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Abstract. Uniform network emulations are a method to obtain efficient
and structure preserving simulations of large networks on smaller net-
works. There are two slightly different types of graphs, both realizing
Stone's concept of a shuffle-exchange network: the (classical) shuffle-
exchange graph and the 4-pin shuffle. We analyze the uniform emulations
both types of graphs allow, give a complete characterisation of the pos-
sible uniform emulations of the (classical) shuffleéexchange graph with
2n nodes on itself and on the U4-pin shuffle with 2n—1 nodes, and show
that the MFpin shuffle allows uniform emulations in instances where the
(classical) shuffleéexchange graph does not.,

1. Introduction. Parallel algorithms are normally designed for execu-

tion on a suitable network with N processors, with N depending on the
size of the problem to be solved. In practice the size of the processor
network will be small and fixed whereas the size of the problem will be
large and varying. In [3] Fishburn and Finkel introduced the concept of
network emulation to obtain an efficient and structure preserving simu-
lation of larger networks. An extensive analysis of this concept was
made by Bodlaender and van Leeuwen [1,2]. In this paper we will study
the notion for two slightly different types of networks, both realizing
Stone's concept of a shuffle exchange network [4].

¥ This work was supported by the Foundation for Computer Science
(SION) of the ©Netherlands Organisation for the Advancement of Pure
Research (ZWO).
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Definition, Let G = (VG,EG) and H = (VH,EH) be networks of processors
(graphs). We say that G can be emulated on H if there exists a function
G f(g) = f(g') or
. The function f is called an emulation function or, in

f: VG »> VH such that for every edge (g,g') € E
(f(g),f(g")) € Ey

short, an emulation of G on H.

Clearly, emulation between networks is transitive. We shall only be
interested in surjective emulations f,

Let f be an emulation of G on H. Any processor h €& \J
") in G. When g & ot

information to a neighbouring processor g', then h must communicate the

must actively
emulate the processors & f (h) communicates
corresponding information "internally", when it emulates g' itself, or
to a neighbouring processor h' = f(g') in H otherwise. If all processors
act synchronously in G, then the emulaton will be slowed by a factor

proportional to maxlf’1(h)|;
h

Definition. Let G,H and f be as above. The emulation f is said to be
(computationally) uniform if for all h,h' & Vy : |fp1(h)| = |f—1(h')|.

Every uniform emulation f has associated with it a fixed constant e,
called the computation factor, such that for all h & V, : |f'1(h)| = c.
It means that every processor of H emulates the same number of proces-
sors of G. Again, uniform emulation between networks is transitive. When
G can be uniformly emulated on H, and H can be uniformly emulated on G,
then G and H are necessarily isomorphic.

For graphs A,B, let A[B] denote the composition of A and B.

Lemma 1.1. [1] G can be uniformly emulated on H if and only if there

exists a graph G' such that G is a spanning subgraph of H[G'].

Stone [4] proposed a network, called the shuffle exchange network, which
has been successfully used as the interconnection network underlying a
variety of parallel processing algorithms. However, there are two
slightly different types of graphs, both realizing Stone's concept of a

shuffle exchange network. We will use the terminology of [3] and call
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these graphs the shuffle-exchange graph* and the 4-pin shuffle, respec-
tively. The nodes of the shuffleéexchange graph and the U-pin shuffle
are given n-bit addresses in the range o..2n—1. In the shuffle~exchange
graph there is an edge from node b to node ¢ if and only if b can be
"shuffled" (move the leading bit to tail position) or "exchanged" (flip
the tail bit) into c¢. In the 4~pin shuffle there is an edge from node b
to node ¢ if and only if c can be reached from b by a shuffle or by a
shuffle followed by an exchange. Computations proceed by iterating the
networks some n or more times in a synchronized manner. We use the nota-
tion SE_ and S to denote the shuffle-exchange graph and the 4-pin shuf-

fle, respectively, with 2n nodes.

In [2] the problem to decide whether a connected graph G can be uni-
formly emulated on a connected graph H was shown to be NPFcomplete, even
if various additional restrictions are imposed upon G, H and/or the com~
putation factor, For instance the problem is NP~-complete, if H is
required to be a shuffle-exchange graph or a U-pin shuffle, and the com~

putation factor ¢ is a fixed constant with ¢ 2 15 or c27, respectively.

