THE u~CALCULUS AS AN ASSERTION LANGUAGE
FOR FAIRNESS ARGUMENTS

F.A.Stomp, W.P.de Roever, and R.T.Gerth

RUU~CS~84~12
November 1984

Rijksuniversiteit Utrecht

Vakgroep informatica

Budapestlaan6 3584 CD Utrecht

Corr. adres: Postbus 80.012 3508 TA Utrecht
Telefoon 030-563 1454

The Netheriands

THE u~CALCULUS AS AN ASSERTION LANGUAGE
FOR FAIRNESS ARGUMENTS

F.A.Stomp, W.P.de Roever, and R.T.Gerth

Technical Report RUU-CS-84-12
November 1984

Department of Computer Science
University of Utrecht
P.0.Box 80.012, 3508 TA Utrecht
tﬁe Netherlands

THE u-CALCULUS AS AN ASSERTION LANGUAGE

FOR FAIRNESS ARGUMENTS

by

F.A. Stomp -University of Utrecht.)*

W.P. de Roever-University of Nijmegen/
, University of Utrecht.

R.T. Gerth -University of Utrecht.

~November 1984~

Abstract: Various principles of proof have been proposed to reason about
fairness ([2],[51,071,[12]). This paper addresses - for the first time -
the question in what formalism such fairness-arguments can be couched. To
wit: we prove that Park's monotone first-order p-calculus ([6],[12]),
augmented with constants for all recursive ordinals can serve as an
assertion-language for proving fair termination of do-loops. In particu-
lar, the weakest precondition for fair termination of a loop w.r.t. some
postcondition is definable.

The relevance of this result to proving eventualities in Manna and
Pnueli's temporal logic formalism ([8]) is discussed.

¥ Presently employed at the University of Nymegen.

1.4

1.5

1.6

.;3-

Next, nearing the focus of this paper, the interaction between fairness
and the interleaving model must be examined.
How does one deduce properties in the resulting model? _
The properties of interest always contain eventualities which are en-
forced by the assumption of fairness. Pure invariances, l.e., properties
which are invariant during execution, are not influenced by postulating
fairness as extra requirement, and can be derived using more traditional
methods.

The state of art offers the following picture:

To establish that for a concurrent program ¥ eventually holds, i.e., <V
holds, using the eventuality operator ¢ from temporal logic, where ¢ is a
state formula, i.e., a direct property of the program state not requiring

temporal operators s.a. ¢ anymore for its expression, the following

strategy is taken:

(1) Amongst the concurrent processes an (amongst others state dependent)
distinction is made between those processes -in Manna and Pnueli's
([8]) terminology dubbed helpful processes- whose execution brings
satisfaction of ¢ always nearer, and those processes that do not do
so, i.e., whose execution possibly does not bring satisfaction of ¢
any nearer, called steady (or unhelpful) processes.

(2) It must be proved that systematically avoiding execution of any help-
ful process either leads to an interleaving of steady processes which
does not satisfy fairness, i.e., is unfair, since infinitely often a
helpful process is enabled but not taken, or, due to some nondeter-
ministic choice in a steady process or the interleaving, does bring
satisfaction of ¢ eventually nearer or even eventually establishes .

Essential is here that upon closer inspection part (2) above requires ap-
plication of the same strategy to a syntactically simpler program: just
remove the helpful processes from the original program and prove that
eventually one of the following holds: ¥, getting nearer to y or a, help-
ful process is enabled.

A technical formulation of this strategy requires the introduction of
well-founded sets, and looks as follows ([8)):

The Well-founded Liveness Principle~WELL

Let ¥l =(A,s) be a well-founded ordered structure. Let ¢(a) De a
parametrized state formula (intuitively expressing how far establish-
ing ¢ is). Let h:A+{1,..,k} be a helpfulness function identifying for

each ocA the helpful process Ph(a) for states satisfying ¢(a).

(A) | P leads from ¢(a) to [vv (FBsa $(B))]

(B) | Ph(a) 1eads from é(a) to [Yv (38<a ¢(8))]

(©) | ¢(a)o oLV (3B<a d(BY)V Enabled(Ph(a))]

F (3o ¢(a))d o9

1-7

complete.

-)4.."‘

Here P leads from ¢ to ¢' means: Pi leads from ¢ to ¢', for i=1,...,k.

