UNIFORM EMULATIONS OF THE SHUFFLE-EXCHANGE NETWORK

H.L. Bodlaender and J. van Leeuwen

RUU-CS-84~5

July 1984

s % o
O q’

Q

[
S 3
<]

¥ 77 VY

Rijksuniversiteit Utrecht

Vakgroep informatica

Budapestlaan6 3584 CD Utrecht

Corr. adres: Postbus 80.012 3508 TA Utrecht
Telefoon 030-5314 5y

The Netheriands

UNIFORM EMULATIONS OF THE SHUFFLE-EXCHANGE NETWORK

H.L.Bodlaender and J. van Leeuwen

Technical Report RUU-CS-84-5
July 1984

Department of Computer Science
University of Utrecht
P.0. Box 80.012, 3508 TA Utrecht
the Netherlands

This paper will appear in the Proceedings of the International Workshop
on "Graphtheoretic Concepts in Computer Science" (WG '84), edited by

U. Pape, Technische Universitdt Berlin, Jume 13-15, 1984.

UNIFORM EMULATIONS OF THE SHUFFLE-EXCHANGE NETWORK

H.L.Bodlaender* and J. van Leeuwen

Department of Computer Science, University of Utrecht

P.0.Box 80.012, 3508 TA Utrecht, the Netherlands.

Abstract. Parallel algorithms are normally designed for execution on net-
works of N processors, with N depending on the size of the problem to be
solved. In practice there will be a varying problem size but a fixed net-
work size. In [3] the notion of network emulation was proposed, to obtain
a structure preserving simulation of large networks on smaller networks.
We analyse the concept for the case of the shuffle—-exchange network, a

common interconnection network underlying many multiprocessor algorithms.

1. Introduction. Parallel algorithms are normally designed for execution

on a suitable network of N processors, with N depending on the size of the
problem to be solved. In practice N will be large and varying, whereas pro-
cessor networks will be small and fixed. The resulting disparity between
algorithm design and implementation must be resolved by simulating a net-
work of some size N on a fixed and smaller size network of a similar or
different kind, in a structure preserving manner. Notioms of simulation

are well-understood in e.g. automata theory (see [5]), and suitable ana-
logs can be brought to bear on networks of processors. In this paper we

study a notion of simulation, termed emulation, proposed by Fishburn and
Finkel [3].

* The work of this author was supported by the Foundation for Computer

Science (SION) of the Netherlands Organization for the Advancement of
Pure Research (ZWO).

Definition. Let G = (VG’ EG) and H = (VH, EH) be networks of processors
(graphs). We say that G can be emulated on H if there exists a function
£: V. — V,, such that for every edge (g, g') € E; * f(g) = £ (g') or
(f(g), £(g")) € Eg- The function f is called an emulation functiom or, in

short, an emulation of G om H.

Clearly, emulation between networks is transitive. We shall only be inte-
rested in emulations f that are "onto".

Let f be an emulation of G on H. Any processor h € VH must actively
emulate the processors € f_l(h) in G. When g € f~1(h) communicates infor-
mation to a neighboring processor g', then h must communicate the corres-
ponding information "internally", when it emulates g' itself or to a neigh-
boring processor h' = f(g') in H otherwise. If all processors act synchro-
nously in G, then the emulation will be slowed by a factor proportional

to max 1£ (h)1.
h

Definition. Let G, H, and £ be as above. The emulation f is said to be

(computationally) uniform if for all h, h' € Vy ¢ lf_l(h)l = lf—1(h')l.

Every uniform emulation f has associated with it a fixed constant c , called:
the computation factor, such that for all h € VH : if_l(h)l = ¢ , It means
that every processor of H emulates the same number of processors of G. Again,
uniform emulation between networks is transitive. When G can be uniformly
emulated on H and H can be uniformly emulated on G, then G and H are neces-
sarily isomorphic. (Thus uniform emulation establishes a partial ordering

of networks.) For graphs A, B let A[B] denote the composition of A and B

(c£. [4D).

Lemma 1.1 G can be uniformly emulated on H if and only if there exists a
graph G’ 'such that G is a spanning subgraph of H[G'].
Proof.