An important question is whether (large) networks of some class C can be
uniformly emulated by networks of a smaller size within the same class
C. Fishburn and Finkel [3] showed that such emulations exist for the
following classes of processor networks: the (4~pin) shuffle~exchange
network, the grid-connected network, the n-dimensional cube, the plus-
minus network, the binary 1lens, and the cube~connected cycles. (The
definitions of these networks can be found in [3].) In [1] a detailed
analysis was made of the possible uniform emulations of the (4~pin)
shuffle exchange, the n-dimensional cube, the ring and the grid-

connected network.

Fishburn and Finkel [3] showed that every shuffle-exchange graph

and U4-pin shuffle can be uniformly emulated on a 4-pin shuffle with a

* Warning: in [1] the term shuffle-exchange graph is used to denote
the 4-pin shuffle,
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smaller number of nodes. However they did not examine the question
whether the shuffle-exchange graph can be uniformly emulated on the
shuffle~exchange graph of smaller size. We conjecture that SE ~ can be
uniformly emulated on SE_ if and only if k|n or ks2.

The main results of this paper are the following: we give a complete
characterisation of the uniform emulations of SEn on Sné1 and of the
graph isomorphisms of SEn’ and show there exist uniform emulations of
SE, on SE, if k|n or ks2, and no uniform emulations of SE on SE 1 for
n2h,

The paper is organized as follows. In section 2 we give some prelim-
inary definitions and results and recall some results from [1]. In sec-
tion 3 we examine the uniform emulations of SE on Sn 1. In section U4 we
examine the uniform emulations of SEn on SEk’ for ksn. In section 5 we

briefly discuss the results obtained.

2. preliminaries. First we introduce some notations:

a bit that can be o or 1
the complement of bit o (o=1,7=0)

the n-bit address b1 eoe bn

the address one obtains by complementing every
bit Of b (b ... n = b1ooob )

bl, b1... (truncation after the i bit)

ML ...b, (truncation "before" the 1% bit)

i
(), : b (the 1™ pit)

i i

ol o al-=lo

th

For functions f defined on n-bit numbers b we use:
£,(b) : (£(b)), (projection on the 1™ pit).

We use b,c,.. to denote full addresses and X,y,.. to denote segments of
bits. Individual bits are denoted a,B.. .

Definition. The shuffle-exchange network is the graph SEn = (Vn,ﬁn) with
v {bieeeby | visisn b, = 5 } and E = {(b,c) | b,c & v and ((¥2sisn

b, = ¢y 4 ADby = c ) or (V1sisn-1 b, = ¢c; Ab, = c )}. The l-pin shuffle
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network 1is the graph S = (Vv ,E) WwithE = { (bye) | b,c €& v, and

V2sisn b, = ¢ }.

i i-1

It follows that in SE_ a node b eesb is connected to b....bD Db and
n 1 n 2 n1

b1"°bn41bn’ and in Sn it is connected to b2...bno and b2...bn1. The

fact that Sn and SEn can be {uniformly) emulated on Sn41
every Sk (k<n) derives from the following observation, using lemma 1.1,

(Compare [3], theorem 1 and 2). Let K2 denote the complete graph on two
nodes.

and, hence, on

Lemma 2.1. (a) [1] S is a spanning subgraph of Sné1[E2]’ for n21.
(b) SE_ is a spanning subgraph of Sn¥1[E2] for n21.

. R ® t . X
Consider the mappings h : Sn *> Sn—1[K2] and h' SEn > Sn—1[K2]

defined by h(b1;;bn) = h'(b1;;bn) = <b1'..bn 1%, >. h,h' are clearly 1-1
and onto the set of nodes. One easily shows that h,h' are embeddings of

Sn’SEn respectively., O

From [1] we recall the following facts and definitions about emulations
of the U-pin shuffle,

Lemma 2. 2 (1](a) f is an emulation of S on S i if and only if for all
x & (9)“ Lye Y 1 and a8 6 (D ¢ if £(ax) = By then (f(x0) = By
or f(xo) = y—) and (f(x1) = By or f(x1) - y—)

(b) f is emulation of S on S if and only if for all x

%
€ (2)n 1, y € (°)n k=1 and a,B € ( 2y : if f(xa) = yB then (f(ox) = yB or

f(ox) = —y) and (f(1x) = yB or f(1x) = —y)

