PARALLEL TURING MACHINES

Juraj Wiedermann

RUU-CS-84~11
November 1984

Rijksuniversiteit Utrecht

Vakgroep informatica

Budapestlaan6 3584 CD Utrecht

Corr. adres: Postbus 80.012 3508 TA Utrecht
Telefoon 030-53 1,5 4

The Netherlands

PARALLEL TURING MACHINES

Juraj Wiedermann

Technical Report RUU-CS-84-11
November 1984

Department of Computer Science
University of Utrecht
P.0.Box 80.012, 3508 TA Utrecht
the Netherlands

PARALLEL TURING MACHINES*
Juraj Wiedermann
VUSEI-AR, Dubravska 3, 842 21 Bratislava

Czechoslovakia

Abstract:

A new model of parallel computation - a so called Parallel Turing
Machine (PTM) - 1is proposed. It 1is shown that the PTM does not
belong to the two machine classes suggested recently by van Emde
Boas, 1i.e., the PTM belongs neither to the first machine class con-
sisting of the machines which are polynomial-time and 1linear-space
equivalent to the sequential Turing Machine, nor to the second
machine class which consists of the machines which satisfy the
parallel computation thesis. Further the notion of a pipelined PTM
is introduced and the "period" is defined as a complexity measure
suitable for evaluating the efficiency of pipelined computations,
It is shown that to within a polynomial factor period on a PTM is
equivalent to space on any first class machine, or to time on any
second class machine. The close similarity of PTM to S8sequential
Turing machines enables us to prove also the existence of universal
PTM, which can simulate every other PTM in linear time. Finally it
is shown that every one~tape PTM can be efficiently realized using

systolic arrays.

1. Introduction.

There exist quite a number of different parallel -computer

¥This work has been supported by the Czechoslovak Research Pro-
ject 1I-5-7/01 and was completed during a stay at the Department of
Computer Science, University of Utrecht, the Netherlands (Fall
1984).,

models. The most attractive feature of these machine models is
their extreme time efficiency when compared to the usual sequential
models: all of them satisfy a so called parallel computation thesis
(see e.g. Cook, 1984) which states that time on a parallel machine
is polynomially related to space on a sequential machine. Thus
parallel machine models are, 1in fact, joined by the above thesis
into a family, which has been recently introduced by van Emde Boas
(1984) as the so called "second" machine class.

The unusual power of second machine c¢lass models, which
yields exponential speedup in some cases, stems from their unique
capability to activate an exponential number of processors in poly-
nomial time. However, this phenomenon is realistic only for limited
size problems, or for a limited number of processors, where, more-
over, the speed of information transmission among them can be
assumed to be infinitely fast. In all other cases, 1i.e., when the
realistic asymptotic complexity is to be analysed, the realistic
cost of communication, most notably the finite speed of information
transmission and the non-empty volume of individual processors, must
be taken into account.

By similar ideas Chazelle & Monier (1983) and Schorr (1983)
proved that it is in fact impossible for a real parallel computation
machine to be more than polynomially faster than a sequential
machine, since the latter can simulate the former with only polyno-
mial loss in time efficiency. Since this principal limitation of
parallel computers 1is not reflected in members of second machine
class, by its very definition, it is obvious that the question of an
adequate realistic model of the universal parallel computer is still
open.

In this paper a candidate for such a model - a so called
Parallel Turing Machine (PTM) - is presented. In Section 2 we shall
introduce the model of a PTM as a generalization of the usual
Sequential Turing Machine (STM). After discussing some modifications
of the PTM in Section 3, we will further investigate the relation of
PTM to the first and the second machine class in Section 4. 1In par-

ticular we show that every PTM can be simulated by a STM in

..3;.

polynomial time, which means that the PTM does not belong to the
second machine class. Thus at most a polynomial speedup over the STM
can be expected, which 1is 1in good agreement with basic physical
laws. The class of machines which are polynomial-time and 1linear-
space equivalent to the STM was introduced by van Emde Boas (1984)
as the "first" machine class. We show that the PTM does not belong
to the first machine class either, since it cannot be simulated by
any STM in linear space. In Section 5 we first formalize the notion
of pipelined PTM and we introduce the periode as a suitable com-
plexity measure to evaluate the efficiency of pipelined computa-
tions. As a main result we show that for a pipelined PTM period sup-
plies, to within a polynomial factor, as such computational power as
space on any first class machine, or time on any second class
machine. This fact can be seen as an analogue of the parallel compu-~
tation thesis - a "pipelined computation thesis" - where the period
plays the role of time.

Thus it appears that the PTM belongs to some new, "one-and-
a-halfth" machine class, which lies somewhere between the first and
the second machine class, with its member being characterized by the
above pipelined computation thesis,

Finally, in Section 6, we show the existence of a universal,
"programmable" PTM, which can simulate any other PTM in linear time,
and in Section 7 we show that every one tape PTM can be efficiently

implemented using systolic arrays.

2., Parallel Turing Machines - a basic model.

Informally, a PTM is a set of identical STMs cooperating on
a single common tape. Moreover, the STMs which represent the indi-
vidual processors of the parallel computer, can multiply themselves
in the course of computation.

The PTM is formally defined similar to the single tape non-
deterministic Turing Machine (see e.g. Aho, Hopcroft, Ullman, 1974).

However, its behavior is defined quite differently.

-y =

DEFINITION 2.1.: A 1-dimensional 14tape deterministic Parallel
Turing Machine - or: a (1,1)-PTM for short - is a 6~tuple
M=(Q,T,I,68,q,,q,)

where

Q is the finite set of states,

T is the finite set of tape symbols,

I is the finite set of input symbols, ICST,

§ is the transition relation assigning to each element of
Qx(T~-{e})a subset of Q x (T x {L,R,S}),

q0 is the initial state,

qp is the final state.