And Pi jeads from ¢ to ¢' means that every state transition in

Pi establishes ¢' afterwards provided ¢ 1is satisfied before (;here
¢ and ¢' are state formulae).

The soundness proof of this rule requires induction over well-founded
sets.
Conversely, given the fact that Oy is valid, (naive) set theory 1is used
to argue the existence of the required auxiliary quantities (the well-
founded ordered structure W\, the ranking predicate ¢(a), and the help-
fulness function h) which satisfy clauses (8), (B), (C), so that for each
such § WELL can always be applied. This proves that WELL is semantically

Manna and Pnueli ([8]) even prove that, for certain classes of formu-
lae, their temporal logic formalism is relative complete.
Relative means here: all valid temporal formulae with the given domain
interpretation are taken as axioms. Typically, their proof shows that is-
sues concerning programs and executions can be reduced via their rules
(from which the one above is derived and deals with eventualities) to
state assertions concerning the given program, the so-called state pro-

perties.

Now we are ready to ask the one question this paper is about:

How do these results help us if we are sure that <OV holds and want to
apply the rule above to verify Oy?

The answer is: not much.

Questions such as:

- How to obtain the appropriate well-founded ordered structure L1 12

- How does one express, and reason about, the helpfulness-function h and
the ranking predicate ¢(a)?

- In general, which assertion language should be used to establish hy-
potheses (4), (B), (C), of WELL?

are not answered by the above results, since the state properties are not
formalized.

The present paper suggest a direction to answver these questions, by con-
centrating on these problems as they occur when proving termination of
do-loops under the above fairness assumptions, i.e., fair termination of
do-loops.

That this does not lead to oversimplification follows from the fact that
the same auxiliary quantities, with comparable objectives, occur in the
rule whose expression and use wWe shall investigate ([5]):

1‘5-5

The Well-founded Liveness Principle for loops-Orna's rule

Let ¥ = (A,S) be a well-founded structure.

Let w:A+(States+{true,false}) be a predicate, and q be a state predi-
cate.

Let for weA, with w not minimal (denoted by 0<w), be given pairwise

disjoint sets Dw and Sw, such that Dwﬁd and Dw\lStw={1;..,n}.
(a) | [w(w)a w>0a bJ]Sj[3v<w m(v)], for all jeD,
(b) | [w(w)a w0 bj]sj[ﬂvsw x(v)1, for all jeSt
(¢) | [n(w)a wolfair(*[© b;A A b,»S, Ditruel
1sStw JeDw

(@) F ra @ a(v)

n
b (w(w)A w>0)3 Vb
S S 1
L 7(0) ((/\ﬁbin Q)

i=1

n
| Crlfair(*[o bi*Si])[q]
i=1

n

Here for a fair do-loop fair(*[o ci*Ti]) only fair execution sequences
i=1

are generated, 1i.e., finite ones or fair infinite ones, but no unfair

infinite ones;

[plslq] holds iff for all E:
if input state £ satisfies p then every (generated) computation se-
quence of S in § terminates and its output satisfies q;

n
nence [plfair(¥*[o ci+Ti])[q] expresses that every fair computation se-
i=1
n
quence of *[o ci*Ti] which starts in p terminates in q.
i=1

Note, when comparing Orna's rule with WELL, that the commands SJ act as

state transitions.

Since in Orna's rule the assignment w*(Dw,Stw) for w>0 merely general-

jzes WELL's notion of helpfulness function, the same kind of auxiliary
quantities are required to apply both rules.

1.

2.1

. - 6 -

This paper proves that to express and reason about ¥} , ¢, and the as-

signment w*(Dw,Stw) for w>0 and weA, a slight extension is required of

the formalism used to prove termination of recursive procedures, Park's
uy-caleculus ([61,[12]1).

Finally we note that, historically, two rules have been formulated
to prove termination of (nondeterministic) programs:
Orna's’ rule ([5]) and the LPS-rule([7]).
Both these rules model, each in their own way, a specific intuition re-
lated to the notion of eventuality implied by fairness assumptions.
For fairly terminating loops they have been proved to be equivalent
(ef. ([51)), but the LPS-rule also applies to proving fair termination
of concurrent processes.

«

This article is organized as follows:

You are still reading chapter 1, containing the motivation for this pa-
per; chapter 2 specifies the programming language used in this paper.
Chapter 3 discusses termination under fairness assumptions. In chapter
4 the proofsystem and in chapter 5 the assertion-language (i.e., the
monotone uy-calculus) are dealt with. A term in the assertion-language,
which expresses fair termination of a repetition is constructed in
chapter 6. Completeness and soundness of Orna's rule are proven in
chapters 7 and 8. Finally section 9 contains the conclusion.

