(A") = @6. We may assume that
f(A') N f£(A''') = ¢ and £(A") n £(A''') = 6, otherwise analyses similar
to case (a) and case (b) apply. It follows that f(A) = f(A''') and

f(A') = f(A"), and the sets are complementary (n-2)-faces of Cn_ Con-

sider b=xo00 € A, b'=x10 € A', b" = x01 € A", and Db''' = x11 61 At
Note that there is exactly one node in the (n-2)-face f(A) that is adja-
cent to f(b') € f(A). Hence f(b) = £(b'''). With a similar argument one
shows f(b') = f(b"). It follows that the 2-face of Cn spanned by
b,b',b",b''" is mapped to a 1-face. Contradiction with claim 3.5.1.

This ends the proof of theorem 3.5. O