There are two distinguished symbols in T-I: b is the blank
symbol, and e is the empty symbol. M works as a language acceptor as
follows. At every moment of the computation the machine M has one or
more active processors. Each processor has one tape head, and a
copy of the finite state control information. Thus all processors
follow the same transition relation. At any time each processor is
in exactly one state from the set Q. The processor in state qf is
called passive; otherwise it is active. Different processors can be
in different states. The tape is infinite to the right.

At the beginning of the computation the machine M has just
one active processor, which is in initial state qo and has its tape
head at the left and of the tape.

A string of input symbols (a word) is written on the tape,
one symbol per cell, beginning in the left most cell. All cells to
the right of the cells containing the input string are blank.

A computation step of M consists of the following activi-
ties, performed synchronously by every one of its active processors,
in parallel:

- the processor determines the value of the transition relation §
for the particular configuration ¢ represented by its state and by
the symbol scanned by its head,

- if for a given configuration ¢ the cardinality of &8(e¢) is greater

'..5;

than 1; the processor multiplies itself. As many copies are

created as there are elements in §(e); each copy of the processor

is added to M's collection and acts further as an independent pro-

cessor,

- in accordance with the value of &§(¢) a processor does the follow-

ing:

- it enters a new state; if the>new state is “final‘, the proces;
sor becomes passive.

= it rewrites the symbol scanned by its head. The empty symbol e
in T-I occuring in the range of § is interpreted as "write
nothing". A simultaneous write into the same tape cell Iis
allowed only if the processors are trying to write the same sym-
bol; otheryise the computation is not legal and its result is
undefined.

- it moves its head by one position to the left (direction L), to
the right (direction R), or keeps it stationary (direction 8).

Passive processors do not perform any activity.

DEFINITION 2.2.: An input word w € I*¥ is accepted by M if and only
if M, starting in state a5 makes a sequence of moves in which every
processor eventually enters the final state Qps not necessarily in
the same time. The 1language accepted by M is a set of words so

accepted.

Schematically a (1,1)-PTM is shown in Fig. 2.1.

Q) ooy {9y

processor in state Q

Fig. 2.1 A Parallel Turing Machine.

It is important to observe that the definition of PTM allows
not only for the creation of the processors, but in a sense also for
their disappearance: processors in the same state scanning the same
tape cell are indistinguishable and efficiently act as one proces-
sor,

Note also that the processors of a PTM are controlled by the
same ‘"program", i.e., each processor decides independently, regard?
less of the other processors, about its next move. Communication
among processors is achieved via message passing over the tape
cells. Since this is the characteristic feature of distributed
algorithms (van Leeuwen, 1983), the PTM can be seen as a model of a
distributed computer.

The complexity measures for PTM are defined similarly as for

sequential Turing Machine.

DEFINITION 2.3.:

(i) The parallel time PT(n) of a PTM M is the maximum number of
parallel computation steps made by M in processing any input
of length n, taken over all inputs of length n.

(ii) The space complexity PS(n) of M is the maximum distance from
the 1left end of the tape which any tape head travels in pro-
cessing any input of length n, taken over all inputs of length
n.

(iii) The hardware complexity PH(n) is the maximal number of

;7;

distinguished processors, which are active at the same time,
during the processing of any input of length n, taken over all

inputs of length n.

One more complexity measure - the period of computation -~
will be defined in Section 5.

EXAMPLE 2.1.: the (1,1)-PTM M with the transition relation given

in Fig. 2.2 recognizes palindromes on the alphabet {0,1}.

Symbol Current New New Head
scanned state symbol state move Comments
0 q0 e o0 R Starting processor: while not
w1 S scanning blank, generate a new
1 a, e 'y R working processor, remember
w, S in its state the first /and the last/
b qO b 9 S symbol scanned, and move right;
prepare for waiting; otherwise
halt in the accepting state
0 or 1 W e W, S Starting processor: wait
0 or 1 W, e W S steadily for 3 more steps,
0 or 1 w3 e q, R then move right and enter the
b w3 b qp S initial state qo if nonblank
is scanned; otherwise halt
0 oo 0 50 R Working processor: while not
1 40 1 o1 R arriving at b keep moving to
0] r11 0] 0 R the right and remember in its
1 L 1 P R state the first and the last
symbol scanned by the processor
0 o1 1 50 R Mnemonics: rij means "the first
1 o1 1 o1 R symbol scanned is i, and the last
0 10 0 r

10 R one is j"

- 8 -

Symbol Current New New Head
scanned state symbol state move Comments
1 10 1 11 R
b POO b] L Working processor: scanning b
b r11 b] L in state POO or r,, move one
0 or 1 8 b e S cell to the left and halt in the
final state
b o1 b t L Working processor: scanning b in
b L b t L in state o1 or T, move one
0 or 1 t b u .S cell to the left and halt without

accepting

Fig. 2.2.: The transition relation for PTM recognizing

palindromes

The idea is to subsequently compare every symbol from the left half
of the palindrome with the corresponding symbol from the right half
and accept if any only if all the comparisons are successful. All
the necessary comparisons are performed in the pipelined manner with
only constant delays, as follows: _

While not scanning the blank a single initial processor - called the
starting processor from now on - keeps moving by one cell to the
right in every fourth step; initially, and when arriving at a new
nonblank cell, it issues a so called working processor, which keeps
moving to the right at maximal speed. The working processor
remembers in its state both the value of a symbol scanned at the
moment of processor creation as well as that of a symbol scanned
when leaving the last cell. For every working processor issued the
following invariant is preserved: when arriving at the first blank
the two symbols memorized in 1its state are exactly those which
should equal each other, provided the input word is a palindrome
indeed. This 1is initially true for the first working processor,
since it starts from the first cell and the first blank occurs

immediately to the right of the 1last input symbol; For the

'.'.9_;

subsequent working processors the invariant is restored by subse-
quently rewriting, with the help of the immediately preceeding work-
ing processors, the right end of the palindrome by blanks. Each
working processor then halts in the legal accepting or in some ille-
gal nonaccepting state, depending on the outcome of the respective
symbol comparison, recorded in the processor state. The machine as a
whole halts when the starting processor ‘meets’, in the middle of
the palindrome, the first blank and no more processors are issued.
For details see the comments in Fig. 2.2. Note the processor mul-
tiplying in state qo and the nonéwriting of the starting processor
to avoid the possible write conflict /actually in state W, only/
with the returning working processor /in state s/ in the case of
inputs of odd length. The time complexity of M is PT(n)=2[n/2]+n+1,
the space complexity is PS(n)=n+1, and the hardware complexity is
PH(n)=[n/2]+1.

