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independently in parallel. In the engineering literature several schemes
(called "skewing schemes") have been proposed for storing the elements
of a Nx ... xN (d-fold) matrix in M memory modules such that all M-vec-
tors of interest can be accessed conflict-free, i.e., have elements in
distinct memory modules. In [14] it was argued that the general class
of periodic skewing schemes is elegantly understood from the viewpoint
of classical integer lattice theory. In the present paper we give a de-
tailed account of the more general connection between periodic skewing
schemes and the theory of finite abelian groups. As a main result we
prove that the periodic skewing schemes can be completely classified
into equivalence "types", and a normal form theorem is derived. It is
shown that the number of non—equivalent linear skewing schemes using M

memory modules is bounded by O(Md—110glog M.
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1. Introduction. The architecture of current and experimental super

computers (cf. Hockney & Jesshope [3]) is characterized by having one

or more highly pipelined CPU'sand a non-triviadl nmukker Modf meeneyy moddabes
that can be accessed independently in parallel. Since the machines are
meant for large scale numeric problem solving, much attention has been
given to the problem of storing the elements of aniEx....xNN(dda£63dd)

matrix such that all M-vectors of interest can be retrieved conflict-

free, i.e., have elements in distinct memory banks. Non-triviilssthemes
for this task were proposed as early as 1967 in scheduling matrix computa-
tions for the ILLIAC IV (Knowles et. al. [4], Kuck [5]1), and apsmonimonly
referred to as "skewed arrays". Budnik & Kuck [1] and Lawrie [7] formula-
ted simple conditions for skewing schemes to be conflict-free for vectors
l1ike rows, columns, and diagonals.

In a fundamental study, Shapiro [9] considerably extended the theor-
etical understanding of the general skewing problem. In its most general
form a skewing scheme is any mapping s : Zx ... x& (d-fold) = A, where A
is a finite set of M elements ("bank names"). As skewing schemes ére re-
quired to be readily computable, Shapiro [9] defined a scheme s to be
practical ("periodic") if for all (i1, vy id) €EZX ... xz,s(i1 ceey id)
can be computed by first reducing the indices according to a suitable
modulus and next performing a table look-up. Wijshoff & van Leeuwen 111
generalized this notion and defined a skewing scheme to be "periodic" if
and only if there is a lattice Ld cZx ... xL such that p ELd q precisely

when s(p) = s(q) for all p,q € Zx ... xZ. Up to renaming it means that a
1

periodic skewing scheme is an epimorphism s : Zd—#*A with Ker(s) =L,

which implies that A is isomorphic to Ed&ﬂda finite.abelian group
(cf. [11]). In [14] this connection to lattice-theory was exploited to ob-
tain elegant computational. characterizations of periodic skewing schemes
in all dimensions.

Traditionally, all skewing schemes considered for practical implemen-
tation in the engineering literature are "linear", i.e., described by a
formula of the type s(i1, ;.., id) = X1i1+ ces +ldid (mod M) for suitably

chosen coefficients X1, ceey Ad € Z. One readily verifies that every linear

skewing scheme is periodic. Beside the computational simplicity, there are
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mathematical reasons for emphasizing linear skewing schemes. By utilizing
Kronecker's version of the Fundamental Theorem for Finite Abelian Groups,
Wijshoff & van Leeuwen [14] showed that (i) every d-dimensional periodic
skewing scheme corresponds to a d-tuple of 11near forms and (ii) a perio-
dic skewing scheme s is linear if and only if Z / d is cyclic. If follows
that for M prime (a case advocated in studies of confllct -free access, cf.
Lawrie [7] and Lawrie & Vora [8]) every periodic skewing scheme using M
memory banks is necessarily linear, for the simple reason that a group
(viz. Z / d)with a prime number of elements is necessarily cyclic.