Definition., [1] A mapping g : Sn »> Sn K is called step-simulating (or a
step*simulation of S on S : ) if and only if for all x & (g)n 1 y €

7" and o,8 6 (-), it £on) - 8y then f(xo) = y2 and £ = YT

Lemma 2.3. [1] Every step~simulation of S, on S, is an emulation.

n—k
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Lemma 2.4. [1] Antf?pping g:S S

for all x € (%) , Y€ (%)“’ ~1 and 8 €& (%) . if f(xa) = yB then f(ox)
= %y and f(1x) = %y.

"i{s step~simulating if and only if

Theorem 2.5. [1] Every uniform emulation of Sn on Sn_1 is step~

simulating.

proposition 2.6. [1] For every n, sn admits only the following two graph

isomorphisms : g : g(X) = X,

and g : g(x) = x.
The following fact follows directly from the definitions.

Lemma 2.7. (a) f is an emulation of SE_on SE __, if and only if for all
b e (D vy & (-‘13)“’k if £(b) = y then {f(b,...bby),
f(b1“'bn-1bn)} oy, Yi+ Y1 y2...yny1}.

(b) £ is an emulation of SEn on Sli:n,1 if and only if for all b
e Ny e (-‘1-’-)"’k . if f£(d) = y then { f(b b ..b ),
f‘(b1"‘bn—1bn)} S{¥s ¥qeesVpq¥pe yny1...yn,1}. °

n-1

For a mapping f, define its companion T by ?1(b) = fiib).

Lemma 2.8. If f is an emulation of S onS, (or of S on SE , SE_on S, ,
— _ n K n K n K
SE, on SEk), then so if f.

In this paper we will use the notation (o1)* and (10)*¥ to denote a
string consisting of a number of repetitions of ol and 10, respectively.
With (o1)*[o] (resp. (10)[1]) we denote a string consisting of alternat~-
ing o's and 1's, starting with a o (resp. 1). The exact length of these
strings will not be explicitly specified, but will always be clear from
the context. For b,c € (-?—)n we denote by d(b,c) the shortest distance of
b to ¢ in the graph SEn.

3. Uniform emulations of SE_on S . In this section we examine the
N1 |

uniform emulations of SE on S _,. (Compare lemma 2.1Db).
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Lemma 3.1. Let £ be a uniform emulation of SEn on Sn—1 with for all x €

(g)n V. f(x0) = f(x1) Then

(a) for all b & (I f(b ...b ) = b1”'bn41’ or

(b) for all b & ()" f(b1...bn) =%,..5,
Proof.

Define g : S _4 * Sn—1 by g(x) = £f(xo0). g is uniform, (i.e. 1-1),
because if there exist X, * X, with g(x ) = g(x ), then f(x 0) = f(x 1)

= £(x, o) = £(x, 1) and f is not uniform. Also g is an emulatlon of Sn—1

on 8 Suppose g(x) = y. Then f(x0) =y and f(x1) = y, hence f(ox) =

n-1°

y or f(ox) = Ty1...yn;2, and f(1x) = y or f(1x) = 80

1y1"ynr2’
o) = f(ox1;;.xn_2o) € {y,%y1...yn_2} and g(1x1...xn?2) =
f(1x1...xn 20) € {y,1y1...yn 2}. A uniform emulation of S _, on S 1
necessarily 1is a graph isomorphism. We now use proposition 2. 6 : either
for all x €& (2 o1 g(x) = x or for all x € (9)n 1
is the case, then for all b € (—) f(b) = 1"’bn?1’ and if the latter

is the case, then for all b € (T) £(b) = 31...bn;1.

g(ox1...x

g(x) = X, If the former

ju]

Lemma 3.2. Let f be an emulation of SEn on Sn 1° Then for all x € (9-)n !

: f(xo) = f(x1) or { f(xo),f(x1) } = { (o1)*[0],(10)*[1] }.

If f(xo) = £(x1) then f(xo) and f(x1) must be adjacent nodes, con-
nected by edges in both directions, The only way to realize this in Sn—1
is to map the nodes f(x0),f(x1) onto the nodes of the set {
(o1)*[0],(10)*¥[1] }. O

Lemma 3.3. Let f be a uniform emulation of SEn on Sn‘ and let n be

~1°
odd. Then for all x & (g)n VL f(x0) = £(x1).