Chapter 2
THE LANGUAGE OF GUARDED COMMANDS

In this chapter we describe the programming language used throughout this
paper.

. In section (2.2) its syntax and in section (2.3) its (relational) seman-

tics is given.

A first-order structure Wl consists of (i) a non empty domain (set) [,
(ii) a set of n-ary function symbols and a set of n-ary predicate symbols
(n2), such that for each n-ary function symbol (respectively predicate
symbol) there corresponds a n-ary function (respectively predicate) over
Im|, and (iii) a set of constants, corresponding to elements of |¥n|.
(We assume the equality symbol "=" to be present as a binary predicate
symbol, corresponding to the standard equality over |§n|.)

_7;.

2.2 SYNTAX A
This paper is concerned with fair termination of repetitions. Hence
for repetitions S, the notation fair(S) is introduced.

Let ¥f1 be some first-order structure.The language of guarded commands
over Wl , LGC(M), is defined by the following BNF-productions:

(braces enclose a repeated item, that may occur zero or more times)

<command> .:= <assignment> | <repetition> | <composition> |
<fair loop>

<assignment> ::= <variable>:=<expression>

<composition> ::= <command> ; <command>

<selection> ::= [{o<direction>}]

<direction> :1= <guard>-+<command>

<repetition> ::= *¢gelection>

<fair loop> ::= fair(<repetition>)
<expression> ::= "term over (the signature) M "
<guard> . ::= "quantifier-free formula over w

We identify *[1 with x:=x (skip).
In the remainder of this paper, we shall often abbreviate

n
* *
[b1»S1n...nbn+Sn] to [i?1bi+si].

2.3 SEMANTICS
A state is a function from the collection of all variables to the

domain of interpretation: g, E', Ei etc. are used to denote states.

£(e) denotes the value of expression e in state &.
If a guard bi evaluates to true in state E (i.e., E(bi) holds) we say

that bi is enabled in state £. Otherwise bi is disabled in E&.

For a variable x and an expression e, g{e/x} 1is defined as usual:
g{e/x}(x)=E(e)
E{e/x} (y)=E(y) if xfy

Since programs depend on only finitely many variables, states can be
described as functions with finite domains.

We now associate with each program S its relational semantics
R, & | M |x| w1 |, where |¥| denotes the domain of interpretation of M.
Due to gpndepgrminism_there may be more fthan one output-state and even
infinitely many. If S nowhere terminates there will be no output-state.

S s x:=e : RS={(£,£{e/x})|£ a state}

S = 8,;S, : Re=Ry oR , where o denotes composition of relations.
1’72 S S1 82

n
s=*[o bi+Si] (n21) :Let b denote the formula ﬂ(b1v Y} bn), and
i=1 .

n .
R =UR, oR, , where R_ ={(£,£) | & a state such that £(b,) holds }.
T i1 P4 oy by !

n .
Then RS=(\J Ri)oRb, where Ri denotes the i-fold composition of the rela-
i=1 S S
tion R_ with itself.
S

n
S-=Ffair(*[o b
i=1

L -

i»Si]) (n21) : its semantics is given in chapter 3.

- 8 -~

In the sequel we will concern ourselves exclusively with repetition
statements. From now on, the term program will in general refer to a re-

petition.
Chapter 3
TERMINATION UNDER FAIRNESS ASSUMPTIONS
n
3.1 An execution sequence for a repetition S=¥[n bi+si], (n21) is a maximal
i=1

sequence 50,51,52,.;. of states, such that EjRigj+1 where j20, 15isn and

Ri is the relation associated with bi;Si. (The sequence is considered to

be maximal if it cannot be extended , i.e., it is either infinite or the

n
sequence is finite and ends with a state Ek such that gk(, A\ﬂbi) holds.
i=1

Termination of a (nondeterministic) program, S, is straightforwardly de-
fined as the absence of an infinite execution sequence of S. This is,
however, a very strong requirement.

Consider, e.g., Dijkstra's random number generator ([4]):

S0 = *[b+x:=x+1 0 b»b:=falsel.