= Let £ be a uniform emulation of G on H with computation factor c. The
sets {f-1(h)}, h € H, partition G into blocks of size c. Let G' be any graph
on c nodes such that the induced subgraph of every block (in G) is contained
in G'. Next observe that for any two nodes g € f—1(h) and g' € f_1(h') of G:
(g,g') € EG = h = h' (and the edge is in G') or (h,h') € EH' It follows that
G is a spanning subgraph of H[G'].

« From the definition of composition (cf. [4]), by projection on H. O

For functions f defined on n-bit numbers b we use :
. . .th .
fi(b) : (f(b))i (projection on the i = bit)

We use b, ¢, .. to denote full addresses and x, y, .. to denote segments

of bits. Individual bits are denoted o, 8, ..

Definition. The shuffle-exchange network is the graph S_ = (Vn, En) with
=9 =
A { Mo b) 1 Vi bs =7 } and E {(b,e) 1 b, c €V _and

V2in bi = Ci—1}' The inverse shuffle-exchange network is the graph

S = (Vn, En) with En

{(b, c) | b, c €V and V b. =c.}.
n n i

2€isn Ti-—1

It follows that in S a node b,..b_ is connected to b...b o and b,..b_ 1,
n 1 n 2 n 2 n

. The fact that Sn can be (uniformly)

n—1
emulated on Sn—1 and, hence, on every Sn-k (k21) derives from the following

in'S to ob,..b and 1 b,..b
n 1 n—1 1

observation, using lemma 1.1 . (Compare [3], theorem 1.) Let Kz denote the

complete graph on two nodes.

Lemma 2.1. Sn is a spanning subgraph of Sn—1 [EZ], for n 2 t.

Consider the mapping h : Sn—i S
< b1..b

n=1 [K,] defined by h (b1..bn) =
n-1° bn >, which clearly is 1-1 and onto on the set of nodes. One
easily shows that h is an embedding of Sn' o

Lemma 2.2. f is an emulation of Sn on Sn—k if and only if for all x € (%)n—1’
y € (%)n_k-1‘and a,B € C%) : if £ (ax) = By then (£(x0) = By v f(xo0) =y %)
and (f(x1) =By v £f(x1) =y %-).

For a mapping f, define its "companion" f by ?;(b) = fi(b) for all 1sisn.

Lemma 2.3. If f is an emulation of S on S _, ., then so is f.

3. Uniform emulations of S on S _,. The uniform emulations of § on S __, will

be shown to be "step—simulating" in a very precise sense.

Definition. A mapping g : S S __ is called step-simulating (or : a "step-

1
simulation" of S on Sn—1) if and omly if for all x € (%)n 1, y € (%Jn 2 and

o,B € %-: if g (ax) = By then g (x0) =y %-and g (x1) =y %‘-

-6 -

g (yx6) for all Y,x,5. Hence ™o TI™ = id. Conversely, let h be a step-

. . n .n ! -
simulation of S _, on 5 _,. Then M"e T (h) (yx) = T (h) (yxo)|__,
(h (yx). hn—2 (xo))ln_2 = h (yx) for all y,z. Hence also "o T = id.
It follows that M and T are inverses to one another when considered as

operators on step-simulations.

(iv) Let g be a uniform step-simulation of S omn S _.- Suppose M (g) is

-1
not uniform. Then there must be a y € V__, such that | () () | > 2.
Let x(1), x(Z), x(3) be distinct elements of Hn(g)-1(y). It follows that
g (x(1)o), . (X(Z)o)’ g (x(3)o) € { yo, y1}. Because g is step-simulating

we have, in fact : g (x(1)o),_g (x(‘)1), g (x(z)o),.g (x(2)1), g (x(3)o)

g 1) € { yo, y1} and hence lg '(yo)| 2 3 or lg”'(y1)| 2 3. This contra-

dicts the uniformity of g. O

Theorem 3.3. (i) - (iii) shows that there is a 1-1 onto correspondence
between the step-simulations of S_on S-1 and the step-simulations of S _,
on § _,, formn > 3. Theorem 3.3. (iv) does not quite show that this corres-
pondence holds for the subclasses of uniform step-simulatioms, but in the

next theorem we will show that it is the case.

