COMPOSITIONAL SEMANTICS FOR REAL-TIME

DISTRIBUTED COMPUTING

R.K. Shyamasundar
W.P. de Roever
R. Gerth
R. Koymans

S. Arun—Kumar

RUU-CS-84—-6
August 1984

Rijksuniversiteit Utrecht

Vakgroep informatica

Budapestiaan 6 3584 CD Utrecht

Corr. adres: Postbus 80.012 3508 TA Utrecht
Telefoon 030-53

The Netherlands



COMPOSITIONAL SEMANTICS FOR REAL-TIME

DISTRIBUTED. COMPUTING

R.K. Shyamasundar
W.P. de Roever
R. Gerth
R. Koymans

S. Arun-Kumar

Technical Report RUU-CS-84-6
August 1984

Department of Computer Science
University of Utrecht
P.0. Box 80.012, 3508 TA Utrecht
the Netherlands



“hey




COMPOSITIONAL SEMANTICS FOR REAL-TIME

DISTRIBUTED COMPUTING

R.K. Shyamasundar?!’*
W.P. de Roever??’3
R. Gerth??’?®

R. Koymans3?’®

S. Arun-Kumar!?!

december 22, 1984

ABSTRACT.

We give a compositional denotational semantics for a real-time distributed language,

based on the linear history semantics for CSP of Francez et al. Concurrent execution
~is not modelled by interleaving but by an extension of the maximal parallelism.
" model of Salwicki, that allows the modelling of transmission time for communications.
The importance of constructing a semantics (and in general a proof theory) for
real-time is stressed by such different sources as the problem of formalizing

the real-time aspects of Ada and the elimination of errors in real-time flight

control software ( [Sunday Times 7-22-84]).

1. INTRODUCTION.

Although concurrency in programming has been seriously investigated for
more than 25 years ([Dij59]), the specific problems of real-time have been the
object of little theoretical reflection. Currently used real-time languages represent
almost no evolution w.r.t. assembly languagel[Cam82]. Consequently no serious analysis

of complexity, no design methodology, no standard for implementation and no concept

1NCSDCT, Tata Institute for Fundamental Research, Homi Bhaba Road,
Bombay - 400 005, India.

’Department of Computer Science, University of Utrecht, P.0. Box 80.012,
3508 TA Utrecht, the Netherlands.

SDepartment of Computer Science, University of Nijmegen, Toernooiveld,
6525 ED Nijmegen, the Netherlands.

*supported by a visitors grant from the Netherlands Organization for the
Advancement of Pure Research (ZWO).

5supported by the Foundation for Computer Science Research in the Netherlands
(SION) with financial aid from the Netherlands Organization for the
Advancement of Pure Research (ZWO0).






_1_

of pdf£;Gii;£§wexist for real-time languages. Thiduétate of affairs is astonishing,
for the confrontation with real-time lends a mervous twitch of actuality for argu-
ments in favour of formalization; don't the dangers of malfunctioning real-time
systems affect all of us?

Errors occurring in Boing 747's real-time flight control are a closely guarded
secret [ST84], yet most of us fly in such planes. Software for space vehicles and
nuclear power stations belong to the world's most prestiguous projects, yet remain
notoreously unreliable ( [ACM84], The Three~Miles Istand Disaster), with no prospect
of improvement in the immediate future. Evefy industrialized country has computer
controlled chemical plants in densely populated areas.

But even commercial interest points to a need for real-time systems developed
as a hierarchy of modules. Recently, one of the world's leading manufacturers (Philip's
Telecommunicating Industries) has had to cancel the developments of a digitized
telephone-switching network in a late stage of development because its design lacked
the transparancy required for adaptation to local circumstances as occurring in,
e.g., Asia. And what to think of the advent of industrial robots?

The responce to this need, has been the development of new real-time languages

such as (1) Ada - developed for the militatry, (2) CHILL - within the context of

telecommunication industries éﬁ&mf3) Occam - which is even chiﬁiiﬁﬁiZEZEEéd; for
those interested in experimenting with structure. All of these are claimed to have
been rigourously defined ([A 83],[Bj¢80],[CHI82],[0cc84]). Yet their official stan-
dards lack any acceptable characterization of concurrency (with the exception of
Occam), let alone of real-time (, which is lacking for Occam, too).