S0 need not necessarily terminate if started in a state £ such that

g(b)=true, because 1its execution may be governed by an extremely one-
sided scheduler that consistently refuses to execute the second direction
of S. in any iteration.

eonsequently, various constraints on schedulers have been proposed,
which prohibit schedulers to neglect the execution of directions under
certain circumstances. Termination of a program is considered relative
to a set of schedulers thus constrained. We now present two important
constraints or fairness-assumptions, that have been proposed ([5]1,[71):
fairness, and impartiality. Observe that, while the above program, SO’
admits infinite computations, none of them is fair ; i.e. S0 terminates
fairly.

3.2 DEFINITION
(1) An execution sequence of a program S is fair,
if it is finite or if it is infinite and every direction, which 1is
infinitely enabled in this sequence, is chosen infinitely often.
(2) A program S terminates fairly if it admits no infinite fair execution
sequences (i.e., fair(S) terminates).

In the sequel, we also need the notion of impartiality, that ignores the
enabledness and disabledness of directions.

3.3 DEFINITION
(1) An execution sequence of a program 1is impartial,
if it is finite or it is infinite and every direction occurs infin-
itely often in the sequence.
(2) A program terminates impartially if it admits no infinite impartial
execution sequences.

3.4

3.5

_g-

The program S,=*[x=0+x:=1 O x=1>x:=x] does admit infinite fair computa-
tions, but no impartial ones.

Other examples of impartially, and fairly terminating programs can be
found in e.g. [5]. (Some authors use a different terminology!)

The relation between the two fairness assumptions is as follows :

for each program S

(i) S terminates nondeterministically =
S terminates fairly

(ii) S terminates fairly =
S terminates impartially

The examples above show that all implications are proper.

n -
*
Let S = *[o bi*si] (n21). We now give the semantics Rfair(s) associated

i=1
v n
with fair(8). For each execution sequence of #[o bi+Si] in which b1 is
i=1

infinitely often enabled, Si is executed infinitely many times
(i=1,400.,0)¢

Remark: definition (3.2) refers to so-called top-level fairness, accord-

ing to which the following program need not terminate fairly

(see e.g. [2]):
Si*[b1+*[b2+skig

nb2+b2:-false
?bzéb1:=false

Db1*skip

]

Fairness, as defined here, only constrains the choice of the directions

guarded by bi' It does not specify anything about choices inside the Si

(i=1,...,n). The problem of all-level fairness is not considered in this
paper.

—10-

Chapter U
THE PROOFSYSTEM

We use a Hoare-like proofsystem. Let S be any program.
By [plS[q] we mean that for all states E satisfying p, the execution se-
quences of S, starting in § are finite. Moreover every final state of
such a sequence satisfies q.

The axioms and rules are as follows:
(1) assignment
[p{e/x}]x:-e[p]

(2) composition

[p1s,fa) . [als,lr]
[p15,35,Lr]

(3) consequence

PI Py [p1JS[q1] 4,2 1
[plslql

(4) Orna's rule (see section (1.7).

Note that only fair repetitions are considered. However, Orna's rule can
also be applied to ordinary terminating do-loops (take the sets St to be
empty). We then obtain Harel's rule for terminating loops ([15]).

5.1

5.2

_11..
Chapter 5
THE ASSERTION-LANGUAGE L

Our assertion-language 1is based on Park's monotone y—calculus,
([6],[12]), which is appropriate both to prove e.g. termination of recur-
sive parameterless procedures, see e.g. [3],[6], and to express the auxi-
liary quantities associated with those proofs.

This calculus is based on Knaster-Tarski's theorem ([147):

let (A,E) be a complete lattice and F:A*A a monotonic function

(, in fact a cpo suffices). Then F has a least fixedpoint, denoted by
pya.[F(a)], meaning that

(i) F(pa.[F(a)])=vpa.[F(a)];
i.e., pa.[F(a)] is a fixedpoint of F.

(ii) if there exists some beA such that F(b)=b,
then pa.[F(a)]E& b;
i.e., pa.[F(a)] is the least fixedpoint of F.

As the partial ordering & is anti-symmetric, pa.[F(a)] is unique.

(property (i) is referred to as the fixedpoint property.)
There are several ways to regard least fixedpoints. Using the nota-

tion as above, firstly pa.[F(a)l=[]{xeA|F(x)=x}=[]{xeA|F(x)€ x},

where [] denotes the infimum. A proof of this can be found in e.g. £31.
Secondly, the least fixedpoint can'be obtained by iterating F into the
transfinite ordinals. Define for each ordinal A:

Fo(x)=x,

FA (x)=F(L FB(x)), 1f Ak0.
B<A
Here || denotes the supremum.