In thlS paper we further extend the theory of periodic skewing sche-
mes, by exploiting the close connections to the classical theory of finite
abelian groups. In section 2 we present basic definitions and give a
(re-)appraisal of some observations of Lawrie ([7]) in the group-theoretic
setting. In section 3 we explicate the connection between periodic skewing
schemes and finite abelian groups. In section 4 we show that the periodic
skewing schemes can be completely classified into equivalence "types', .and
a normal form theorem is derived. The results heavily rely on the characteri-
zation of the automorphisms of finite abelian groups. In section 5 it is
shown that the number of non—equivalent linear skewing schemes using M
memory banks is bounded by O(Md_1loglog M), thus generalizing an observation
of [13] for the case d=2.

The mathematical background for this paper is available from advanced
texts on algebra (e.g. Goldhaber & Ehrlich [2]) or group theory (viz.

Kurosh [6]). Throughout this paper we use the following notations :

s a skewing scheme,

(i1 e id) an element of Zd,

M the number of memory banks utilized,
A a finite abelian group of M elements,
Aut(A) the group of automorphisms of A,

® the direct sum (of abelian groups),
8 the direct product (of automorphism groups),
—_— a surjection (e.g. an epimorphism),
> a bijection (e.g. an isomorphism),

o composition of mappings,

E isomorphism.

2. Skewing schemes and conflict-free access. A general d-dimensional skewing

scheme is defined to be any surjective mapping s : an» A, where A is a finite

set of M elements. The elements of A denote the M parallel memories that are
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available for storing data. Let ".'" denote the equivalence relation on

2% defined such that for all p,q € A p-¢ qiif€(pXp» =(8(q). Since & is
finite, the equivalence ~ is necessarily of finite index. Let zY. denote
the set of equivalence classes of . and v : zd—e>zd/~ the natural projection.
It follows that there must exist a bijection Y such that the following dia-

gram commutes :

!

The following definition formalizes the corresponding notion in Shapiro

[9] and Wijshoff & van Leeuwen [12].

e e . d .., . . 4s .
Definition. A skewing scheme s : Z —» A is called periodic if and only if
~ is a congruence relation with respect to the free abelian group structure

of Zd.

If s is periodic, then A = Zd/~ and (hence) A is identified with a finite
abelian factor group of ld with (necessarily) d generators. Conversely
every epimorphism s : Zd;i>ALwith A a finite abelian group is seen to be a
periodic skewing scheme.

Skewing schemes are usually called equivalent (cf. [13]) if they differ
merelydby the naming of the memory banks. More precisely, 8y Lqe> A1 and

9t - A2

such that cpos1 =

s are equivalent if and only if there is a bijection ¢ : Af—§>A2

Sz.

Proposition 2.1. Let sy 3 léab A1 and s, * Zéab'Az be periodic skewing schemes,
where A1 and A2 are finite abelian groups, and let ¢ : Af-§>A2 be a bijection

such that @es, = s

1 . Then ¢ is an isomorphism of abelian groups.

2
The observation in proposition 2.1 leads to the following "program" for
classifying the periodic skewing schemes s : iq%» A, with A a finite abelian
group. First let A run through the isomorphism types of all finite abelian
groups with d generators. Next, for each such A consider the action of the

automorphism group Aut(A) on the set of all epimorphisms (read : periodic
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skewing schemes) s : Zqé>,A defined by o(s) = aes, for a € Aut(A).

The orbits of this action precisely correspond to the equivalence
classes of periodic skewing schemes.

Linear skewing schemes have traditionally played a central role

in all applications of skewed matrix storage (see e.g. [4], [51, [7D.

Definition. A skewing scheme s : Zq€» A is called linear if and only if

. . . Sd . . . .
Atﬁdzﬁfuhdrﬁop all (11,..., ld) (2 A s(11, cees ld) = k111+ cen +Xd1
(mod M), for suitably chosen and fixed constants X1, cees kd €Z.

d

One readily verifies that every linear skewing scheme is periodic.

Proposition 2.2. ([14]) A periodic skewing scheme s : qu» A is linear if

and only is A is a cyclic finite abelian group.