All these arguments emphasize the need to develop formal models for real-

time concurrency, and, more importantly, to discover structuring methods which

‘{ead to hierarchical and modular development of real-time concurrent systems.
Obviously, models based on interleaving, such as [BH82] can be immediately discarded

as being unrealistic. Models based on SCCS [Mil81] such as [Ber84] are an improve-
ment in that truly concurrent activity has been modelled, yet are unsatisfactory

in that interleaving has not been excluded. Petri-net theory remains a viable direct-

ion for discovering structuring methods, yet is still unsatisfactory because it



-2

has not incorporated (1) satisfactory verification methods for liveness properties,
such as temporal logic has, or (2) (machine checkable) formalisms for representing
(concurrently implemented) data structures. And certainly none of these models

apply to real-time features of realistic programming languages such as Ada.

“The present paper aims at providing a model of real-time concurrency

- which is realistic in that concurrent actions can and will overlap in time unless
prohibited by synchronization constraints, no unrealistic waiting of processors
-is modelled, and yet the many parameters involved in real—-time behaviour are

= reflected by a corresponding parametrization of our models; it is based on

Salwicki's notion of maximal concurrency [SM81];

- which applies to programming languages for distributed computing such as Ada

-and Occam which are based on synchronized communication (, for asynchronized

communication as in CHILL, we developed [Koy83]);

- which implies a sound and relatively complete method for verification since it

is compositional; we base ourselves in this respect on the method developed by

Soundararajan [Sou83, Sou84], and joint research together with Pnueli leading

to the incorporation of maximal parallellism within the temporal framework of
[BKP82] ;

- which meets the standard of rigour as provided by the denotational semantics

of concurrency.

Some of these aspects are also covered by work of Zijlstra [Z84]and G. Jones [J82].

Our study of real-time distributed computing‘igwé;rf{éa»By.a”real—time variant

of CSP, called CSP-R, which allows modelling of the essential Ada ([A83}) real-time
features. A denotational semantics for CSP-R is given, stressing compositionality
and extending the linear history semantics for CSP of [FLP80]:

- the basic domain consists of prefix~closed sets of pairs of states and (finite)

histories of communication assumptions leading to that state,

- the ordering on this domain is simply set-inclusion,

the denotation for the parallel execution of two processes yields a denotation in

the same domain for a new combined process replacing the original two,

- the histories contain enough information to detect deadlock, eliminating the

expectation states of [FLP80],

- process-identification parameters must be used throughout the semantics for the

compositional modelling of nested concurrency.



_3_.

Historiés are modéiied as sequences of”bags of‘;ommunication assumption records
as we allow truly concurrent actions (; why bags are needed instead of sets is
explained in §6). Real-time is modelled in the histories by relating the i-th
element of a history with the i-th tick of a conceptual global clock (see §4).

There are two kinds of records for expressing communication assumptions in the
histories:

. . . . -
- communication record C(i,j,c,v),
3 -’ .
modelling the execution of an I/0 command: the values v are passed from process i

(the sender) to process j (the receiver) via channel c,

- no-match record NM(i,q),
mowedeihinghthebskaencefof ppesibiilivy fhor ttire canecut an «df ttiee 17O coomangdd Oiin
prprecess .iyhilimewesnshtikathehere sisoneamahdhgng /D/Gommmnand Qushchhthat angnd O
catanxkeuewesited taimolibdgeously. | wsd A teforer s twetttaliotic wail

Internal moves within a process are modelled by empty bags.
The no-match record is new and allows

- the checking of the maximal parallelism constraints; i.e., no unnecessary waiting,

- the detection of deadlock f§5), rendering ekﬁégzatioﬁwéigfééVaé in [FLP80]

unnecessary.

Retated ideas can be-~found in [Z84] and the unpublished [J82].

2. CSP-R.

CSP-R is based on CSP [H78] (with which the reader is assumed to be familiar), which
is adapted to model the real-time and communication features of Ada [A83]. The two
most important differences between CSP and CSP-R are:

= in CSP-R communication takes place along channels, and

- real-time is incorporated in CSP-R by adding a 'wait d' instruction (d is an

integer expression) which may also be used as guard in a conditional or loop.
A full description can be found in the appendix. Here we limit ourselves to
some examples..of the novel features.