Theorem 3.4. For n 2 2,

(i) there are exactly 16 possible step-simulationms of Sn on Sn—l'

(ii) there are exactly 6 possible uniform step-simulations of Sn on

Sn— (see table A).

(i) By theorem 3.3. (i) - (iii) the number of step-simulations of S on

1
(because I is bijective). By induction this number is equal to the number

S - is equal to the number of step-simulations of Sn—1 on Sn-2’ for n 2 3

of step-simulations of S, on S,. Clearly every mapping € [V>V,] is

step-simulating. There are exactly 24 = 16 mappings in this set.
4
(ii) There are exactly (2) = 6 mappings € [V2-+ V1] that are uniform
and step-simulating. By theorem 3.3. (i) - (iv) the number of uniform step-
simulations of S on S__, (n 2 3) is not larger than the number of uniform

step-simulations of S on § and thus, by induction, not larger than 6.

n—1 n-2
On the other hand at least 6 uniform step-simulatioms of S on S _, can be
explicitly given, see table A. (The verification of the mappings is immediate

from the definition.) C

£t £, (b)) =bb
f, £, (b,..b) =%,
f2 f2 (b1..b) = bz..bn
fz : f2 (b1..bn) = bz..bn

. = : = = < < n-
f3 : f3 (bl"bn) CieeC oy with c; (bi bi+1)’ 1 i € n—-1
- s =_ - 1 = = g i .<= -
f3 : f3 (bl'°bn) CyeeCoy with g (bi bi+1)’ i € n—1

Table A. Listing of the 6 possible uniform step-simulations of the
shuffle-exchange network with 2™ nodes on the shuffle—exchange network

with 2[‘_1 nodes.

The remaining problem is to determine whether any other uniform emulations

of Sn on Sn— exist. Our main result is the following.

1

Theorem 3.5. (Characterisation Theorem) Every uniform emulation of 5 on

Sn_1 is step-simulating, and thus equal to ome of the mappings listed in

table A.
The proof is long and tedious, and given in [1].

4. Uniform emulations of Sn 23~Sn—k' We will extend the notion of 'step-

simulation' to emulations of Sn on sn—k’ in order to attempt a characte-
risation of the uniform emulations in general. We show that the step-
simulations of S on S __, (which are not all uniform) can again be charac-

terized in terms of the step-simulations of Sk+1 on S1 (cf. theorem 3.4).

It remains an open question whether a suitable analogue of theorem 3.5

k. k
holds for k > 1. We show that there are at least 2.227 - 227 - yniform step-

simulations of S on S .
n n-k

Definition. A mapping g : Sn--)Sn_k is called step-simulating (or: a "step-
n-k-1

H

simulation" of Sn on Sn—k) if and only if for all x € (%Dn—1, y € (%)

and o, B € %-: if g (ax) = By then g (x0) =y % and g (x1) =y %

‘9

Corollary 4.4. For n 2 1, Sn admits precisely 2 graph-isomorphisms onto

itself.

Every isomorphism of Sn must be step-simulating. By theorem 4.3 (i) the
step—simulations of S on S are in 1-1 correspondence to the step-simula-
tions of S1 on S . There are four mappings of this kind and thus precisely
four step—31mu1at10ns of § on 8 : 1(b1"'bn) b s gz(b ...b)
b1..

are isomorphisms. O

-b s g3(b1...bn) = 0...0, g4(b1...bn) =1...1. Clearly, only g, and g,

The 1-1 correspondence referred to in theorem 4.3 (i) can be made explicit
as follows. Given a step-simulation g of §, on Sn-k’ the uniquely corres-

ponding step-simulation E of Sk+1 on S1 is defined by the formula E(b1..bk+1)

g(b1..bk+1
uniquely corresponding step-simulation h of Sn on Sn—k is defined bylhﬁb1...bn) =

o..o)J1. Conversely, given a step-simulation h of Sk+‘ on S1, the

h(b, .) .h(b,..b,). .h(b ..b_). While the correspondence g=> g

k+1 k+2 n-k-1

preserves uniformity (cf.theorem 4.2 (iv)), it does not induce a bijection

from the uniform step-simulations of Sn on Sn-k to the uniform step-simulations

of Sk 4 tO S1 for k > 1. The existence of such a bijection for k = 1 (cf.theo-

rem 3.4 (ii)) was the key to the complete characterisation of the uniform step-

simulations of Sn on Sn__1 and of the uniform emulations of Sn on Sn-1 (cf.theo-

rem 3.5). A similar characterisation of the uniform step-simulations and of
the uniform emulations of Sn on Sn—k for k > 1 remains an open problem. We
can characterize a large class of uniform step—simulations.