Let lA denotes A's least element, which exists since A is a cpo.

Then ua.[F(a)]=Fa(lA) for some ordinal a. (For a proof see e.g. [9].)

Clearly, if ua.[F(a)]=Fa(lA) then for all B2a ua.[F(a)]=FB(lA).

Next, we introduce some fixedpoint definitions.

Let R be a relation and p a predicate.

Define R+p by (R+p)(x) iff V¥V x'[(x,x')eR=>p(x')]

and its dual Rop by ™{R+7p). So (Rep)(x) holds iff Ix'[(x,x")eRap(x")].
Note that R+true always holds.

Since the collection of predicates ordered by pgq iff p2q forms a com~
plete lattice with false as least element, and R»p (as well as Rop)
is monotonic in p, up.[R*p] exists.

..12.-

We claim that up.[R»p] describes the domain of well-foundedness of R;
i.e., wup.[R*pJ(x) holds for those x such that there exists no infinite

Sequence Xg,X, Xy« - with X=X, and (xi,xi+1)eR (i20).

up.[R+p]=1a(false) for some ordinal a, where t(p)=R-p.

Using induction on B, we prove that for all B8sa

B . p »
t°(false)(x) = there is no infinite sequence XgrXqsXpseos

with x=
X=X, and (xi,xi+1)eR (120)
holds.
Inductionstep: B=0: trivial.
Inductionhypothesis: suppose that the implication holds for all A<B.

For B#0: TB(false)(x)<=>(R-> U tk(false))(x)
A<B
SWx'[(x,x'")eR = |__| r)‘(false)(x')].
A<B

So Ts(false)(x) implies that for all x' such that (x,x')eR
no infinite "descending" sequencestarting in x' exists (in-

ductionhypothesis). Then there is no infinite "descending"
sequence starting in x.

To prove the other implica&ion, assume that 5up.[R*p](x) holds
(which is equivalent to 7t (false)(x)).

By the fixedpoint property, ~(R>up.[R*p])(x) holds too. So, there is an
1

infinitum; and we obtain an infinite ndescending" sequence xo,x1,x2,..;
such that x=x, and (xi,xi+1)eR (iz0). B

x, such that (x,x1)sR and %up;[R*p](x1). This process can be repeated ad

If F is a monotonic operator mapping predicates to predicates, then
its greatest fixedpoint, vp.[F(p)], exists too. This is because the col-
lection of predicates as defined above is a complete lattice. Moreover
the greatest fixedpoint is representable in terms of the uy-operator:

vp.[F(p)] <> wp. [F(p) {"p/p}].

A proof of this equivalence can be found in e.g. [3].
Using this result, we see that vp.[Rop] exists and that
vp.[Rop] & wp.["(Rop)]
<> wp.[R*p].

Recall that "o" denotes composition of relations.
We adopt the convention that "o" has priority over ny",
I.e., R1oR2LJR3 should be parsed as(R1oR2)L’R3.

Let R denote a relation over someé set, and I the identity relation
over the same set.
It is easily seen that F(X)=RoXVTI is monotonic in X, where X denotes a
relation~-variable. So F's least fixedpoint uX[RoXU I] exists. In infor-

mal notation uX.[RoXVIJ=IV RURZU ...uRnu e

* .
We abbreviate pX.[ReXVI] to R, the relation obtained by composing R,
zero or more times with itself.

5.3

5.4

5.5

5.6

13

*
Let R =RoR . Then we have the following

FACT

* * + _*
I&R, R'&R, R =R oR. . % . .
If T denotes a relation and T€R then T E€R and R oTER

Let Wl be some first-order structure.
The first-order logic over W1 is defined as usual. Now we extend this
logic so as to be able to express fixedpoint definitions. For this an
infinite set of n-ary predicate-variables,
p, X, ¥,..., is introduced for every nz0. These predicate-variables may
appear in formulae, but may not be bound by quantifiers. These variables
form the basis of the fixedpoint definitions.

To ensure the existence of least (and greatest) fixedpoints, monoto-
nicity has to be imposed.
In fact, we introduce the notion of syntactic monotonicity of formulae,
which implies their (semantic) monotonicity. In essence, this notion re-
quires that each occurrence of the induction-variable p is within the
scope of an even number of "-signs.

