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UNIFORM EMULATIONS OF THE SHUFFLE-EXCHANGE NETWORK

H.L.Bodlaender* and J. van Leeuwen

Department of Computer Science, University of Utrecht
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Abstract. Parallel algorithms are normally designed for execution on net-
works of N processors, with N depending on the size of the problem to be
solved. In practice there will be a varying problem size but a fixed net-
work size. In [3] the notion of network emulation was proposed, to obtain
a structure preserving simulation of large networks on smaller networks.
We analyse the concept for the case of the shuffle—-exchange network, a

common interconnection network underlying many multiprocessor algorithms.

1. Introduction. Parallel algorithms are normally designed for execution

on a suitable network of N processors, with N depending on the size of the
problem to be solved. In practice N will be large and varying, whereas pro-
cessor networks will be small and fixed. The resulting disparity between
algorithm design and implementation must be resolved by simulating a net-
work of some size N on a fixed and smaller size network of a similar or
different kind, in a structure preserving manner. Notioms of simulation

are well-understood in e.g. automata theory (see [5]), and suitable ana-
logs can be brought to bear on networks of processors. In this paper we

study a notion of simulation, termed emulation, proposed by Fishburn and
Finkel [3].

* The work of this author was supported by the Foundation for Computer

Science (SION) of the Netherlands Organization for the Advancement of
Pure Research (ZWO).



Definition. Let G = (VG’ EG) and H = (VH, EH) be networks of processors
(graphs). We say that G can be emulated on H if there exists a function
£: V. — V,, such that for every edge (g, g') € E; * f(g) = £ (g') or
(f(g), £(g")) € Eg- The function f is called an emulation functiom or, in

short, an emulation of G om H.

Clearly, emulation between networks is transitive. We shall only be inte-
rested in emulations f that are "onto".

Let f be an emulation of G on H. Any processor h € VH must actively
emulate the processors € f_l(h) in G. When g € f~1(h) communicates infor-
mation to a neighboring processor g', then h must communicate the corres-
ponding information "internally", when it emulates g' itself or to a neigh-
boring processor h' = f(g') in H otherwise. If all processors act synchro-
nously in G, then the emulation will be slowed by a factor proportional

to max 1£  (h)1.
h

Definition. Let G, H, and £ be as above. The emulation f is said to be

(computationally) uniform if for all h, h' € Vy ¢ lf_l(h)l = lf—1(h')l.

Every uniform emulation f has associated with it a fixed constant c , called:
the computation factor, such that for all h € VH : if_l(h)l = ¢ , It means
that every processor of H emulates the same number of processors of G. Again,
uniform emulation between networks is transitive. When G can be uniformly
emulated on H and H can be uniformly emulated on G, then G and H are neces-
sarily isomorphic. (Thus uniform emulation establishes a partial ordering

of networks.) For graphs A, B let A[B] denote the composition of A and B

(c£. [4D).

Lemma 1.1 G can be uniformly emulated on H if and only if there exists a
graph G’ 'such that G is a spanning subgraph of H[G'].
Proof.

= Let £ be a uniform emulation of G on H with computation factor c. The
sets {f-1(h)}, h € H, partition G into blocks of size c. Let G' be any graph
on c nodes such that the induced subgraph of every block (in G) is contained
in G'. Next observe that for any two nodes g € f—1(h) and g' € f_1(h') of G:
(g,g') € EG = h = h' (and the edge is in G') or (h,h') € EH' It follows that
G is a spanning subgraph of H[G'].

« From the definition of composition (cf. [4]), by projection on H. O



For functions f defined on n-bit numbers b we use :
. . .th .
fi(b) : (f(b))i (projection on the i = bit)

We use b, ¢, .. to denote full addresses and x, y, .. to denote segments

of bits. Individual bits are denoted o, 8, ..

Definition. The shuffle-exchange network is the graph S_ = (Vn, En) with
=9 =
A { Mo b) 1 Vi bs =7 } and E {(b,e) 1 b, c €V _and

V2$i$n bi = Ci—1}' The inverse shuffle-exchange network is the graph

S = (Vn, En) with En

{(b, c) | b, c €V and V b. =c.}.
n n i

2€isn Ti-—1

It follows that in S a node b,..b_ is connected to b...b o and b,..b_ 1,
n 1 n 2 n 2 n

. The fact that Sn can be (uniformly)

n—1
emulated on Sn—1 and, hence, on every Sn-k (k21) derives from the following

in'S to ob,..b and 1 b,..b
n 1 n—1 1

observation, using lemma 1.1 . (Compare [3], theorem 1.) Let Kz denote the

complete graph on two nodes.

Lemma 2.1. Sn is a spanning subgraph of Sn—1 [ EZ ], for n 2 t.