1. [wait 8 » S1 o P3.c!5 > SZ]’ a guarded selection with intended meaning:
if communication with process P3 via channel c¢ is possible within 8 time units,

transmit 5 and execute SZ’ otherwise, after 8 time units, execute S1.
2. [x>0 » S1 o .c1?y - 82 o P7.c2?z - 83], a guarded selection with intended meaning:
if x>0 evaluates to true, execute S¢3 otherwise wait for communication with any

process via c, or with process P7 via cye



3. [P:: [PT:: Pz.c1?x;Q.c2!0 I P, P1.c1!0] Il Q:: [Q1:: P.c,?z I Qy:s wait 0]],
a parallel command iisbliyingduéstednpafal1e1ism. Notice that the scope of a
process-name extends to the smalleetrembracing parallel command in which it is

declared; observe the similarity of this with the scope-rules for blocks.

3. THE MAXIMAL PARALLELISM MODEL.

Under maximal parallelism, the number of instructions in concurrently executing
processes that can be executed simultaneously without violating synchronization
requirements, is maximalized (see [SM81] for a formal definition). So, in the

program [P1:: x:=1 || Pyi: xi=l I Pys: y:=2] either P, and P, or P, and P, will

1 3 2 3

execute their first move simultaneously, but not P, and Pz; all this, under the

1
assumption that multiple accesses to a single (shared) variable are mutually exclusive.
Implementing maximal parallelism requires separate processors for the various

processes. The connection with real-time behaviour is, that when execution speed is

a critical factor, separate processors should be available to all processes.

For distributé&wzsﬁﬁuting, maximal paralléiiéﬁmmééhér;fifst—come first-served"
(fcfs) in some global time scale (see §4). Consider the program

[Py:: 2,:P,.ctO || P L,:Poaetl || Poes 21:.c?x302:P, .clx || P sz.c?y;QZ:.c?y]

2% Mpits 3 A3 3P, 4%

(11,...,22 denote labels). According to Znterleaving semantics, there are two sets

1

273 2 73 737

According to maximal parallelism semantics, only (1) is possible since P1 and P4

of rendezvous' possible: (1) {g.,-%1 21-11, 2%—22}, and (2) {2.,-2}, 22-¢} 21—22}.

can immediately become engaged in a rendezvous.

As we will reason in §7, the maximal parallelism model is unrealistic for
distributed systems in general. We will develop a whole family of real-time models
ranging - from interleaving to maximal parallelism semantics and incorporating the

transmission time for messages in a system.



4. OUR VIEW OF TIME.

To express real-time properties such as "the system responds on a certain request
within a fixed number of seconds" there must be some measure of time to relate these
properties to. When we talk about abstract, i.e., implementation independent,
properties of a system as a whole, this measure must be relative to some global time
scale. For distributed systems this means that all events in the various
processes are related to each other by means of one conceptual global clock, intro-
duced at a metalevel of reasoning.

Clearly, no physical realization of such a global clock is possible; processors
always drift from one time mutual synchronization as exemplified by the existence
of clock synchronization algorithms. In our model, drifting can always be modelled

by allowing (small) unpredictable variations in the execution time of basic actions.

5. THE SEMANTIC DOMAIN AND ITS INTERPRETATION.

Our basic domain is that of prefix-closed sets of pairs, <s,h>, of states s and
histories h of bags of communication assumption records.

Definition. A set X of state-history pairs is prefix-closed iff for all
<s,h>€X, if h'<h (i.e., h' is a prefix of h) then <l,h'>€X, where L signals an

incomplete computation.
The collection of non-empty prefix-closed sets becomes a complete lattice if:

- the partial ordering is set <nclusion <, and



_6_

- the least upper bound is obtained by set-theoretic union U.
The least element of this lattice is {<l,A>}, where A is the empty history.
Sets of state-history pairs, X, describe as usual (see [FLP80]) the
computations of a program P. So, <s,h>FX models a computation of P with history h
that terminates in s if s#L , and a partial (i.e., not yeﬁp&eﬁplétedﬁpuOnpubationd
otherwise. If X contains pairs <l,h0>, <L,h0Ah1>, ... such that each hi#X(A is
the concatenation operator) then P has an infinite computation with history hoAh1A... .
Histories are interpreted elementwise as follows: Let h(k) denote the k-th
element of a history h. Then

- h(k)=[ ], i.e., the empty bag, models an internal move at time k,

- C(i,j,c,§5€h(k) models the passing of the values ¥ from process 1 to j via

channel ¢ at time k, and

- NM(i,a)€h(k) models the absence of a matching I/0O command o for the I/0 command

0 in process 1 at time k.