3. Modifications of the basic model.

Like in the case of STM's many modifications of PTM's are
possible.

First of all we will consider a multitape PTM, which 1is a
generalization of a single tape PTM much in the same sense as a
.multitape STM is the generalization of a single tape STM.

The tapes of PTM can be one dimensional, as in the Definition 2.1 of
the basic model, or in general they can be d-dimensional, for d > 1.
The resulting model is then called a multidimensional multitape PTM.
A d-dimensional k-tape PTM or STM will be denoted as (d,k)-PTM or
(d,k)-STM, respectively, for d21, k21. We shall not define these
models more formally, as the formalism is cumbersome and a straight-
forward generalization of notation for single tape one dimensional
Turing machines. In what follows we will frequently use the PTM also
as a transducer, i.e., as a device that computes a function on
strings. For this purpose the arguments of the function at hand are

encoded on a special read4only input tape, separated, if necessary,

;10:

by special markers. The result /the value of the function/ is writ-
ten on a special write4only output tape; The corresponding device
will be called an off-line PTM.

A separate input tape 1is wuseful not only for allowing
computations with sublinear storage requirements, but also in the
context of parallelism for allowing the efficient pipelining and
overlapping in time of subsequent inputs and outputs; especially in
the case of pipelined PTM (see Section 5).

The nondeterministic version of PTM will represent a further
modification of PTM. It is defined similar to the basic, determinis-
tic model of PTM from Definition 2.1,' except for the transition
relation, which reflects the fact that in the nondeterministic
machine each processor has a finite number of choices for the next
move. The nondeterministic PTM accepts its input if some sequence of
choices of moves leads each processor to an accepting state.

In Wiedermann (1983) still some further modifications of the
PTM have been investigated - namely the PTM with tree-like tapes and
the PTM where the activity of processors is globally controlled. We

will not pursue these topiecs here,

4, Basic Results.

In this section we will formulate the basic results concern-
ing the relation of parallel to sequential Turing machines. Subse-
quently the activity of Turing machines will be described in the

usual informal manner.

DEFINITION 4.1.: We will say that a Turing Machine M1 simulates a

Turing Machine M2 of time complexity T(n) in linear (polynomial)
time, if M1 simulates M, and is of time complexity O(T(n))

K 2
(0(T (n)), for k21 fixed).

- 11 -

A similar definition will be used also for space complexity
measure.

Now we can proceed to the description of the simulation of
the STM on a PTM. First of all it is clear that a (1,k)-PTM is at
least as powerful as the (1,k)-STM, since the latter machine is but
a special case of the former one. Next we shall show that even the

one-tape PTM is at least as powerful as the k-tape STM:

Theorem 4.1.: A(1,1)-PTM M, can simulate any (1,k)-STM M2 in linear

1
time and space.

Proof: The main idea of the simulation is to leave the heads of the
simulating machine M2 fixed and to appropriately shift its tapes
instead. Moreover, all k-tapes of STM must be represented on a
single tape of the PTM.

To do this we shall adapt the standard technique known from the
theory of STM - namely the division of M1‘s tape into several
tracks. Since several heads can attempt to rewrite the different
tracks of the same cell simultaneously and independently, it is
clear that we cannot straightforwardly use the trick of encoding the
k-tuple, representing one cell divided into k-tracks, into one sym-
bol. We must rather work with k-tuples explicitly all the time.

Hence we shall divide the tape of M, into groups of k cells so that

1
the i-th cell of the j—th group represents the j4th cell on i-th

tape of M2. The (equidistant) sequence of M

the i-th tape of M

1‘3 cells representing

> will be further called the i~th track of M2.
The activity of all STM heads is simulated by a single special head
of M1 which moves only within the first group of cells and remembers
in its state the current state of STM's control. Initially, and
after finishing the simulation of one STM's step the following
invariant on M1‘s tape is preserved: k cells of the first group con-
tain exactly those symbols scanned by the respective heads of M2.

This is achieved by shifting appropriately all the tracks by k cells

;12;

to the 1left, if the corresponding head of M, moves right and vice

2
versa.
Which track, how and when is necessary to be shifted is determined
by the aforementioned special head, which in k-steps scans its group
and remembers the contents of each cell in its state. Knowing this
information and the current state of M2‘s control it can decide now
how to rewrite the corresponding cells and in which direction to
shift the corresponding tracks, in accordance with M2‘s transition
rules.
The action of rewritig is performed by the special head itself and
for performing the shifts the power of PTM's parallelism is evoked.
For instance the left shift of the i-th track is performed in such a
way that the special head just scanning the i-th cell generates two
other workng heads /processors/: one of them is moving to the right,
shifting every k-th /nonblank/ symbol it encounters k-places to the
left, while the other working head is moving to the 1left, shifting
every k-th /nonblank/ symbol k-places to the left as well.
The right shift is performed in the analogous manner. After arriving
at the ends of the respective tracks the working heads enter the
final state.
Now it should be obvious that although one shift of some track need
not be finished yet, whenever the right cell of the M2 is shifted
into its proper position within the first group on M1's tape, the
next shift of the same track, in an arbitrary direction, can start.
The working heads corresponding to the different shifts of the same
track will never cross each other.
From the above description it follows that O(k) steps of PTM are
necessary to simulate one step of STM and hence the whole simulation
is performed in linear time.