Skewing schemes are designed such that desired collections ("vectors")
of at most M elements each can be retrieved conflict-free from the parallel
memories. In several studies of conflict-free access it has been suggested
to choose M prime (see Lawrie [7], Lawrie & Vora [8], Wijshoff & van Leeuwen
[131). This choice severely limits the type of skewing scheme that one can

use, in view of the following fact.

Proposition 2.3. ([14]) If M is square-free (e.g. a prime), then every
periodic skewing scheme using M memory banks is necessarily linear.
Every finite abelian group of square-free order is necessarily cyclic.

Now apply proposition 2.2. O

Although we shall not study the property of conflict-free access in much
detail here, a further observation is of interest. The rows, columns, and
diagonals of a Nx ... xN (d-fold) matrix are easily parametrized into

the form p+Aq for fixed p,q € ld and A € {0,.., N-1}, and a periodic skewing
scheme s : Zq%» A will map the elements to banks s(p)+is(q) (where the
latter "+" denotes addition in A). This led Lawrie [7] to the paradigm of

an "ordered" vector, which now takes the following form.

Definition. Let A be a finite abelian group. A y-ordered k-vector (y € A,
k>1) is any vector of k elements whose ith logical element is mapped to

bank S+iy, for a suitable 8 € A and 0<i<k.
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Thus rows, columns, and diagonals are all y-ordered k-vectors for
suitable Y and k, when a periodic skewing scheme is used. Lawrie's main
observation was that a y-ordered k-vector with Yy E‘ZM can be accessed
conflict-free if and only if Hgk.kugdd(M;Mlséeee?EZ]I;2ﬂ}3]laeTheenQSU1t
is easily understood in the present framework. Let ord(y) denote the

order of Yy in A, an abelian group of M elements.

Proposition 2.4. A y-ordered k-vector (y € A,k21) can be accessed con-
flict-free if and only if ord(Y):R.k.

Conflict-freeness means that &+iy # &+jy for i#j, 0si,jsk. It is
equivalent to the condition that iy # ¢ for i=1, .., k-1 and hence to

ord(y):2.ks¢ O

Note that when A is cyclic, the order of an element vg | ¢YEC U, gg 2:aggenepater
of A) is simply M/gcd(y,M) and Lawrie's result follows. The following obser-
vation leads perhaps to the most compelling reason for the restriction to

linear skewing schemes in practice.

Theorem 2.5. Let s be a periodic skewing scheme using M memory banks, and
suppose s yields conflict-free access to some Y-ordered k-vector for ks M/2.
Then s is linear.

By proposition 2.4 we have ord(y)>>/M/&ndndbebenaaserddeYﬁ|Hybyleie—
mentary group theory, if follows that ord(y) = M. Thus Y is a generator

of A, and A is cyclic. The result now follows from proposition 2.2. O

We conclude that if we want a periodic skewing scheme to be conflict-free
on even a single row (or column or diagonal) of a Mx ... xM matrix, then
the skewing scheme is necessarily linear. See Wijshoff & van Leeuwen [13]

for a further analysis of this case.

3. The classification of periodic skewing schemes. In order to work out

the program for classifying the periodic skewing schemes as suggested in
section 2, we have to delve deeply into the structure theory of finite
abelian groups. First we review the (known) facts concerning the isomorphism
types of finite abelian groups, which will enable us to derive the connec-
tion between periodic skewing schemes and d-tuples of linear forms rather

directly (cf. Wijshoff & van Leeuwen [14]). Next we derive a characterization
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of Aut(A). The results will be used in section 4 to prove a normal
form theorem for periodic skewing schemes, thus completing the classi-
fication effort.