Deadlock is detected as follows: Let Bo, B1, ... be bags of communication
assumption records, each Bk containing a no-match record NM(i,o) for some I/O
command 0. If there exists a history h such that <L,hAB0A...ABk>€X for every k20,

then X contains an infinite computation in which process i is blocked on a; i.e.,

X contains a deadlock situation for P.

6. MAXIMAL, PARALLELISM SEMANTICS FOR CSP-R.

The meaning of CSP-R constructs is defined demotationally by giving, for all
processes i and constructs T within i, an equation for M[T]i which relates the
meaning of T to the meaning of T's constituents (; the identity of i is required to
model nested parallelism).

Since loops occur in CSP-R, M[T]i should be a continuous functional so that
it makes sense to apply the least fixed point operator, U. In the full paper we
show that M[T]i belongs to the cpo CSSM of continuous strict sequential mappings.
CSSM is a certain subset (with induced ordering) of the cpo of strict and continuous
automorphisms of the lattice of non-empty prefix closed sets of state-history pairs.
We note that the least element of CSSM is the functional 1 = AX. PFC({<L,h> |

CSSM

<s,h>€X}); the operator PFC maps sets of state-history pairs to their prefix closure.



_7_

We proceed with the definition of M[-]i. The three auxiliary functioms, G, ||

and Hidei that are used, will be defined afterwards.
Definition of M[T]i'

Induction to syntactic complexity.

M[x:=e]i = XX. L (X) v PFC({<s[V[els/x], W"[1>}),

<s,H>€X
s#l

where Vlels denotes the value of e in state s.

CSSM

M[g]i = G[g,¢]i for guards g acting as statements (see the appendix).

M[T1;T2]i = M[TzlioM[T1]i, where o denotes functional composition.

n _ ‘ .
M[j51 8> Tj]i = AX. j=v.. M[T.].(G[gj,{gk|1§k§n, k#J}]iX)
M[*j§1 85> le u 2. AX. h>cx if 5=1Von B[g s then ¢(M[ E 1857 T 1. PFC({<S h>}))

else {<s,h>} fi ),
where U 1s the least fixed point operator and
B[éj]s denotes the value of the boolean part of guard g. in state s.
T s . . = L) 1 . i * LN i . >
METR, oeT 11oolHIP, 22T 11, = AX Hide, (<{it},MIT, 1, X>1| lI<{in},MIT 1, X>),

where Hidei hides internal communication assumptions

» and || is the (associative) parallel binding operator.

Next we define the auxiliary functions. For the complete definitions, the reader
is referred to the full paper.
Definition of Glg,Al

i defining the meaning of a single guard g in an environment A

of alternative: guards, in process i. There is only room for a representative sample:

Gib, A] CSSM(X) U <S,H>€X {<s,h>|1BI[bls}. A boolean guard acts as a filter.
s#l
- ———— t times \
1 = ~ k3 ~ ~ . ~
GIP,.ct@,ALX = Loeo (0 U Y ey PFC({<s,h"[NM(i,GRDS,s)]". .. [NM(i,GRDS,s)
s#l

[C(i,Pj,c,Vlg]s)]> " i#Pj, 0<t<minwait(GRDS,s)}),
where GRDS = AU{Pj.clg} is the set of guards,
NM(i,GRDS,s) contains the no-match records of all I/O guards in GRDS of
process i which are open in s (see the appendix),
minwait (GRDS,s) is the minimum of all wait values of the boolean and wait
guards in GRDS (see the appendix) that are open in s.
A pure I/0 guard is either taken - indicated by the communication record - within

"waitvalue" time units and this guard is the first to be taken of the open



_8_

I1/0 guards - indicated by the no-match records — or it is never taken; this
can happen if waitvalue is o, and models a possible deadlock. Note that no

process communicates with itself (i#P.).