Theorem 4.5. Let n 2 k+1, and let g be a step-simulation of s, on Sn x"

(i) if E(b1..b'

k+1) = g(b, b2"bk+1) for all b,..b . € (TD , then g is

uniform.

iy e ~ o k+1 .
(ii) if g(b1..bk+1) = g(bl.. K k+1) for all b, .. € (TJ , then g is

uniform.

k+1

We only prove (1) as the proof of (ii) is similar. Induct om n. For n =

k+1’ b b k+1

E will map one to o € V1 and one to 1 € V1. Thus g=g is unlform. Assume it
holds up to n-1 2 k+1. Let g be a step-simulation of S on S for which

k+1, observe from the assumption that of every palr b

the constraint on g is satisfied. Let g' be the uniquely corresponding step—

10.

simulation of § -4 on (cf. theorem 4.3 (i)) defined by the formula

1 sn-k—1

o\n
g'(b1..bn_1) = g(b1..bn_1o-)|n_1° Observe that for all b ..b _, € (T)
g(bo bl"bn—1) = g(b0 b1"bk)'g(b1"bk+1)"'g(bn—k-2"bn-1) and likewise for
L] = ~ [. .
g (b1"bn—1)’ hence g(bo bl"bn-I) g(bo b1..bk).g (bI"bn—I) Since

e'= g, it follows by induction that g' is uniform. Thus for every €y C
oyn-k-1 . - ok iy 1

€ (1) : 1(g") (C1"Cn-k—1)| 2°. Let b,..b__, € (g") (C1°'cn—k-1)'

By assumption it follows that of the pair o b1"bk’ 1 bI"bk E'will map one

to o € V1 and one to 1 € V1, and thus g will map one of the strings o bl"b

1 b1'°bn—1 to o c1..c

n-1’
n-k-1 and the other to 1 c,..c_, _,. It follows that

on-k, -1 - iy~ !
for all ¢ ci..c € " lg (e, C1"Cn-k-1)| 1(g") (Cl"cn-k-1) I
k

= 2", which implies that g is uniform. This completes the inductive argument. O
YT L
Theorem 4.6. For n 2 k+1, there are at least 2.2¢ - 2 uniform step-—

simulations of § on S
n n-

k

Use the characterisation from theorem 4.5. By induction on k one easily

. . k . ~ .
derives that there exist 22 functions g : Vk+1** V1 that satisfy the con-

straint E(b1..b) = E(b1 b2"bk+1)’ 22K functions % : V, . .—»V_ that satis-

k+1 k+1 1

. ~ zk_1 . ~
fy the constraint g(bl..b), and 2 functions g that

) = g(b1..bk b

k+1 k+1

satisfy both constraints simultaneously. Using the unique correspondence of

g and E, the given bound follows. O

5. References.

[1]) Bodlaender, H.L., and J. van Leeuwen, Simulation of large networks on
smalller networks, Techn.Rep.RUU-CS-Sa—Q, Dept. of Computer Science,
University of Utrecht, Utrecht, 1984.

[2] Garey, M.R., and D.S. Johnson, Computers and Intractibility: a Guide to
the Theory of NP-completeness, W.H. Freeman, San Francisco, Calif., 1979.

[3] Fishburn, J.F., and R.A. Finkel, Quotient networks, IEEE Trans.Comput,

C-31 (1982) 288-295.
[4] Harary, F., Graph theory, Addison-Wesley Publ. Comp., Reading, Mass., 1969.

11

[5] Herman, G.T., When is a sequential machine the realisation of another,

Math.Syst.Th. 5(1971) 115-127.
[6] Stone, H.S., Parallel processing with the perfect shuffle, IEEE Trans.

Comput. C-20(1971) 153-161.