Consider the mapping h : Sn—i S
< b1..b

n=1 [ K, ] defined by h (b1..bn) =
n-1° bn >, which clearly is 1-1 and onto on the set of nodes. One
easily shows that h is an embedding of Sn' o

Lemma 2.2. f is an emulation of Sn on Sn—k if and only if for all x € (%)n—1’
y € (%)n_k-1‘and a,B € C%) : if £ (ax) = By then (£(x0) = By v f(xo0) =y % )
and (f(x1) =By v £f(x1) =y %-).

For a mapping f, define its "companion" f by ?;(b) = fi(b) for all 1sisn.

Lemma 2.3. If f is an emulation of S on S _, ., then so is f.

3. Uniform emulations of S on S _,. The uniform emulations of § on S __, will

be shown to be "step—simulating" in a very precise sense.

Definition. A mapping g : S S __ is called step-simulating (or : a "step-

1
simulation" of S on Sn—1) if and omly if for all x € (%)n 1, y € (%Jn 2 and

o,B € %-: if g (ax) = By then g (x0) =y %-and g (x1) =y %‘-
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g (yx6) for all Y,x,5. Hence ™o TI™ = id. Conversely, let h be a step-

. . n .n ! -
simulation of S _, on 5 _,. Then M"e T (h) (yx) = T (h) (yxo)|__,
(h (yx). hn—2 (xo))ln_2 = h (yx) for all y,z. Hence also "o T = id.
It follows that M and T are inverses to one another when considered as

operators on step-simulations.

(iv) Let g be a uniform step-simulation of S omn S _.- Suppose M (g) is

-1
not uniform. Then there must be a y € V__, such that | () () | > 2.
Let x(1), x(Z), x(3) be distinct elements of Hn(g)-1(y). It follows that
g (x(1)o), . (X(Z)o)’ g (x(3)o) € { yo, y1}. Because g is step-simulating

we have, in fact : g (x(1)o),_g (x(‘)1), g (x(z)o),.g (x(2)1), g (x(3)o)

g 1) € { yo, y1} and hence lg '(yo)| 2 3 or lg”'(y1)| 2 3. This contra-

dicts the uniformity of g. O

Theorem 3.3. (i) - (iii) shows that there is a 1-1 onto correspondence
between the step-simulations of S_on S-1 and the step-simulations of S _,
on § _,, formn > 3. Theorem 3.3. (iv) does not quite show that this corres-
pondence holds for the subclasses of uniform step-simulatioms, but in the

next theorem we will show that it is the case.

Theorem 3.4. For n 2 2,

(i) there are exactly 16 possible step-simulationms of Sn on Sn—l'

(ii) there are exactly 6 possible uniform step-simulations of Sn on

Sn— (see table A).

(i) By theorem 3.3. (i) - (iii) the number of step-simulations of S on

1
(because I is bijective). By induction this number is equal to the number

S - is equal to the number of step-simulations of Sn—1 on Sn-2’ for n 2 3

of step-simulations of S, on S,. Clearly every mapping € [ V>V, ] is

step-simulating. There are exactly 24 = 16 mappings in this set.
4
(ii) There are exactly (2) = 6 mappings € [ V2-+ V1 ] that are uniform
and step-simulating. By theorem 3.3. (i) - (iv) the number of uniform step-
simulations of S on S__, (n 2 3) is not larger than the number of uniform

step-simulations of S on § and thus, by induction, not larger than 6.

n—1 n-2
On the other hand at least 6 uniform step-simulatioms of S on S _, can be
explicitly given, see table A. (The verification of the mappings is immediate

from the definition.) C



£t £, (b)) =bb
f, £, (b,..b) =%,
f2 f2 (b1..b ) = bz..bn
fz : f2 (b1..bn) = bz..bn

. = : = = < < n-
f3 : f3 (bl"bn) CieeC oy with c; (bi bi+1)’ 1 i € n—-1
- s =_ - 1 = = g i .<= -
f3 : f3 (bl'°bn) CyeeCoy with g (bi bi+1)’ i € n—1

Table A. Listing of the 6 possible uniform step-simulations of the
shuffle-exchange network with 2™ nodes on the shuffle—exchange network

with 2[‘_1 nodes.

The remaining problem is to determine whether any other uniform emulations

of Sn on Sn— exist. Our main result is the following.

1

Theorem 3.5. (Characterisation Theorem) Every uniform emulation of 5 on

Sn_1 is step-simulating, and thus equal to ome of the mappings listed in

table A.
The proof is long and tedious, and given in [1].

4. Uniform emulations of Sn 23~Sn—k' We will extend the notion of 'step-

simulation' to emulations of Sn on sn—k’ in order to attempt a characte-
risation of the uniform emulations in general. We show that the step-
simulations of S on S __, (which are not all uniform) can again be charac-

terized in terms of the step-simulations of Sk+1 on S1 (cf. theorem 3.4).