Suppose the lemma does not hold. Then, by lemma 3.2, there is a x &
™" such that { £(x0),£(x1) } = [ (o1)¥, (10)* }.

Now suppose f((o1)¥o) & { (o1)%,(10)* }. Then by lemma 3. 2 £((o1)*1)
= £((o1)*0). If f((10)*0) = £((10)*1) then f((o1)¥o) can reach itself by
performing two shuffle-exchange steps note that (f((01)*0),f((10)*0)) €
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Sn—1 and (f((10)¥1),f((01)%1)) € Sn41’

£f((10)*0) = £((10)*1) and £((01)*1)=f((01)*%0))), which forces f((o1)¥0)
6 (™1™, (o)*,(10)* 3. If f£((o1)*0) = a ' = £((o1)*1), then
f(o(o1)*) = £(1(01)*) = Ea?’z (use uniformity of f). If n = 3, then, by
lemma 3.2 f(o(o1)*) = f£(1(o1)*) = f(o(o1)*00) = f(1(o1)*00), which con~

tradicts the uniformity of f. Is n = 3 then one obtains a contradiction

due to the uniformity of f, and

by successively deriving that f(o01) = f(101) = aa, so f(ooo) = £(100) =
oa, and £(110) = oa (use uniformity of f). So f((o1)¥o0) & {(o1)¥,(10)*}.
Contradiction. If f((10)*%0) = f£((10)*1), then, because of lemma 3.2,
£((10)*1) € { (10)%,(o1)* }. Without loss of generality one may Suppose
£((10)*¥1) = (10)*, f((10)*o) = (ol1)*. Then f((o1)*0) = o(ol1)¥,
f((01)*1) = o(o1)* and f(1(o1)*) = %o(o1)*o; Contradiction. So f((o1)*0)
e { (o1)%,(10)* }.

In the same way one can prove £((10)%1) € { (o1)¥,(10)* }. We have
now : ~1( {(01)%,(10)*} ) = { (o1)*0,(01)¥1,(10)*¥0,(10)*1 }. From the
assumption there is a x € (-9-)n ! with { £(x0),f(x1) } = { (o1)¥,(10)* }

now follows that one of the following cases must hold : I.f({o1)¥0) =

(01)* A £((01)*1) = (10)*; II.f((o1)¥%0) = (10)* A f((o1)*¥1) = (o1)*;
ITI. f((10)¥1) = (o1)* A f((10)*0) = (10)*; IV £((10)*1) = (10)* A
£((10)%0) = (o1)*. We will only handle case I; the other cases are
similar,

So suppose f((o1)*0) = (o1)¥ and f((01)¥*1) = (10)*., With downward
induction on k we prove : for all x €& (-9-)n ~2k=2 there isa y € (-9-)]’1—21("3

such that f((o1) oox) = (01) ooy. First we prove this fact for n—2k—2 1
i.e. k=%(n-3). f((o1)¥0) = (o1)* =f(0(01)*) = o(o1)*o = f(o(o1)¥*00) =
o(ol1)*%o =>f((o1)*oo—) = (01)*00 (use lemma 3.2 and the uniformity of ).

Now let the proposition be true for a certain k. f((o1) oox) = (01) ooy,
so f(1(o1) oox—) = (10) 1ooyT. (Notice that f((o1) oox) =
f((o1) oox1...xn - o3 %n- 2k 2), and due to the uniformity of f one gets

f(1(o1)k 1oox1°) + f{(o1) oox). Using basically the same argument one

proves f((o1)k’1oox$$) = (01)k ooy11, thus completing the inductional
proof of the proposition,

In particular we now have £( {oox | x € (°)n 2} )= { ooy | vy €
(™3 3. Now £((o1)*1) = (10)* —>f((1o)*_11o) = (o1)*00. With downward

)(n—2k—3)/2)

induction on k we prove f((10) 110(1 = (o1)kooy, for some y
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o.n-2k-3
€ ( ) . We already proved this to be true for k= (n—2k—3)/2 Now let
it be true for certain k. Notice f((1o) 110(10)*) f((10) 110(10)*11),
S0 f(o(1o) 110(10)*1) = f£((10) 110(10)*), so f(o(10)*110(10)¥1) =