Let A be an arbitrary finite abelian group of M elements, and let
M= p1e1 cen prer (the factorization of M into distinct primes). A has
a unique decompesitidaassaszddreet. summAs= A1D,a‘a .- 0ABS whelrer ¢hel:id A
are abelian p-groups of coprime order. (In fact, for 1€isr, Ai is the
Sylow subgroup of order piei.) For 1sisr, let ﬂi : A—emAi be the implied
projection morphism. For a periodic skewing scheme (or: epimorphism)

s :Zd—-»A, let s, = M.os.
1 1

Proposition 3.1. The mapping s> (s1, cees Sr) is a bijection between
the set of all periodic schemes s : Z—» A and the set of all r-tuples

(t1, ceey tr) of periodic skewing schemes t. : Lq—»»Ai (1gisr).

We also note that Aut(a) = Aut(A1) g ... 8 Aut(Ar) and that, consequently,
two periodic skewing schemes s and‘s' are conjugate under Aut(A) if and
only if the corresponding s; and si are conjugate under Aut(Ai) for 15isr.
This shows that the classification of periodic skewing schemes s : Zq—»vA
reduces to the case where A can be assumed to be a finite abelian p-group.
To complete the description we note that a finite abelian p-group can

be uniquely decomposed as the direct sum of cyclic p-groups. Hence

A. = L cee i . . . i . =
q e. ® YA .. for suitable el1g 2 eld;O with e11+ “ee +e]._d
Pi11 p11d
] ) ey e,
e; and 1gigr, and assuming that A is a d-generator group. (The pil s eees p,ld
i
are known as the invariants of the abelian p-group.) For 15isd, let fj =
e,. . :
1] Tj s . "
Py "... P, denote the "invariant factors" of A. Observe that fj+1|fj for
1 §3j <d and by theChinese Remainder Theorem one also has Z, =L & ... 8Z
ioopid p T
It follows that A=Z .8 ... 82, , a direct sum of cyclic groups.
1 d

Theorem 3.2. ([14]) Every periodic skewing scheme s : Lq-» A can be uniquely

represented by a d-tuple (L1 mod f1, veey Ld mod fd), where L1 through Ld

are integer linear forms and f1 through fd are the invariant factors of A.
s uniquely corresponds to the d-tuple (51, cees Ed), where Ej = ﬂjos

and"'!{j :‘A—>Lf are the projections corresponding to the composition above

(1£35d). By pro%osition 2.2 every Ej is a linear skewing scheme. O
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Note that the component expressions for s are build up, using the
Chinese Remainder Theorem, from the (linear) expressions corresponding

to the projected skewing schemes:.Zc}—»»zpefsk_j (12ksr, 1£jsd), which are
k

all linear skewing schemes by proposition 2.2.

Restricting to the case of finite abelian p-groups A, assume that
A= zpe1 ® ... ®,Zpem for suitable e1Z cen Zem?o and mgd. For classifying
the periodic skewing schemes in A's isomorphism type, we need a precise
understanding of the action of Aut(A). Write the elements o of A as vec-
tors o = (u1, ceny am)T, where oy is the residue of o in lpei (1£ism).

A general result due to Shoda [10] (Satz 1) is the following.

Theorem S. The automorphisms of A can be represented zy_gxu m:matriees

X = (xij) with columns that are generators of A and p t J| X for i<j.

The action of % on A and the composition of two automorphisms are derived
from the usual matrix-vector and matrix-matrix product. A matrix X repre-

sents a proper automorphism of A if and only if det X # O (mod p).

Theorem 3.3. Let A = Zpe1 6 ... Q‘Zpem be a finite abelian p-group, with
e1Z - Zem>0. Aut(A) is generated by all automorphisms ("matrices") X
having one of the following forms :

(a) ¥ interchanges the ith and jth component of elements, for fixed

i and j with e, = e..
1 J

(b) X multiplies a single (fixed) component of elements by a (fixed)
integer # O modulo p.

(¢) X adds an integer multiple of the jth component to the ith com-
pogggg.of elements, using a (fixed) integer multiplier divisible by

e * J1.