It is also obvious, that the simulation runs in 1linear

space. O

A similar theorem can be proved also for higher dimensional PTM's.

;13.';

THEOREM 4.1. gives another way than that from Example 2.1 from Sec-
tion 2 how to contruct a (1,1)-PTM recognizing palindromes - namely
by a direct simulation of the corresponding (1,2)-STM, which works
in linear time. Notice also that quadratic time is needed by a
(1,1)-STM /Hopcroft, Ullman, 1969/ to recognize palindromes, which
means that a one tape PTM is actually more powerful then a one tape
STM.

In the next two assertions the basic relationship among the funda-

mental measures for PTM is described.

LEMMA 1.1.: For any (d,k)=PTM is holds that PT(n)=a(%/ PS(n))

Proof: It is obvious that in any direction the tape can be rewritten
first in the linear time. Since the minimal "storage diameter" in
some direction must be at least d/ PS(n) the result follows. O

LEMMA 4.2.: For any (d,k)-PTM it holds that PH(n)=0(PSo(1)(n))

Proof: In the given space at most the polynomial number /with
respect to the space size/ of processors, differing at least in
their state or in the symbols scanned or in the positions of their

heads, can be distinguished. O

The relationship between parallel and sequential Turing machines is

described in the following theorem:

THEOREM 4.2.: A (d,k)-STM M

nomial time ad space.

, can simulate the (d,k)-PTM M, in poly-

<1y -

Proof: For each parallel step of M1 the M2 adequately updates its
tapes where the corresponding instantaneous description of PTM /i.e.
the tape contents, states and head position of each processor/ 1is
represented; Newly emerging processors are continuously numbered in
order to keep track of which k-tuple of heads belongs to the same
processor.

From Lemma 4.2. it follows that the length of the intantaneous
description representation is of order 0(PS(n)+ PH(n).log PH(n))=
O(PSO(1)(n)), and as many updating passes over the tapes of STM are
necessary as there are processors which the PTM possesses in that
moment.

From Lemma 4.1. and 4.2. it follows that at most
PH(n)=O(PSO(1)(n))=O(PT0(1)(n)) updating passes are necessary for
simulating one parallel step of M1, which in total still gives a

polynomial time simulation. o

The results from Theorem 4.1. and L.2. can be expressed in
terms of relations between corresponding complexity classes. For

that purpose we introduce the following notation:

DEFINITION 4.2.: Let C denote a family of computational models, RES
a computational complexity measure. Then C-RES(F(n)) denotes class

of languages accepted by some member of C within F(n) units of RES.

DEFINITION 4.3.: For any C and RES,
C-POLY-RES = || || RES (en’)

iz1 c20

/

The next corollary follows from Theorem 4.1. and 4,2.:

-15;.

COROLLARY 4.2.1.:
(1,k)—STM4POLY-TIME=(1,k)-PTM;POLY-TIME
(1,k)-STM*POLY~SPACE=(1,k)—PTM—POLY-SPACE

Thus the classes of problems solvable in polynomial time or
space remain the same, irrespective of whether we use the STM or the
PTM in their definition. Moreover, the previous result says that
for the PTM the parallel computational thesis does not hold, since
the time complexity required to solve any problem cannot be reduced
more than by a polynomial factor by using PTM instead of STM.
Nevertheless, as argued by Schorr /1983/, the polynomial speed up
for parallel models is the best possible if the real, physical time
consumed by the real physical device is considered.

It is interesting to try to put the PTM into the classifi-
cation of computational models as introduced by van Emde Boas
(1984). According to his classification (see Section 1), the PTM
clearly does not belong to the second machine class since the paral-
lel computational thesis is not satisfied.

Since the first machine class is defined by the machines
which can simulate the STM in polynomial space and linear time, and
vice versa, and in Theorem 4.2. we have achieved only polynomial-
space simulation of a multitape PTM by the STM, it seems that the
multitape PTM does not belong to the first machine class either. But
to prove it we must show that in general the multitape PTM cannot be
simulated by the STM in linear space. And this is indeed the case,

as shown in the next theorem.

THEOREM 4.3.: There is a language L which can be accepted by a
(1,2)-PTM in constant space, but cannot be accepted by any (1,k)-STM

in less than Q(log log n) space.

Proof: Let L be the set of palindromes to be recognized by a two-

- 16 -

tape off-line PTM (i.e., one of the two PTM tapes is read-only tape,
containing the input string). A palindrome can be recognized by a
PTM as follows: at the starting position, the single PTM remains
stationery, but multiplies itself and sends the head of another pro-
cessor to the right end of the palindrome. The second head of the
moving processor remains stationary, scanning the first cell of the
second tape.

When the moving head arrives at the end of the palindrome it
activates the first processor through the first cell of the second
tape that is scanned by the heads of both processors. From now on
both heads on input tape start to proceed towards the opposite ends
of the palindrome, at each step checking whether the same symbol is
seen by both of them. For that purpose they communicate through the
single common cell at second tape.

In the case of a STM it is known that the space of at least
Q(log 1log n) is needed to recognize L, since L is not a regular set
(Hoperoft, Ullman, 1969). O

Thus the set of palindroms presents the language that
separates multitape PTMs from the first machine class. Nevertheless,
the situation is quite different in the case of one-tape PTM, as

follows from the next theorem:

THEOREM 4.4.: A(d,1)-STM can simulate the (d,1)-PTM in polynomial

time and linear space.

Proof: note that in the case of a one-tape PTM every processor has
exactly one head. Thus, to keep track of the positions of PTM's pro-
cessors it is enough for STM to record, on a special track, for each
of its tape cells only the states of simulated PTM's processors
which are currently scanning the cell at hand. Since the processors

scanning the same cell can differ only in their states, their number

;17.;
must be finite. The simulation itself can then be performed as in

Theorem 4,2 in polynomial time and in linear space. O

From Theorems 4.4 and 4.1 it now follows that the one-tape
PTM, although being a parallel machine, still is a member of the

first machine class.