1(01)k ooy'! for some y' € (o)n - 2k=2 Using the same type of argument
one proves f((1o) 110(10)*) (01)k ooy'' for some y" € (g)n 2k—1.
This shows that £ '( fooy | vy € (°)n 3y Yo foox | x 6

0)n 2} U {110(10)*}, which contradicts the uniformlty of f. o

Lemma 3.4, Let f be a uniform emulation of SEn on Sné1' Let n be even,

Let f : SEq 7 Sy e defined by F((o1)*) = £((10)*%), F((10)¥) =
£((o1)*) and £(b) = F(b), if b & { (o1)¥,(10)* }. Then either for all x
€ (%)n 1 : f(x0) = £(x1) or for all x € (2)n 1 : f(x0) = f(x1). In the

latter case f is a uniform emulation function of SE ~on Snk1;

Note that f((o1)*) and f£((10)*) must be adjacent with edges in both
directions, or equal. If f((o1)*) = £((10)¥), then £((01)*00) = £((01)*)
by uniformity, hence { f((o1)*o0), f((o1)*) } = { (o1)*o,(10)*1 }, and
£((10)*¥11) = f£((10)*), hence { f((10)*11), f((10)*) } = {(o1)*0;
(10)%1}. If £((01)*) = £((10)*), then f((o1)*) and f((10)*) must be
mutually adjacent to each other, so { £((01)*), £((10)*¥) } = { (ol)*o,
(10)*¥1 }. In both cases one has fp1{(o1)*o, (10)*1} = {(o1)¥*, (10)¥%,
(o1)*00, (10)*¥11 }.

Now suppose there is a x € (-(2 n-1 such that f(xo) = f(x1). Then one
of the following four cases must hold : I. £((01)*) = (o1)¥*, f£((o1)*00)
= (10)*1, II. £((0o1)*) = (10)*1, f£((o1)*00) = (o1)*o0, III. f((10)*) =
(o1)*0, f£((10)%¥11) = (10)*1, IV. £((10)¥) = (10)*%¥1, £((10)11) = (o1)*o.
We will only examine case I; the other cases are similar.

So suppose f((o1)*) = (ol)*o, and £((o1)*00) = (10)*1. Note that, due
to the uniformity of f, f(o(o1)¥o) = (o1)*o and f(o(o1)*0) = (1o)*o, soO
f(o(o1)*0) = 1(10)*. Now f(o(o1)*1) = 1(10)*, f£((o1)*¥10) = (10)¥o and
£((01)*%¥11) = (10)*0o. So f((10)*11) = (01)*%0, and f((10)*) = (10)*1.
Notice that (10)* is only adjacent to (o1)* and (10)*11, and (o1)* |is
only adjacent to (10)* and (o1)*oo in SEn; each of these nodes is mapped

to the set { (o1)¥o0,(10)*1 }, so f is also an emulation function. It 1is
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o,n~1

easy to verify (using lemma 3.2), that for all X € ) f(xo0) = £(x1),

and that f is uniform. o

Theorem 3.5. (Characterisation Theorem).
(a) If n is odd, then every uniform emulation of SEn on S is one of

n~1
the following list:
f f(bl...bn) =b,...b
(b) If n is even, then every uniform emulation of SEn on Sn—1 is one of
the following list :

f : f1(b1...bn) b..seD

1 ~ e _1“__p41

£, f1(b177ibn) = Byeeebp |

f2 f2(b1...bn) = b1...bn'_1 if be { (o1)%,(10)* }
f2((01)*) = (10)*1
f2((o1)*) = (01)*o

£, Eg(b1"'bn) =Db...b_, iIf b8 { (o1)*,(01)* }
f2((o1)*) = (o1)*o
?2((10)*) = (10)*1.

Proof.

(a) Use lemma 3.1 and 3.3.
o\n~1

(b) Use lemma 3.4. If for all x € (—) f(xo) = f£(x1), then f is of
the form f or f1 (use lemma 3.1). If for all x & (g)n ! f(xo) = f(x1),

then f is of the form f1 or f1, so f is of the form f2 or f2. o

4. Uniform emulations of SE_on SE _(ksn).

Proposition 4.1. For n2t, SE, admits precisely 2 graph isomorphisms.