One easily verifies that the mappings X of the form (a), (b), and (c)
are automorphisms of A. Comnsider any aug?g8¥phism of A and view it, using
theorem S, as a matrix X = (xij) with p t Jlxij for i£j and det X 2 O
(mod p). By repeated premultiplication with matrices of type (a), (b),
and (c) one can transform X into the identity matrix, by following a suitable
version of the Gauss—Jordan algorithm. Thus the automorphisms of type (a),

(b), and (c) generate Aut(A). O

4. A normal form for (general) periodic skewing schemes. Let s : léﬁ» A be

any d-dimensional periodic skewing scheme. By proposition 3.1 we may assume
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that A is a finite abelian p-group, and (hence)
A= Zpe1 ® ... 0 Zpem for suitabte e1g e gem > 0 and m gdd. As zd is
a free abelian group (of rank d), the homomorphisms from Z~ to A uniquely

correspond to the mxd matrices T = (t. .) with t..] € Lpei whose columns

can be regarded as the elements of A that are the images of the standard
basis of zd. A matrix T of this form represents a periodic skewing
scheme (an epimorphism) if and only if the columns of T generate A. To
obtain a classification of the periodic skewing schemes s : lqa> A, we
must classify the matrices T modulo the action of the automorphisms of A
as described in theorem S. The normal forms will be suitable representa—
tives from the resulting equivalence classes.

For the analysis we have to delve into the subgroup structure of
the component p-groups l e of A. A cyclic p-group lpe has precisely e+l
subgroups, which are all cycllc p-groups and form a "tower" (or: a com—
position series). In fact, it are precisely the subgroups p%lpe (generated

by pk) for k=0,1, ..., €. For i<j, let Cjj be a fixed system of coset re-

presentations of p ei” Jz el 1n.l.pel and let €, ij be a fixed system of ‘coset

representatives of p€i~ gJ ZpEi‘ln p.ZPel. One may take C. i =

{0,1,2, vty p €i-1 1} and, prov1ded el > eJ,A i " { 0,p,2ps +++> P €i"®i-p

if ei = eJ we let ClJ {Q} Hence ]C i = p®i7®j and 16..[ = [pei=ej~17.

Let s : Z—» A be a periodic skew1ng scheme, and T the matrix represen-—

ting s. Denote the j th column of T by Tj (igj<d).

Definition. s is said to have normal form if the following properties hold :

(i) there are column indices j1, ceey jm (written such that j, < iq

whenever e, = e; and k < 1) such that Tj = (x1, cees kk_1,1,0, ...,0)T

o c 2k
with x. C. ik if i <3y and x; € Clk is
(ii) for every column 1ndex jé{ 31, cees J } and corresponding

> jk for 1s5i<k.

column Tj = (x1, cens xm) one has x. € zpei if Ji < j and Xs € p. lpel

ji > j, for 1sism.

In the definition the columns j1, cens jm are called the basis columns
of s (or: of T), and the remaining columns are called the non-basis
columns of s. For every k (15ksm) the index jk refers to the left-most
column of T having a generator of.lpek in its kth component. (Hence,

trivially, the basis columns of T generate A.)
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‘Theorem 4.1. (Normal Form Theorem)

(i) Every periodic skewing scheme s :Zd—-»A is equivalent to a perio-

dic skewing scheme that has normal form.

S ———

(ii) Different periodic skew1ng ‘schemes in normal form are not

equivalent.

(By proposition 2.1.two periodic skewing schemes s1 9 ! .Zd—» A are

equivalent if and only if Sy and s, are conjugate under the action of
Aut(A).)

(i) Let s : Zq—ij be an arbitrary periodic skewing scheme, and T
the -mﬁ”matrix representing s. We show that s can be transformed to

normal form by a step-wise procedure, using the action of suitably chosen

automorphisms of type (a), (b) and (c) (cf. theorem 3.3).