T times

r \
Glwait d A] X=1 X) U PFC({<s,h"[NM(i,A,s)]1". .. [NM(i,A,s)]"[]> |

CSSM <s,H>€x
sl -

max ({V[d]s,0})=minwait (Au{wait d},s) D .
A pure wait guard is taken - as indicated by the empty bag - after T time
units provided its duration value equals this latter value and no open I/0 guard

could have been taken at an earlier time — indicated by the no-match records -.
Definition of ||, the parallel binding operator.

<I X >||<IZ’X > = <L UL, PFC({<s1+sz,h #

1 9 : > | <Si’hi>€xi and <I1,h1>¢<12,h2>})>,

1,1, hy
are disjunct sets of processes,

where I1 and 12

s,%s, is the combined state of 5, and s, (note that variables in different
processes are distinct),
h # is the pointwise merge of h, and h,; i.e., h (1) is merged
171,,1, by 1 2 1

with h2(1) etc. Internal communications between processes in
I1 and 12 are replaced by internal moves.
h >¢<I h2> is the consistency check, determining whether for all k

1’
.(1) the subbags consisting of the. communication records
between processes 1n%11:and«194o£'h1(k) and hz(k) are
equal and (2) h1(k) and hz(k) do not contain mo-match

records for matching I/0 commands.
A simple example illustrates the basic ideas:

Consider a program P, [P1::P c?y 1l P2::x:=1;P1.c!x]. Starting with the empty

2
history, the histories of P, are [C(PZ,P1,c,v)], [NM(P1,P2.c?y)]A[C(P2,P1,c,v)],

[NM(P .c?y) 17 [WM(P,,P .c?y)]A[C(Pz,P1,c,v)], ... for any value v, together with

1°%2 17%2
their prefixes. Similarly, the histories of P2 are []“[C(PZ,P1,C,1)],

[]A[NM(PZ,P1.c!x)]“[C(Pz,P1,c,1)], []A[NM(PZ,P1.c!x)]“[NM(PZ,P1.c!x)]A[C(Pz,P1,c,1)], ves
again, together with all their prefixes.

For histories h, of P, and h2 of P2 to pass the consistency check, we should have

- C(P2,P1,c,v)€h1(k) iff C(P2,P1,c,1)€h2(k) and v=1, and

- not NM(P1,P .c?y)€h1(k) if NM(PZ,P .c!x)ehz(k) and vice versa.

2 1
Consequently the only pair of consistent histories (s [NM(P1, 9 c?y)]A[C(Pz,P1,c,1)]

of P1 and []A[C(PZ,P1,c,1)] of P,. The resulting set of histories of the combined

process P is [NM(P c?y)17[]1 , which corresponds with what we should have expected,

12Pp-




considering that P executes under maximal parallelism.

Definition of Hidei.

Hidei(I,Y) = Y', where Y' is obtained from Y by changing it(s histories) as follows:
- no-match records for I/0 commands that concern processes in I only, are removed,

- ;ii process identifiers p€l in the remaining records are replaced by i.

Observe that possibilities for deadlock remain visible as infinite computations,
now represented by <1,h"[17[]7...>. Consequently, we do not distinguish between
deadlock and divergence (as internal events).

At this point, the use of bags instead of sets becomes essential: Consider the
program P, [P::[P1::Q.c!0 | P2::Q.c!0] 11 Q::[Q1::P.c?x il Q2::y:=0]]. P will block
when executed, since both P1 and P2 want to communicate with Q, but Q can offer
only one such communication. After hiding, we cannot distinguish the two output
commands in P anymore. So, had we used sets instead of bags, hiding would have

resulted in histories with only one communication record. Thus, blocking would not

have been detected in such cases.

7. REAL-TIME MODELS.

The following example illustrates the conceptual problems associated with applying
(pure) maximal parallelism to communication based systems, motivating the intro-
duction of a whole family of real-time models in which the maximal parallelism
model is incorporated.