If n=1,2, verify directly.

Let n23. Clearly g, defined by g(b) = b and g, defined by gb) = b
are isomorphisms; Suppose there is yet another isomorphism of SEn’ é.
Define h(b) = é(b)ln;1; h is a uniform emulation of SE on S _,. We use
theorem 3.5 and consider 4 cases :



Case I : for all b & (—) : h(b) = b1...b .

Because g * g, there must be a b with g(b) = b1"‘bn—1sn' Now

o -
g(b b1...b ) =Dd b ...bn_2 must be adjacent ?o b1"'bn—1bn in SEn‘ So

b1"'bn = a, for some o € (—), and g(a ) = o 'a. Now note that the
outdegree of an is 1 and the outdegree of an—1a is 2 in SEn, 30 é is not
a graph isomorphism. Contradiction.
Case II : for all b & ()7 : n(d) = B ...B ;.

This case can be handled in the same way as case 1.
Case III : n is even, h(b) = b1"'bn—1 if b € {(01)%,(01)*}, h((o1)*) =
(10)*1, h((10)*) = (o1)*o.

If there is a b with é(b) = b1...b b , then we reach a contradic-

tion 1in the same way as in case 1. Sg—le may suppose g(b) = b for all b
€ { (o1)*,(10)* }. So g((o1)*) = (10)*, g((10)%¥) = (o1)*, and now
g((01)*) is not adjacent to g((o1)*00). Contradiction.
Case IV : n is even, h(b) = 31"'Sn—1’ if b€ { (o1)*,(10)* }, h((o1)*)
= (o1)*o0, h((10)*) = (10)*1,

This case can be handled in the same way as case 3. It follows that

there are no other graph isomorphism of SEn but g and E. a

Theorem 4,2. Let k,nz2t, kln. Then the function f, defined by fi(b1"'bn)
n/k-1

= ( jfo bj.k+i) mod 2 (i=1, ..,k) is a uniform emulation of SE:n on SEk.

By verifying that f (b ... ) = £,(by.eb b)) for i = k and that
f (b ...b ) = f (b ...b b ) for i= k and f (b ...b ) = f (b ...b b )
one proves that f is an emulation of SE on SE . If X and y e SE differ
oE}y in the 1'th_?1t positioE; then £ ' (y) = (b eeedy 1 LIJPRERL | v €
£7'(x) ¥, so | £ (x) | = |f (y)|. With induction one now can prove
that for all x,y € (-?)k |f'1(x)| = |f’1(y)|, so f is uniform. O

Proposition 4.3. Let n22. Then SEn can be uniformly emulated on SE2.
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If n is even, then use theorem 4.2.

Let n be odd. The graph SE, is shown in fig. 4.1.

2,

(XXX

fig. u4.1, SE2

Let £ be a mapping of SEn on SE,. We will show that f can be chosen such

2
that f is a uniform emulation. We first want f to fulfill the following

conditions :

n

oif I b, < +n
i=1

f1(b1...bn) =

n

1 1if I bi > 4n
i=1

f maps one half of the nodes of SEn on {00,001} and the other half on

n

{10,11}. We can choose f in such a way that every string with I bi =
n i=1

|[4n] and b_ = o is mapped to ol and every string with I b, = [4n] and
i=1

bn = 1 is mapped to 10 and f is uniform. We show that f is an emulation

of SEH on SE2: If b,b' are adjacent in SEn’ then there are four cases
n
I. I b, S |4n|and £ b,' S [4n], then b, b' are mapped to nodes in
i=1 ) ni=1 n
the set {oo0,01}; II. © b, s |4n] and © b,' 2 [4n], then necessarily
i=1 i=1
: n=1
b=x0 and b'=x1 for some x 6(-?-)n " and : X; = |[#n], so b is mapped upon
a1 i,
ot and b' is mapped upon fo; III. I b, 2 [4n], and T b,' < [4n];
i=1 n i=1 n
this case 1is similar to case II; IV. I b, 2 [4n] and I b,' 2 [4n],
i=1 i=1
then {f(bi),f(bi') } € {10,11}. So f is a uniform emulation of SE, on

SE2. n]
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For choices of n and k other than k|n and k2 there are presently no
uniform emulation functions of SEn on SEk known. We conjecture that for
n,k>2 with nd>k, k{n, no such function exists. The following results show
that the conjecture is at least plausible. We show that from a uniform
emulation of SE on SE, with n>k>2 and kin, an emulation function of
S

on S can be derived, that is uniform, but not step-simulating.