5. The power of pipeling.

The results from the previous section state that the amount
of parallelism in PTM's is polynomially time bounded and thus no
spectacular effects of exponential speedup of sequential time can be
expected. Nevertheless, in solving repeated instances of problems
PTM's are quite good, as will be seen from the following results.

First of all we shall formalize the notion of a pipelined
PTM, which is capable of solving repeated problem instancies, and we

define appropriate complexity measures for this case.

DEFINITION 5.1. An off-line (1,k)-PTM M 1is called a pipelined

(1,k)-PTM, recognizing the language L & 1%, if and only if

(i) M is a transducer equipped with a two-dimensional read-only
tape, and a one-dimensional write-only output tape;

(ii) the words wieI,i=1,2,..;, m, m21, are arranged on the input
tape in the upper left corner in rows, i.e., the i-th input
word is written in the i-th row of the input tape, aligned to
the left;

(iii) if w.e L, then M prints 1 as its i-th output on the input tape;
otherwise it prints 0, for i=1,2,...,m.

(iv) M reads its input in order w1,w2,;.. and prints the
corresponding outputs in the same order;

(v) the number of moves made by M between reading the first symbol

of wi and printing the i-th output depends only on the length

18

of w,, for i=1,2,00.,m;
(vi) after reading all of its m inputs and printing the m-th output
the machine M halts.

DEFINITION 5.2.: We will say that the pipelined PTM M recognizing
the language L recognizes the language L (or simply: computes) with
period PP(n), if and only if for every sequence w1,w2,...,wm,mz1 of
input words of the same lenght n the machine M reads the first sym-
bol of ws after at most PP(n) moves after reading the first symbol

of w, for i=2,3,..;m, taken over all input words of length n.

i-1?

DEFINITION 5.3.: A pipelined PTM M recognizes the language L in time
PT(n), if and only if for every sequence w1,.;., W mz21 of input
words of the same length n the machine M prints i-th output after at
most PT(n) steps after reading the first symbol of the i-th input

word, for i=1,2,...,m, taken over all inputs words of length n.

DEFINITION 5.4.: A pipelined PTM M recognizes the language L in
space PS(n) if and only if PS(n) is the maximum distance any
read/write tape head travels in processing any sequence of inputs of

length n, taken over all sequences and all inputs of length n.

COROLLARY 5.3.1.: A pipelined PTM of time complexity PT(n) and with
period PP(n) can process any sequence of m inputs of length n in
time

PT(n)+(m-1)PP(n).

The corollary claims in fact that in a long run, on a suffi-
ciently 1long sequence of inputs, the effect of a possible high

"starting" time can be amortized by the efficient processing of

E—————————RESE RS

;19_;

subsequent inputs; provided there 1is an appreciable difference
between the asymptotic growth of PT(n) and PP(n)., The following

example illustrates this fact.

EXAMPLE 5.1.: Consider the off-line PTM M1 from Theorem 4.3., recog4
nizing palindroms in time PT1(n)=O(n) and space PS1(n)=O(1). This
machine can be converted into a pipelined PTM M2, recognizing palin-
droms, by exchanging its one-dimensional input tape for a two-
dimensional tape, and by providing it with one one-dimensional out-
put tape. M2 then works as follows: after performing one compu-
tational step, which is similar to that of M1, the machine M2 moves
the entire rewritten part of its working tape one cell to the right,
processor' s heads included. Then; in the next step, M2 can start
processing the next input, by creating a new processor with its
input head scanning the first symbol of the next input in the next
row of input tape, and in the same time M2 can prolonge its compu-
tations started previously.

Obviously, the pipelined machine M2 has the following
characteristics: PT2(n)=0(n), PSZ(n)=0(n), PP2(n)=O(1). Note that
the machine M2 can process a sequence of n inputs of length n in
time PT2(n)+(n-1)PP2(n)=0(n), while the same task would take time
O(n2) on M1. Thus, using pipelining, we have achieved "amortized
efficiency" of order 0(1) per input!

The construction of a pipelined PTM from a nonpipelined one,

as in the previous example, can be generalized for any off-line PTM:

THEOREM 5.1.: A pipelined (1,1)-PTM M1 can simulate a non-pipelined
off-line (1,1)-PTM M2 of time complexity PTz(n) and space complexity
PSZ(n) in time PT1(n)=0(PT2(n)), in space PS1(n)=0(PT2(n)), and with
period PP1(n)=O(PSZ(n)).

Proof: M1 first performs a computation to mark PSz(n) cells on its

- 20 -

tape (we assume that PSZ(n) is tape;constructable, cf Hopcroft &
Ullman 1969.). Then, on the next input, it starts the pipelined com-
putation: it straightforwardly simulates one step of M2 and then
shifts the entire rewritten part of its working tape one cell to the
right. After PSZ(n) shifts, when some specialized processor of M1
passes the rightmost marked cell, it 1issues another processor P
towards the 1left end of the tape. When P arrives at the end of the
tape it initializes the next computation by reading the next row of
input data. Note that at this time enough space for the next compu-

tation has been set free at the beginning of the working tape of M1.

[m]

Note that the penalty one has to pay when trading off "non-
pipelined space" for "period"; is the increase of space in the pipe-
lined machine. It appears that a similar trade-off can be made also

in the reverse direction.

DEFINITION 5.5.: A pipelined PTM M computing with period P(n) 1is
called a uniform pipelined PTM, when, on a sufficiently long

sequence of identical inputs, it starts cycling with period P(n).

THEOREM 5.2. Every uniform pipelined (1,1)-PTM M computing with

1
period PP1(n) can be simulated by an off-line nonpipelined nondeter-

ministic (1,1)-PTM, M2 in space PSZ(n)=O(PP1(n)).