As the columns of T generate A, there must be a column of maximal
order in A. Choose j1 to be the index of the leftmost column of this kind,
necessarily containing a generator of Zpe1 among its components. Use ope-~
rations of type (a) and (b) to obtain an entry 1 in the first position of
the column, and use operations of type (c) to make the lower entries van-
ish. Proceeding inductively, assume that we have obtained columns 31, cens Jk
as required in the normal form. Let k < m. Because the columns of T generate
A and observing the structure of the columns j1, eens jk’ there must be 2
leftmost column jk+1 in T which has an entry in one of the components
k+1,k+2, ... which generates Z ekt 1 Use operations of type (a), (b), and
(c) as before to obtain an entry 1 in position k+l of the column and zeroes
below it. (Note that these operations do not affect the structure of the
columns 31, ooy Jk because they are zero in all positions 2 k+1.) As for
the upper entries of column jk+1’ we observe the following. Let %, be the
entry in position i, for some i < k+i. Suppose that x; ¢ ﬁZ i i.e., X
is a generator of‘E ess but J > jk 1 This contradlcts the ch01ce of’ J..
Hence we can use operatlons of type (c) in order to change the upper
entries into coset representatlves of the desired characteristic. (Note
that again the structure of the columns 31, ceer Jk is not affected by
these operations.) By continuing this process T is transformed to normal

form.
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(ii) Let s,s' : 'Zd-»A be different periodic skewing schemes and T,T'
the corresponding matrices, and suppose that both s and s' have normal form.
We show that s and s’ cannot be conjugate under the actiom of Aut (4).

Let 31, anes J and j’ cews j’ be the indixes of the basis columns of

T and T“, respectlvely. Suppose that the two sequences are not equal, i.e.,

)

let 31 = 31, cees Ji_1 = ji-1 but J # J’ for some 1%iZm. Without loss of

generality, let J jJ . By the structure of the basis columns it follows

1.

that Tj , +.+5 I: generate a subgroup of A whose order is greater than
. 1 .
the ordér of the subgroup generated by T} , +..» T1 . In this case T

J
and T cannot be conjugate under Aut(A). éuppose next that the two index
sequences are equal, i.e., j. = ji for every 1<i<m. We show that any auto~
morphism X € Aut(A) that maps the basis TJ eees Tj (of A) onto the basis

T! , ..., T! (of A) must be the identity. Clearly T and T' =¥ (T. ) co-
34 In I I I
incide, as both are equal to the first unit vector. Proceeding inductively,

assume that T. and T! = X (T. ) coincide for i=1, «.., ke Let k< m.
i i; i;
By order considerations we have T, =y (T, ). Because of the structure
J
k+1 k+1
of the basis columns, there exist integer coeff1c1ents x1(1‘1*k) such that

., = + + .
S Wy Z X, TJl (where Wy is the (k 1) nltkvector) It follows
that X (T. ) =X (u, ) + Z x x (T.) =X (u, ) +Zx T, and (hence)
S P k+1 1 1 I k+1 11 14
T'. - T. = - . By theorem S (applied to we conclude
i S X (u4) = w, - By the (app X)
that the coset representatives in the upper diagonal positions of T!
k+1
and T. necessarily coincide. Thus T. and T? =X (T } coincide
Ik+1 It I+ T+
as complete vectors. By induction we conclude that X must be the identity.

This contradicts that s and s’ are different. O

We conclude from theorem 4.1 that every periodic skewing stheme can bertrans-—

fored. to a unique (equivalent) normal form.

The existence of unique normal forms is intrumental for counting the
number of "essentially different", i.e., non-equivalent, periodic skewing
schemes. As an example, we count the number of non-equivalent periodic
skewing schemes s 3 7% 36 A where the underlying p—group A hasckbetfesm
AE Zpe e ... QZpe (m summands). One verifies that the normal forms are

mxd matrices of the following form :
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y..y1x..x0x..x0x... oo x0x ..
Loy 1lx .o x0x .. oo x 0 X .
yOy ..y1x. D
L y oy 9 y e
... x0x ..
..y0y ..y0y ... .y b x

where the basis columns (unit vectors in this case) occur in m selected
positions j1, eers jm and the x's and y's denote arbitrary elements of
,Zpe and ﬁlpe, respectively. Every matrix (in normal form) represents a
unique equivalence class of periodic skewing schemes, and conversely.