P?e;ently ng ;unctions of this sort are known. We also show that for
n2l, there indeed are no uniform emulations of SEn on SEn—1'
Lemma 4.4, Let f be an emulation function SE SE (n,k21).
(a) If k is odd, then for all x & (51’-)“"1:1‘(xo)|k__1 = £x1) |,y
(b) If k is even, then for all x & (-‘13)"'1
{f(x0),f(x1)} = { (o1)¥,(10)* }.

£(xo)|,, = f£GD| _, or

f(xo) and f(x1) must be adjacent or equal, o

Lemma 4.5. Let f be an emulation of SEn on SEk (n,k22). Let ¢y be a func-
tion (-1"-)"'1 > (. Let g : S _, 8 _, be defined by g(x)= £(x v |, _,
(for all x & ()™ |

T ). Then g emulates Sné on s, _

1 1°

We first show that 8(¢(X)(x|n.2)) is adjacent to g(x). Let g(x)
Y. Then f(xyp(x)) = y% , S0 F(Yp(x)x) = y% or f(Y(x)x) = %y; If X1
PO (x| ), then g(w(x) (x| _)) =y or gv(x) (x|, = Tl ),
and adjacency is proved. If Xy = w(w(x)(x[n;z)) then either
£ (x| o, = f&] O], or £(p(x) (x| _5)0),
F(p(x) (x| )1} = {(o1)¥%,(10)*}. (In the latter case k must be even.)
In the former case 8(¢(X)(xln;2)) e {y, %(ylk_1)}, and adjacency fol~
lows., In the latter case g(w(X)(xln;2)) & {(o1)*0, (10)*¥1}, and f(yp(x)x)
€ {(01)*%,(10)* }, hence f(xyp(x)) € {(01)*, (10)*, (ol1)*oo, (10)*¥11} and
g(x) &€ {(o1)*0, (10)*1}, and adjacency follows again.

Next we verify that g(¥(x)(x|_-.)) is adjacent (or equal) to g(x).
n-2

Let g(x) = y. Then f(xy(x)) = %. If f(XW(X))Ik;1 = f(xw(x))|k_1, then

fP(x)x) = y% or f(y(x)x) = %y and the argument can proceed as in the



first part of the proof. So suppose {(f(xy(x)), F(xp(x)} = {(01)%,(10)*}.
Now g(x) &€ {(o1)*0,(10)*1} and f(p(x)x) €& { (o1)%,(10)¥, (o1)*o0,
(10)%11}. Hence f(P(x)(x| _,) v(W(x)(x]| _,))) €& {(o1)*,(10)*, (o1)*oo,
(10)*11} and g(ETiT(x|n;2)) € {(o1)*0, (10)¥1}. Adjacency now follows
again. 0O

Lemma 4.6. Let f be a uniform emulation of SE on SEk (n>k). There
(9-)n ! (T)’ such that the function g, defined by g(x) =

f(xw(x))lk_1 is a uniform emulation of S _, on S, ..

exists a ¢ :

Lemma 4,5 shows that g is an emulation for every choice of y. So we

have to show that y can be chosen such that g is uniform. If k is odd,

then any ¢ : (g)n LN (%) will do. Suppose g is not uniform. Then there

is an x € (o)k 1 with |g’1(x)| + 2% one has g(b) = x<=f(by(b)) €

{xo,x1}<:>f(b¢(b)) € {x0,x1} (use lemma 4.,4.), so |f~1({xo,x1})| =

2.|g-1(x)| » 27 %1 5o £ is not uniform. Contradiction.