Proof: Consider the computation of M1 on sufficiently long sequence
of 1identical inputs. After PT1(n) moves the uniform machine M1 is
forced to cycle with the period PP1(n) due to the fact that it reads
the same input data all over again.

The idea of the simulation is quite simple: the machine M

2
guesses any instantaneous description of the cycling machine M1 and

;21;

deterministically simulates the actions of M1 during one entire
period. Then 1t verfies whether the same instantaneous description
as the initial guessed one was riched again. The realization of this
idea is complicated by the fact that we cannot afford to remember an
entire instantaneous description at once, since in general it cannot
be represented in space O(PP1(n)).

Rather, we proceed as follows. Let cell(i) be the i-th cell
of M1‘s working tape, and let c(i,t) denote the contens of cell(i)
in time t, for 1§i§PS1(n), OStsPP1(n).

The contents c(i,t) are represented on M2‘s working tape.
The initial contents e(i,0) for any i can be guessed by M2; the con-
tents c(i,t) for t>0O depend only on the actions of processors which
nave their heads on cell(i-1), cell(i), and cell(i+1) in time t-1,
and the other heads elsewhere on input and output tape.

Let the tape configuration of a processor in a given time be
determined by its state, the symbols scanned by each of its heads,
and positions of its heads on all tapes, at that time. Then, the
contents c¢(i,t) for t>0 can be deterministically computed once we
know the contents of neighbouring cells in the previous step,
together with the tape configurations of processors scanning at this
time the cells at hand. Note that there can be more than PPZ(n) tape
configurations pertinent to c(i,t) and thus they cannot be directly
represented on M2‘s working tape. To save space, the tape configur-
ation of each processor P, of M1 scanning cell(i) at time t is

1
represented by a processor P2 of M. scanning c(i,t) and otherwise

being in the same tape configuraiion like the simulated processor,
i.e., when P1 scans the j-th symbol of some input word, 15jsn, then
P2 scans also the j—th symbol of its (single) input word. The heads
on output tape of M1 need not be considered at all, since they are
write only heads and cannot influence the course of computation.

With these ideas in mind we can now finally advance to the
description of the simulation.

Simulating PTM M2 subsequently, for i=1,2,...,D, Buesses the
contents c¢(i,0) and processors scanning at time t=0 the cell(i).

Then it nondeterministically sets the heads of these processors on

- 22 -

the input tape, and their states in order that they correspond to
tape configurations of simulated processors. From this time on,
these processors enter into waiting state, remembering in it, how-
ever, their original state before entering into waiting state.
Starting from this situation M2 then deterministically computes
those contents c(i,t) which are necessary to compute c¢(i,p), where
p=PP (n)

To compute any c(j,t), for 1<3<PS (n), 1stsp, it is enough
for M to compute the values along two diagonals (see Fig.6.1), and

remember them together with corresponding tape configurations.

c(i-1), 0) c(i,O);/./”',f,//’..é(j-1 ,0),e(3,” o).../// Aoe(ivp-T, 0

e(3, 1 'x‘c(’iipﬁ 1)|
o |
/7

e(j,t- 2)‘0(3/‘/+1 2)/4_1
|c(3 1, t Nelj,t- 1) c(J+1 t- 1)l

c(3- 2thU‘1 . e(d,t)

I

AR AN
c(iff;p~1)/, ,ff value just computed
c(i-1, Pl .

Fig.6.1. The organization of M2‘s computations.

Thus, to compute c(j,t), the machine M2 activates another
copies of processors, waiting over e(j-t,t-1), c(j,t-1), and
c(j+1,t-1), and let them perform one computational step. Then the
processors over c(j,t) are set into waiting state, the value c(j-
1,t-1) can be nforgotten" and the corresponding processors are set
into final state, and the process repeat itself for c(j-1,t+1).

After computing c(i,p) the machine M2 has to verify whether

¢(i,0)=c(i,p) and whether tape configurations of corresponding

/ e
c(1+§70

L23;

processors match.

The first condition is easily verified, providing M2 has
remembered the initial value c(i,0).

To verify the second condition, the machine M2 activates, in
groups, the processors waiting over c(i,0); one group is created by
the processors having remembered in its waiting state the same state
they were 1in before entering the waiting state. Then M2 lets the
input heads of these processors, as well as the heads of correspond-
ing processors over c(i,p), move towards the left end of its input
tape. When the heads of the processors over c(i,0) and c(i,p) have
been scanning the same cells on input tape, then they must arrive at
the same time at the tape end. This condition can be checked with
the help of some distinguished symbol at the end of the tape.

When all the groups of processors have been successfully
verified, the machine M, can start the next simulation and verifi-

2
cation phase, corresponding to the cell(i+1). M, halts after a suc-

cessful verification of the computation over thi last cell of M1 and
accepts its input if and only if it has simulated during its compu-
tation such a move of M1 in which some processor of M1 attempted to
write 1 on the output tape.

Note that no more than O(PPz(n)) space on the working tape
of M2 is ever needed to remember the necessary information for per-
forming each simulation and verification phase; corresponding
entries, which are to be remembered during one phase, are pictured

in the shaded area in Fig. 6.1. O

For pipelined PTM we can define the complexity class PTM-
POLY-PERIOD similar to Definition 4.3,, and by the previous two
thedrems we can prove the following important corollary, concerning
the relation of STM's and PTM's:

COROLLARY 5.2.1.:
(1,k)-STM—POLY-SPACE=(1,1)—PTM;POLY-PERIOD

Z o4 -

Proof: Returning to the proof of Theorem 5.1 we see that it remains
valid also for the case of off-1ine (1,k)-STM instead of off-line
(1,1)-PTM M2; since according to Theorem I.1 the former machine can
be simulated by M2 in linear space. This proves that (1,k)-STM-
POLY~-SPACE E;(1,1)—PTM—POLY—PERIOD.