The number of different normal forms is seen to be

E ﬁ JGgymiy D Gee (m=i) (e=1))

<t < <i < i i=o
I .. Ip < Jp+1

3o
where jO =0 and jm+1 = d+1 are fixed and the sumnmation ranges over all
choices of j1,...,jm. Further manipulation shows this number to be equal

to

:(d—m)(m—1)(e+i) +'£m(m:i3+dm ::EL

P : : :
0< j1 < e <jm<d+1

5. The number of non-equivalent linear skewing schemes. In section 2 we

argued that all periodic skewing schemes of practical use in supercomputer
computations are likely to be linear. Indeed, the engineering literature
on the subject has largely focussed on the analysis of linear skewing sche-
mes for the purposes of d-dimensional array storage. In a recent study
Wijshoff & van Leeuwen [13] showed that the number of non—-equivalent linear
skewing schemes in the usual 2-dimensional case is surprisiqgly%smallwand
bounded by O(M loglog M), where M is the number of memory banks being used.
In this section we apply our results on normal forms to obtain a precise
expression for the number of non—equivalent 1inear skewing schemes in the

general case and a feasible procedure for enumerating these schemes.
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In section 2 we defined a linear skewing scheme to be any epimorphism s:

d . . . . .
Z—» Z . Let M = 161...prer (the factorization of M into distinct primes).
By the Chlnese Remainder TheoremZ can be decomposed as a direct sum

Z =Z o, 8 ... 82Z e, . Every (pro_]ected) linear skewing scheme
M Py 1 Pr

s, =T °8 :Zd_., Zp e can be described by a 1 x d matrix T, whose (single)
i

row contains at least one compomnent that is a generator of Zp e; . Observe
i

that the results of section 4 apply (use m=1, a direct approach is given
in [11]). It follows that the non-equivalent s. 's can be enumerated by
simply enumerating the normal forms, which are descrlbed as the 1 x d matrices
of the type (y1,..., yj_1, 1, Xspqones X4 ) with 15j4d, X €EZ pii (j+15ksd),
and 4 € P Z . (181£3-1). According to proposition 3.1 and the arguments in

Pi €i
section 3, the combinations of normal forms for the s; (1€isr) precisely
characterize the equivalence classes of linear skewing schemes s. The enume-

ration of the non—equivalent linear skewing schemes now follows by a trivial

algorithm.

Theorem 5.1. The number of non—equivalent linear skewing schemes

S Ed——» ZM is bounded by M 'IT -1.

Egggf_. T U d
Th i (d-1)ei—j+1 1
ere are precisely X P; = (pl 5 4 -1
S I Ay
d-1 ‘ypd : )
(Piel) . ""T'l-‘ different normal forms for every s. (12isr).

1—,41

The number of non-equivalent linear skewing schemes is thus given by

T 1/d r /4 T .
1- 1- Pi
'[1‘ . d- P, - P - ‘rT
(Piel)d [ SRV ’.'Ff L SPVe p,-1 .0
i=1 i=1

1 . 1
-4, i=1 -4,
Corollary 5.2. The number of non-equivalent linear skewing schemes
d . -
st Z—» Zy is bounded by O(Md 1 log log M).
Proof.

Let Qyseves q. be the first r primes. From number theory it is known

that there are constants d h S
s ¢, an c2 such that |1| ql 1 < 1.log q,. a and
¥ Pi r dj
q_ S CyeT log r. It follows that -lT < -IT = 0(log r). Clearly
T =1 Pitt T oy 487

< log M, and the result follows by substitution in the bound of theorem

T
5.1. 0
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