Consider a network with distributed control,
and two processes A and B in different nodes that

want to communicate with a process C in a third node.

1f A wants to communicate at an earlier time than B, relative to some global time
scale, then according to the fcfs—-principle, indeed, A should communicate first.
Whether A's message arrives in C before B's message or not, depends on the topology
of the network. So, it makes no sense to impose fcfs unless many more details are
known about the network. Similar problems occur if processors communicate, e.g.,

via a common bus where assumptions about bus—arbitration have to be taken into account.

This analysis shows that the fcfs—-principle is applied to the order of






_9_

initiation of communication request$ while the abowe example shows that the time at
which communication requests are noticed is relevant. This time gap between
initiation and receipt is the essential feature of the MAXY(G,E) modelsocof distri-
buted concurrency. As we want to abstract from the properties of communication
media, we introduce an uncertainty, bounded by & and €, in the length of such

time gaps. As a consequence, communicatione that are initiated too close in time
(relative to a global clock) cannot be temporally ordered anymore.

The MaxY(é,e) model is based on the following conceptual model of communication:

- processes communicate via a medium, ? ?
— it takes between § and € time units Oh—ivcommunication medium_Jf—»O
(¢ not included) for the medium to o B

become aware of a process expressing

or withdrawing its willingness to communicate,

- communication'’between two processes only occurs after the medium has become

aware of both processes' willingness,

- communication takes an additional Y time units during which the participafing

processes remain synchronized,

- any communication that is in progress when the medium becomes aware of a withdraw
message of one of the participating processes, will be completed normally. No

new communication can be started at such a time.

Consequently, there is an uncertainty interval of e-&-1 time units. Communi-
cations that result from requests initiated within this interval may occur in
any order, i.e., are interleaved. Communications resulting from requests initiated
more than €-6-1 time units apart occur on a fcfs basis. Note that MAX0(0,1) corres-—
ponds: toppure maximal parallelisn while MAXO(O,«O results in pure interleaving of
the communication actions.

The semantics for CSP-R using the MAXY(S,E) model for arbitrary v,8,e differss
from the one in §6 only in the semantics of guards. In particular, binding and
the consistency check remain unaltered. This is so because we can describe the time
gap between initiation and receipt of a communication request in the semantics of
the guards by adding parameters T, s<t<e, modelling the delay of the start of a

possible communication. This will be done in the full paper.



_10_

ACKNOWLEDGEMENTS .

Our thanks goes to Amir Pnueli, who, during a joint visit of Amir and Willem to the

Department of Computer Science of the University of Manchester upon invitation by

Cliff Jones and supported by ICL funds, assisted in a last overhaul of the paper.

[acM84 ]

[Ber84]

[BH81]

[Bj#80]

[Cam821]

[cH182]

[Koy831]

[Mi183]
[oce84]

[sou83]

We also thank Job Zwiers for many stimulating discussions.

REFERENCES.

[A83] The programming language Ada. Reference manual. LNCS 155, Springer, 1983

[FLP80] Francez N.,D. Lehmann, :A. Pnueli, A.linearhhistory gsemantics. for distributed
| languages. Proc. IEEE FOCS, 1980. '

[H78] Hoare C.A.R. Communicating sequential processes. CACM 21-8,1978.

[Js2] Jones, G. D. Phil. thesis, Oxford, unpublished, 1982.

[sM81] Salwicki A., T. Mildner. On the algorithmic properties of concurrent

programs, LNCS 125, Springer, 1981.
[z84] Zijlstra E. Real time semantics. submitted, 1984.
[Dij59 Dijkstra E.W. Communication with an automatic computer. Ph.D. thesis,

Mathematical Centre, Amsterdam, 1959.
A Case Study: The Space Shuttle Software System. CACM27-9, 1984.

Berry G., L. Cosserat. The ESTEREL Synchroneous Programming Language and
its Mathematical Semantics. RdeR N°327, INRIA, Centre Sophia Antipolis, 1984.

Bernstein A., P.K. Harter jr. Proving Real-time Properties of Programs

with Temporal Logic. 8th ACM SOSP, pl-11, 1981.

Bjérner D., O.N. Oest (eds.). Towards a Formal Description of Ada.
LNCS 98, Springer, 1980.