To see the opposite inclusion, consider the off-line non-

deterministic (1,1)-PTM M from Theorem 5.2, of space complexity

PSZ(n), that simulates some2pipelined (1,1)-PTM M1 with polynomial
periode PP1(n). Then M2 is of polynomial space complexity
PSz(n)=O(PP1(n)) even in the case when its input tape is included in
space complexity estimation. According to Theorem h.2, M2 then can
be simulated by a nondeterministic (1,2)-STM in polynomial space,
which in turn can be simulated by a deterministic (1,2)-STM in poly-
nomial space, due to Saviteh's theorem (see e.g. Aho, Hopecroft, Ull-

man, 1974). O

Thus, to within a polynomial factor space for (1,k)-STM is
equally powerful computatinal resource as period for pipelined
(1,1)-PTM.

The previous corollary can be rephrased also in terms of the
classification suggested Dby van Emde Boas (1984) to obtain a final
characterization of (1,1)-PTM, relating it to both the first machine

class C1 and the second machine class CZ:

COROLLARY 5.2.2.:
C1—P0LY—SPACE=(1,1)—PTM-POLY-PERIOD=C2-POLY-TIME

proof: since (1,k)-STM is from C,, we have (1,k)-STM-POLY-SPACE=
C1—POLY—SPACE, and using Corollary 5.2.1 we get the first equality.
The second equality follows directly from the parallel computation
thesis, which asserts that C1—POLY—SPACE= C24POLY~TIME. (see Section
1). O

.;25;

It is interesting to observe that the relation from Corol-
lary 5.2.2 can be seen as a weak analogue of the parallel compu-
tation thesis - the difference being that this time period, rather
than parallel computation time, is polynomially related to sequen-
tial space. The relation can be appropriately called the "pipelined
computation thesis" and, indeed, can be used to characterize the
class of machines to which the off-1line, or pipelined (1,1)-PTM
belongs. In view of the results from Section 4, stating that
multitape PTM's are members neither of the first, nore of the second
machine class, it appears that a new, one-and-a~halfth machine class
C1.5, emerges, which is neatly related to the classes C1 and C2 by
the relation.

C1—POLY—SPACE=C 4POLY-PERIOD=C2—POLY—TIME,

105
with pipelined (1,1)-PTM presently being the single known member of
C1.5°

Let us return once more to the problem of efficient periode
simulation of (1,k)¥STM by pipelined PTM. We shall show that adding
one more space dimension to the simulating PTM leads to the period

optimal simulation.

THEOREM 5.3. A pipelined (2,1)-PTM M1 can simulate any off-line
(1,k)-STM M2 of time complexity ST2(n) and space complexity SSZ(n)
in time PT1(n)=O(ST2(n)), in space PS1(n)=O(ST1(n).SS1(n)), and with
period PPT(n)= 0(1).

Proof: Similar to Theorem 4.1 we can construct the off-line (1,1)-
PTM M3 that simulates M1 in linear time and linear space, and simu-
late the machine M3 instead of M1, by the machine MZ' The simulation
then is similar to that of the Theorem 5.1., but instead of moving
the whole "computation", belonging to one instance of the input, to
the right, it is moved "down" (i.e. into the second dimension) on
the two-dimensional working tape of M2 - so that the next compu~

tation can start immediately. o

R

~ 26 -

6. A Universal Parallel Turing Machine.

The theory of PTM's can benefit from the known theory of
STM's, since most of the results of the latter theory can be gen-
eralized immediately. For instance, like in the case of STM's one
can show that there exists a universal, "programmable" PTM, capable
to simulate any other suitably encoded PTM, without any substantial
loss of efficiency. We will state the corresponding result for one
tape PTM's, since, as we shall see in Section 7, these are of

special interest.

THEOREM 6.1.: For any d21 there exists a universal (d,1)-PTM M1
which can simulate every other (d,1)-PTM M2 in linear time and in

linear space.

Proof: The machine M1 simulaﬁes the other machine by keeping and
appropriately updating in parallel the instantaneous descriptions of

M_.. The instantaneous descriptions are represented in the same way

az in the simulation from Theorem 4.4, which ensures a linear space
simulation.

The tape of M1 is further divided into regions of equal
size. Each region takes the form of the smallest d-dimensional cube
in which the standard encoding of M2 (see e.g. Hopcroft, Ullman,
1969) can be represented. In each of these regions a single copy of
standard encoding of M2 is written on a special track (which 1is to
be understood similarly as in Theorem 4.1), and further there
resides a single processor of M1 whose task 1is to appropriately
update, within its region, the instantaneous description of MZ'

To simulate one parallel step of M2 each processor of M1
must sequentially, one by one, simulate the actions of Mz‘s proces-—
sors currently being in its region. Therefore, every processor of
M1, systematically for each cell within its region and for each pro-
cessor of M2 scanning that cell, searches its copy of the standard

encoding of M2 to find the value(s) of the transition relation

;27;

pertinent to the state of the simulated processor and the tape con-
tents scanned. Then the processor updates the corresponding part of
the instantaneous description accordingly and starts to simulate the
action of next processor of M2.

The simulation of one step of M1 is completed after the
simulation of actions of all processors of M2, in parallel within
all regions, was finished.

Since the size of the standard encoding of M2 is bounded, so
is the size of each region on M1‘s tape, and hence each processor of
M1 has to simulate sequentially only a bounded number of Mz‘s pro-
cessors. It is thus clear that the actions of all M2‘s processors in
one parallel step of M2 are simulated in a bounded number of paral-

lel steps of M1 which leads to a linear time simulation. O

-

Combining Theorem 6.1 and Theorem 5.3 yields the following

construction of an interesting pipelined PTM:

COROLLAﬁY 6.1.1.: There exists a single universal pipelined (2,1)-
PTM which can simulate any sequence of ST(n) time bounded and SS(n)
space bounded (1,k)-STM computations, in time 0(ST(n)), space
0(ST(n)), and with constant period, providing that the standard

encoding of the corresponding (1,k)-STM is a part of each input.