DEFINITION

We inductively define sets sm(p), respectively, sa(p), denoting the class
of formulae that are syntactically monotonic, respectively, syntactically
anti-monotonic in-a variable p: :

(1) ¢esm(p), if p does not occur free in ¢.
(ii) ~¢esm(p), if ¢esa(p) B

(iii) ¢13 ¢2esm(p),if ¢1esa(p) and ¢Zesm(p).
(iv) Vxé,Ixpesm(p), if oesm(p).

(v) pesm(p).

(vi) up1.[¢],vp1.[¢]esm(p), if ¢esm(p)r\sm(p1).

(vii) (i)-(iv) with sm and sa interchanged.
(viii) up1.[¢],vp1[¢]esa(p), if ¢esa(p)(\sm(p1).

" Under the usual ordering, ¢1§_ ¢2 iff ¢1:>¢2, it can be proved by induc-

tion on the structure (complexity) of the formula that syntactic monoton-
icity implies semantic monotonicity.

DEFINITION
The assertion-language L over some structure W] , is the smallest class B
such that
(1) ¢,up-[¥(p)1,vp.[¥(p)leB, where ¢ and ¢ are first-order formulae
over (Tl , ¢ does not contain any free predicate-variables and
Yesm(p) .
(ii) if ¢,yeB then ¢a V,dv ¥,02 Y, and ¢eB, too.

Remark: If in a formula up.[¥(p)] or vp.[¥(p)] p does not occur free in
¥, then we will often write ¢ instead. Note that formulae of the form
up.[¥(p)], where y contains a p-operator, are not allowed. However, we
shall use such formulae, in which such a nesting of u-operators occur,
since they are representable in L (see [9]).

5.7

-1y -

As a well-founded set is required to apply Orna's rule, we shall need re-

 cursive ordinals. In the sequel it is assumed that there are constants

for all recursive ordinals. ®,B,... shall denote “ordinal-constants.
a,B8,... are used as ordinal-variables. :

The definition of validity of L-formulae is clear, except for the cases
up.Ly(p)] and vp.[#(p)]. Recall that wp.L¥(p)] can be obtained by itera-
tion. We now formalize this idea in the following construct by defining

B for 820 "by iterating V¢ from below".

predicates, IW

Note that the clauses (i) and (ii) below assures us that Ii is monotonic

in B8 and that there exists some ordinal k for which the fixedpoint is
reached. In fact, I (as defined below) is obtained after k iterations of
¢. Moreover, in thYs way indeed the least fixed point is obtained. This
is just clause (iii) below.

To define validity of wp.[v(p)], define predicates I$ for ordinals B by

0 .= B = .= o - o=
=AX. N =AX. ’ f 8#£0), FARe .
Iw x.false Iw AX P(x agg Iw) (if B#0) Iw AX :iolw(x)
By the monotonicity of ¥ the following holds (see [91):

(1) (asB) = (IW) = If;(;)).‘
(1) for some ordinal k: I 1% U 1°.
VY a<k Y
(1ii) Iw is the least predicate C satisfying c(x) < ¥(x,0);
i.e., Iw(§)<=>w(§,1w) and if C satisfies

c(x) < v(x,C) then Iw(i) = c(x).

We now put MEwp.[¥(p)1 & for all E,\T\l:up.[w(p)]&)

and ¥ Euwp. [¥(p) 100 <:>I¢(;) .
Next, YIlpvp.[w(p)] iff wEwp. ~Lv(p) {7p/p}].

As is usual in completeness proofs, we need the ability to code finite
sequences. In this case, to define the well-founded set necessary for
applying Orna's-rule. {

For this, we introduce the notion of acceptability of a structure ([9)].

- 15 -

5.8 DEFINITION c ¢t ¢
(a) A codircl_g schcime for a set A is a xriple <N 5,0 sucg that)
(i) N%e¢A, $ is an ordering on N+- and the structure <N‘,S > is iso-

morphic to the integers with their usual ordering.

(ii) <> 1is a one-to-one function, mapping the set \)An of all fin-

ite sequences over A to A. nz0

e
By convention A0=d; the empty sequence <> is the only sequence
of length O.

(b) With each coding scheme, € , we assiociate the following
decoding relations and functions:

¢

¢
(i) Seq (x) <> there exists XqsesXp such that x=<x1,...,xn> .