Camerini J. Semantique Mathematique de Primitives Temps Reel. These de

3eme cycle, IMA, Université de Nice, 1982.

Branquart P., G. Louis, P. Wodon. An Analytical Description of CHILL, the
CCITT High Level Language VI, 1LNCS128, Springer, 1982.

Koymans R., J. Vytopil, W.P. de Roever. Real-Time Programming and
Asynchroneous Message Passing. Proc. 2nd ACM PODC, 1983.

Milner R. Calculi for Synchrony and Asynchrony, TCS25, p267-310, 1983.
The Occam language reference manual. Prentice Hall, 1984.

Soundararajan N. Correctness Proofs for CSP Porograms, TCS23-4, 1984.



-11-

[souB4 Soundararajan N. Axiomatic Semantics of Communicating Sequential Processes.

TOPLAS6-4, p647-662, 1984.

ST84  Sunday Times 22/7.



i




app. 1

APPENDIX: THE DEFINITION OF CSP-R.

CSP-R is based on CSP 5338]wwihhthhetEalwaiggeexeansénns:
- communication takes place via channels,
- there is the additiomal possibility of requesting communication with an
arbitrary process instead of only addressing a particular process,
- process identifiers can be communicated and can be used in subsequent
communications to determine the target process, and
- real-time is incorporated by adding the instruction wait d, which can also
be used as guard.
Before giving the syntax of CSP-R, we introduce some notational conventions.
A process identification is an element from the identification set PO,P1,P2,...
An identification variable is a variable ranging over the jdentification set.
A duration is an integer-—valued expression.
The primitive language elements are the instructions:
1. . :xe=e - m:asghgaments isshouldnggggbexansidenniﬁicaaiOn}variable.

2. wawai€ d - w.waitrinstructhond d:is duduratiog.

- . . .
3.1. Pi.c!e output to process 1 via channel ¢ the values of the expressions

. . - . . ‘s . .
in the list e, together with the identification of the sending process.

3.2. id.cle - as 3.1., but now the target process is determined by the value

of the jdentification variable id.

3.3. .c!g[#id] output via channei ¢ to any process the values of the expressions
in the list e, together with the identification of the sender;
record the identity of the receiving process in the identification
variable id (the brackets [ and ] indicate that the jdentification

. . . . > .
variable 1s‘opt10na1; i.e., .cle 1s allowed, too).

- . .
4.1, Pi.c?x - the analogon of 3.1. but now values are received and are assigned

to the variables in the list X.
4.2. id.c?¥ - the analogon of 3.2.

4.3. .c?X[#id]

the analogon of 3.3.
An identification variable can only be assigned to using an instruction of
the form 3.3 or 4.3. Initially, such a variable has as value the identity of the

process in which it occurs. In general, the variables of any two processes must be



app. 2

distinct. In other words, variables are local to a process and the only inter-—
action between processes is by explicit communication.

We call instructions of the form 3.1-3.3, 4.1-4.3 I/0 commands: the ones of
the form 3.1-3.3 are output commands; the ones of the form 4.1-4.3, input commands.
The important notion of syntactic matching of 2 1/0 commands is defined as

follows:

Definition: Two I/O commands o in process P, and B in process Pj syntactically match iff:
1. o and B specify the same channel,
2. the lists of expressions and variables of the two commands, have equal length,
3. if o is an input command, then B should be an output command and vice versa, and
4. if o (R) is of the form 3.1 or 4.1, then the specified target process should be
P (p.).

Communication between processes Pi and Pj takespplacewwhanﬂanzllo‘cumnandga'in
P semantically matches with an I1/0 command B in P,: |

Definition: Two 1/0 commands o and B in processes Pi and Pj semantically match iff:
1. o and B match syntactically,

2. control in Pi and Pj is in front of both o and B, and

3. if o (B) is of the form 3.2 or 4.2, then the identification variable must have

the value P, (P.).
] 1
The result of two semantically matching I/0 commands is the simultaneous
execution of those commands as indicated by the clauses 3.1-4.3. Its effect is
the assignment of the expression values to the variables in the commands and,
possibly, the assignment to identification variables.