The requirement concerning the boundedness of computational
resources can be realized, as usual 1in practice, by "aborting"
computations whenever they pass over the prescribed time or space
1imits. The results of all computations are printed with constant

period only after the common time bound expires.

e e—————TEEEEE S S

- 28 -

7. One¥tape PTM's and systolic computations;

In previous sections we have seen that the PTM possesses
many properties which make it interesting from the theoretical point
of view. Now we will show that the PTM presents an interesting model
of parallel computations in a practical sense also, since it appears
that its simplest version - the one-tape machine - can be realized

efficiently using systolic arrays (see e.g. Kung, 1979).

THEOREM 7.1.: A d-dimensional orthogonal systolic array can simulate

a (d,1)-PTM in linear time and area.

Proof: The simulating systolic array consists of 0(SS{n)) 1identical
processors, each processor corresponding to one tape cell, connected
with neighbouring processors. In each processor a tape symbol in one
memory location can be stored, and, moreover, there is also a
boolean state vector of length |Q]|.

For each processor the simulation preserves the following invariant
in each step: the tape symbol of the corresponding cell is recorded
in the corresponding processor’ s memory location, and if the cell is
scanned by a tape head in state q; then i-th bit of the state vector
is set to 1, otherwise to 0. The moves and multiplication of the
PTM*s processors are simulated by updating the corresponding tape
contents and bits of state vectors in the appropriate neighbouring
systolic array processors. The unification of several heads, scan-
ning the same cell in the same state, is done automatically, since a
set, rather than the multiset of states is stored in the state vec-

tor. O

In principle, the reverse of Theorem 7.1 can be formulated
also; the difficulty 1lies in the fact that the theory of systolic
system computations is not sufficiently formalized for our purposes.

But it is intuitively clear that once a suitable algorithmic

.;29;.

description of a systolic system is given, we can first '"generate"
and initialize the system on our PTM, and then start with the compu-
tation with no extra required resources. Along these 1lines Gruska
(1984) has recently given an interesting characterization of (1,1)~
PTM s by proving that these machines are equivalent to the homogene-
ous systolic trellis automata. From these consideration it is also
clear that a number of systolié algorithms can be straightforwardly
implemented on (1,1)- or (2,1)-PTM /e.g. pattern matching, sorting,
matrix multiplication ete./, with the corresponding complexity
results, and vice versa /e.g. palindrome recognition from Example
2.1/. A similar assertion is true also for more general VLSI cir-
cuits, provided again that the geometrical layout of the circuit is
"PTM constructible", and the linear complexity communication measure
is used /see e.g. Chazelle & Monier, 1983/. As far as the circuit
simulation of PTM's with several /two or more, including input and
output/ tapes concerns, we do not know any realistic and efficient
way to realize unbounded, time varying fan-in or fan-out, appearing
when the unbounded number of PTM's processors overlap with their
heads on one tape, but not on the other tape.

Note that such a situation cannot emerge on one tape machines and
this is the reason why they can be realized efficiently on circuits.
The situation concerning time-varying and unbounded fan-in and fan-
out is slightly better when only of f-line or pipelined one-tape PTM
with a separate input and output tape is considered, since in many
practical situations no completely data dependent reading is neces-
sary. In these cases various analogues of oblivious input schedules,
widely used in /the theory of/ VLSI parallel processing, can be
modeled by PTM, and the resulting machine subsequently realized by

the corresponding circuit.

8.Conclusion.

A new model of a universal parallel computer - the Parallel

Turing Machine - has been proposed. The model appears to be a useful

L30ﬁ.

theoretical device for studying the asymptotic power of parallelism,
since it takes the true physical nature of parallel computations
into account, and yet allows for a simple, elegant and formal
mathematical tréatment within the framework of the theory of
automata. There is also a theoretical evidence that the PTM
represents a new class of machine models, which could provide a
suitable theoretical tool for studying the pipelined computations.
Moreover, simple but still powerful versions of the models can be

realized efficiently with the help of systolic arrays.

Acknowledgement: I would like to thank Jan van Leeuwen and Peter van
Emde Boas for their careful reading and helpful criticism of an ear-

lier version of the manuscript.

REFERENCES

Aho,A;V.4Hopcroft,J.E.4U11man,J;D.: The Design and Analysis of Com-
puter Algorithms, Addison-Wesley, Reading, Mass., 1974

Chazelle,B.-Monier,L.: Unbounded Hardware is Equivalent to Deter-
ministic Turing Machine. Theoretical Computer Science 24
/1983/, pp. 123-130

Cook,S.A.: Towards a complexity theory of synchronous parallel
computations;_ L Enseignement Mathematique, Ile Serie, Tome
XXVII-Fascicule 1-2, pp. 99-124, 1981

Gruska,J.: Systolic automata-power, characterization, nonhomo-
>geneity, in: M.Chytil (Editor), Mathematical Foundations of
Computer Science 1984, Springer Lecture Notes in Computer
Science Vol.176, 1984

- 31 -

Hoperoft,J.E.-Ullman,J.D.: Formal Language and Their Relation to
Automata. Addison-Wesley, Reading, Mass., 1969

Schorr,A.: Physical Parallel Devices Are Not Much Faster Than
Sequential Ones. Information Processing Letters, Vol. 17,
1983, pp. 103-106

Van Emde Boas,P;: The Second Machine Class, Models of Parallelism,
in: J. van Leeuwen, J.K. Lenstra and A.H.G.Rinnoy Kan
(eds.). Parallel computers and computations; CWI Syllabus
Centre for Math. and CS., Amsterdam, (to appear), 1984

Van Leeuwen,J.: Distributed Computing. In: J.W. de Bakker énd J.van
Leeuwen (eds.), "Foundations of Computer Science IV",
Mathematical Centre Tracts Vol.158, Amsterdam, pp.1-34

Wiedermann,J.: Parallel Turing Machines - a preliminary report.
Unpublished manuscript; Computing Research Centre, Bra-
tislava, 1983