Now suppose k is even. For every x € (9-)n 1 with f'(xo)|k =
f£(x1)|,, we can choose ¥(x) arbitrarily. Let X = {x € ( )" |
F0) |,y * £ ]} = xe DT {r(x0),£(x1)) = (o), (103411,

There must be an even number of X with {f(xo0),f(x1)} {(01)*,(0o1)*00},

else there would be an odd number of nodes mapped upon (o1)¥oo. Likewise

[}

there must be an even number of x with {f(x0), f(x1)} = {(10)*,(10)*11}.
Hence there must be an even number of x with {f(xo),f(x1)} =
{(o1)¥,(10)*}. [X| is even. Choose X ,X, < X, such that X |=[X,],
X, UX, =X, X, 0 X, = 0.) For x €& X, we choose ¥(x), such that £ (xyp(x))
= (o1)*, (This is possible, because {f(xo0),f(x1)} = {(01)%*,(10)*}. For x

€ X2 we choose y(x), such that f(xy(x)) = (10)*, Now g is uniform. For y
€ {(oh)*o, (10)¥1}, g(b) = y<&>{£(bo),f(b1)} & {yo,y1}, so 2" <! -
|f’1({yo,y1})| = 2|gp1(y)|, and |g'1(y)| - 2K, 1r g(b) = (ol)*¥o, then
either b & {x| {f(x0),f(x1)} < {(o1)*, (o1)¥00}} = Z or b € X,. If
g(b) = (10)*1, then either b & {x|{f(x0), £f(x1)} < {(10)¥%, (10)*¥11}} =
22 or b & X,. Finally notice that |z,| = |Z,] and X, 1=1x%, | Hence
lg ({(o1)*o})| = Ig ({(10)¥1})|, which shows that Ig (y)| = 2%, for

all e(°)k 1
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Lemma 4.7. Let f be an emulation of SE_ on SE, and let f be surjective¥,

Let n2k23 and k J n. Let ¥ be a function (9-)n L (%), and let g be the
emulation of Sn41 on Sk¥1 defined by g(x) = f(xw(x))lk’1. Then g is not
step-simulating.

Suppose g is step~simulating. We use the notation Rl(b) to denote
the string obtained by rotating b 1 bits to the left, i. e. Rl(b1...bn) =
: k 2
b1+1"'bnb1"b1' Let f£(b) = 11 for certain b € (—)
With induction we prove : for all l o§1<n f(R (b)) = R (f(b)). For 1
= o0 this is trivially true. Suppose f(R (b)) = R (f(b)) for certain 1,

Then f(Rl(b))In_1w(R1(b))) = R (f(b))|k 1° (notice that RI(£(b)) &
g 1is step~

3
{(01)%,(10)*}), hence g(R (b)] = R (f(b))lk -1

31mu1ating, so g( |R (b)) = |(R (f(b))lk : — and £(,|R™(b) (v ( |Rl(b))))
- I(R (f(b))lk 1 ? ? . Notice that for even k f(RT (b)) =

£ ( IR (b)R L)) e {(o1)*, (10)* }, because £(RY (b)) must be adjacent
to t(RL(b)) = Rl(ok 211) in SE,» S0 r®M (o)) = £, [N (b)R, (b))
|(R SACHI D! 1 T and, because f(R 1(b)) is adjacent to f(R (b)),
f(R1+1(b)) - 2|(Rl(f(b))|k 1)R (f(b))R (£(0)) = &Y™1(£(b)). This com-
pletes the inductive proof.
In particular we now have £(R™(b)) = R™(£(b))=>Ff(b) = R (£(b)) =k|n,

contradiction, O

The lemma indicates that it is not very likely that for kin and n>k23
there exist uniform emulations of SEn on SEk’ and that if they do exist,
they will probably not have a nice structure. Presently no uniform emu-
lations of Sn on san are known that are not stestimulating. As a
corollary we have:

Theorem 4.8. There exist no uniform emulations of SEn on SE

n—1° for n24.

* Note that every uniform emulation function is surjective.
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Suppose there exists a uniform emulation of SEn on SE for some

n-1’
n24. Then, by lemmas 4.5, 4.6 and 4,7 there exists a uniform emulation

of S, on that is not stepFSimulating; This contradicts theorem

n—1 Spe2?
2.5. ©

5. Discussion. The U4-pin shuffle with 2" nodes can be emulated on the
4-pin shuffle with oK nodes for all k €& {0, ..., n}, whereas the
shuffle-exchange network with 2n nodes cannot always be emulated on
smaller shuffle~exchange networks. This indicates that from the (impor-
tant) viewpoint of emulation the 4-pin shuffle is preferable over the
(classical) shuffle-exchange network.
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