It remains an open question whether a suitable analogue of theorem 3.5

k. k
holds for k > 1. We show that there are at least 2.227 - 227 - yniform step-

simulations of S on S .
n n-k

Definition. A mapping g : Sn--)Sn_k is called step-simulating (or: a "step-
n-k-1

H

simulation" of Sn on Sn—k) if and only if for all x € (%Dn—1, y € (%)

and o, B € %-: if g (ax) = By then g (x0) =y % and g (x1) =y %
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Corollary 4.4. For n 2 1, Sn admits precisely 2 graph-isomorphisms onto

itself.

Every isomorphism of Sn must be step-simulating. By theorem 4.3 (i) the
step—simulations of S on S are in 1-1 correspondence to the step-simula-
tions of S1 on S . There are four mappings of this kind and thus precisely
four step—31mu1at10ns of § on 8 : 1(b1"'bn) b s gz(b ...b )
b1..

are isomorphisms. O

-b s g3(b1...bn) = 0...0, g4(b1...bn) =1...1. Clearly, only g, and g,

The 1-1 correspondence referred to in theorem 4.3 (i) can be made explicit
as follows. Given a step-simulation g of §, on Sn-k’ the uniquely corres-

ponding step-simulation E of Sk+1 on S1 is defined by the formula E(b1..bk+1)

g(b1..bk+1
uniquely corresponding step-simulation h of Sn on Sn—k is defined bylhﬁb1...bn) =

o..o)J1. Conversely, given a step-simulation h of Sk+‘ on S1, the

h(b, . ) .h(b,..b, ). .h(b ..b_). While the correspondence g=> g

k+1 k+2 n-k-1

preserves uniformity (cf.theorem 4.2 (iv)), it does not induce a bijection

from the uniform step-simulations of Sn on Sn-k to the uniform step-simulations

of Sk 4 tO S1 for k > 1. The existence of such a bijection for k = 1 (cf.theo-

rem 3.4 (ii)) was the key to the complete characterisation of the uniform step-

simulations of Sn on Sn__1 and of the uniform emulations of Sn on Sn-1 (cf.theo-

rem 3.5). A similar characterisation of the uniform step-simulations and of
the uniform emulations of Sn on Sn—k for k > 1 remains an open problem. We
can characterize a large class of uniform step—simulations.

Theorem 4.5. Let n 2 k+1, and let g be a step-simulation of s, on Sn x"

(i) if E(b1..b'

k+1) = g(b, b2"bk+1) for all b,..b . € (TD , then g is

uniform.

iy e ~ o k+1 .
(ii) if g(b1..bk+1) = g(bl.. K k+1) for all b, .. € (TJ , then g is

uniform.

k+1

We only prove (1) as the proof of (ii) is similar. Induct om n. For n =

k+1’ b b k+1

E will map one to o € V1 and one to 1 € V1. Thus g=g is unlform. Assume it
holds up to n-1 2 k+1. Let g be a step-simulation of S on S for which

k+1, observe from the assumption that of every palr b

the constraint on g is satisfied. Let g' be the uniquely corresponding step—
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simulation of § -4 on (cf. theorem 4.3 (i)) defined by the formula

1 sn-k—1

o\n
g'(b1..bn_1) = g(b1..bn_1o-)|n_1° Observe that for all b ..b _, € (T)
g(bo bl"bn—1) = g(b0 b1"bk)'g(b1"bk+1)"'g(bn—k-2"bn-1) and likewise for
L] = ~ [ . .
g (b1"bn—1)’ hence g(bo bl"bn-I) g(bo b1..bk).g (bI"bn—I) Since

e'= g, it follows by induction that g' is uniform. Thus for every €y C
oyn-k-1 . - ok iy 1

€ (1) : 1(g") (C1"Cn-k—1)| 2°. Let b,..b__, € (g") (C1°'cn—k-1)'

By assumption it follows that of the pair o b1"bk’ 1 bI"bk E'will map one

to o € V1 and one to 1 € V1, and thus g will map one of the strings o bl"b

1 b1'°bn—1 to o c1..c

n-1’
n-k-1 and the other to 1 c,..c_, _,. It follows that

on-k, -1 - iy~ !
for all ¢ ci..c € " lg (e, C1"Cn-k-1)| 1(g") (Cl"cn-k-1) I
k

= 2", which implies that g is uniform. This completes the inductive argument. O
YT L
Theorem 4.6. For n 2 k+1, there are at least 2.2¢ - 2 uniform step-—

simulations of § on S
n n-

k

Use the characterisation from theorem 4.5. By induction on k one easily

. . k . ~ .
derives that there exist 22 functions g : Vk+1** V1 that satisfy the con-

straint E(b1..b ) = E(b1 b2"bk+1)’ 22K functions % : V, . .—»V_ that satis-

k+1 k+1 1

. ~ zk_1 . ~
fy the constraint g(bl..b ), and 2 functions g that

) = g(b1..bk b

k+1 k+1

satisfy both constraints simultaneously. Using the unique correspondence of

g and E, the given bound follows. O
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