As guards we allow the following types:

1. b - pure boolean guard,
2. o - pure 1/0 guard,

3. bsa - boolean 1/0 guard,
4. wait d - pure wait guard, and
5. bywait d - boolean wait guard.

Here, b is a boolean expression (such as x<0),0 is an I/0 command and d is a duration.

d
D

For a guard g, we define its boolean part g as follows: b D b, a = true,

evaluates to true.



app. 3

To complete the definition of CSP-R, we define commands as the smallest set s.t.:

. every instruction is a command,

if T, and T, are commands then T1;T2 is a command (sequential composition),

if T1, .ewy T are commands and g, ..., 8 are guards (n21), then

[jg gJ% T.] is an (alternative) command and *[ D gJ» T]is a (repetitive) command,
if T1, e T are commands and il, ..., in are different integers (nz1), then

[Pi1::T1 ... N LN :T ] is a (parallel) command. P.. (1%ksn) is called a

process with body T, -
The informal interpretation of the language is as follows:

Assignments have their usual interpretation. Recall the condition that variables

are local to a process.

The wait-instruction, wait d, suspends the execution of the process in which it

occurs for the value of d (zero if this value is megative) time units.
The interpretation of I/0 commands has already been given above.
TheetxeuuiionuéfT¥i1$2iissthpjgxeuutiancofiﬁ? 66119wedi&yweﬁengebutionnofLﬁy.z*

Execution of [ B ) 85 TJ] proceeds as follows:

- first calculate the minimum of the duration values of the open wait guards; if
there are no open wait guards, this pinimum is o (infinite) .NNewtbhewwaitudiue
is defined as O if an open pure boolean guard is present, and as the minimum
computed above otherwise.

- if there are no open guards, execution is aborted.

- if there is at least one open guard, one of these is chosen and the corresponding
Tj is executed. Choice of an open guard is done as follows: If within waitvalue
time units a communication is of fered that matches with one in an open I/O
guard, this guard is taken. If no matching communication occurs for any open
1/0 guard then after waitvalue time units one of the open wait guards with
duration equal to the waitvalue or one of the pure boolean guards is chosen.

Note that if waitvalue equals «, we have a deadlock in the last case:

Execution of *[ B gJ» T.] consists of the repeated excution of [j§1 gj» Tj];

this repetltlon termlnates whenonenefofhehgugudeds sapgeopen.

Execution of [Pi1::T1 oe.. 1 Pin::Tn] involves the parallel execution of the

bodies Tk of the processes Pik'

Translating Ada into CSP-R.

To illustrate the power of CSP-R we translate the basic Ada communication primitives

into CSP-R. This translation is denoted by T. The Ada rendezvous is assumed to be



app. &4

understood.

1. the timed entry call ([A83,§9.7.31).

se*ecg ca** ¥ .afe Xg, S, or dslaz t5, 2 ends&legt.

The semantics of this statement prescribes that if a remnsezvous can be started
within the specified duration t (or immediately), then it is performed and S, is
executed aftevwatds. Othewrviee,wihan: theiduration;hascexpized,- §2 . iseexecused.
We offer as translation:

[Ti.az(Z,z) - Ti.a?;{; t(s,) B wait(e+1) - (8,1,

2. the selective wait (without terminate alternative) ([A83,§9.7.11).

select 95_(i=1..n) when b. = S, or (j=1..m) when bl = delay EJ; s) endselect,
where S, = accegg 'gg“#v .) do S, i1 endaccept! SiZ (;=1..n)‘

The semantlcs is, that first the minimum value MIN, of those Ej whose~guandiaﬁij is
Qpen: iisbéyaluatedn.lffa renddevous: wwthhonacoﬁtthb«aa'éwwhbeefggatdd b“,,lsq

open, can be started either immediatelyoerwiibhlisnddenafdbonMENY, thhanlitlls

performed and S]._2 is executed afterwards. Otherwise, when MIN time units have
elapsed, one of the delay alternatives SJ for which EJ-MIN (and whose associated
guard is open) is executed.

Our translation:

. o 2(T 7)1 ol 1o o7 mo 3, 3 i
[i§1bi,.ai.(ui,vi)#1d > T(Si1),1d.ai.vi,T(Siz) o j21 bl jwait (EX+1) - 1(s9)].