€
(Here, x=<> , the code of the empty sequence, is covered by the
convention that x=<x1,...,xn> if n=0.)

(ii) The length-function, lht, for sequences maps A into N

ani hgnce into the integers, because of the isomorphism of
$o> with <W,<>:

4 L4
1h(x) if "Seq (x) _ _
n if Sed%x)u x=<x1,...,xn> for some X,,...iX.

(iii) The projection (x)ci (as a function of x and i) is defined by

|4 4

= = S

(x)i Xy if for some X,,...,X,, X <x1,...,xn> and 1sisn
0 otherwise

5.9 DEFINITION)
A coding schi?efiseelquntgty on a structure W if the relations and func-
tions N-, S, seq , lh ()~ are all elementary, i.e., first-order defin-
able on W, _ _

(A function f is elementary if its graph is, i.e., if {(x,y)lf(x)=y} is
first-order definable.)

Note that the class of elementary relations on a structure is closed
under conjunction and quantification. This is an immedia&F consequence
of definition (5.9). It follows that the functions P, defined by

¢ 4 —
P, (x1,...,xn)=<x1,...,xn> are elementary, as
C A c
pg' (x1,...,xn)=u¢=>(Seq (u)A 1h (u)=n AVi[1.<.iSn3((u)i =xi)].
In the sequel we shall omit the subscripts C.,

5.10 DEFINITION .)
A first-order structure ‘11 is acceptable if it admits an elementary cod

ing scheme on [¢1

Next, we show that a number of predicates that are extensively used in
the sequel are representable in L.

..16..

Let R1 and R2 denote relations, elementary in ¥1.

The following constructs are representable in L:

(1) R1oR2 and R1U R2: this is clear.

* .
(ii) Ry @ this term is representable by uX.[R1oX\)I]

(wnere I denotes the identity relation).

(iii) up.[R1*p]: define ¢(x,p)= Vk'[RT(x,x')a p(x'}].1)

Then up.[¢(x,b)] represents up.[R spMx» -
Note that this implies that vp.[R1opJ is representable, too.

(iv) For predicates r and relations R, we define a construct roR:
roR holds in x iff there exists some Yy satisfying r and yRx.

("x is R-reachable from r"). So roR(x) <=>\'ﬂ|=3y[r'(y):\ R(y,x)].

Because of (5.11) we are justified in using informal notation.

A i
Let Y be a first-order acceptable structure. _
For completeness, we need, amongst others, represgntability of the guard-
ed commands -semantics. First note that the I/O-relation of a program S
only constrains the valuation of its free variables (in the output-

state). I.e., if ERSE' holds, then TRST' holds, too, provided

E|X=1|X, E'|X=1"|X and t|x%=1'|X°, where X is the set of free variables
in S and | denotes restriction. Using this observation, the semantics is
easily seen to be representable:

For example, if S=¥[b~>S'] then RS(E,E') <=>\1H=ux.[(boR')oXu “bl(x,y),
where x,y are the codes of g|B, respectively, £'|B. (Here R' denotes the

relation associated with S8', B the set of free variables occurring in S).

We construct an extension of 1] by adding for every guarded command S a

relation-symbol RS’ interpreted as the semantics of S. Since RS is

representable, we obtain a structure Wr' such that Th(¥M)=Th(¥¥1 '),
where Th(¥M) = {peL|MEp}. I.e., Th(¥') is conservative over Th(¥%1)

and we do not obtain a more expressive language in this way.

)1 (x,x')eR and R(x,x') are used interchangeably in this paper.
?

.1'7.

~ Chapter 6
CONSTRUCTION OF A u~-TERM EXPRESSING FATR TERMINATION

In this section we show that the property
n"S i{s fairly terminating" is representable in L.

n

More precisely, let S=*[o bi+Si], and let ¥flbe some acceptable struc-
i=1

ture. We construct a formula FAIR(R1,...,Rn) such that

YI|FOFAIR(R,,...,R)(£) iff "S terminates fairly in g"

Here, Ri denotes the relation associated with bi;si (i=1,...,n).

For programs with two directions, a u;term expressing fair termina-
tion, has been constructed in [13].

To give the reader an idea, we construct such a term for the program
S=*[y>0+x:=x+1 O y>0»y:=y-1]. This program terminates fairly. (Note that
for this program fairness and impartiality coincide.x

Let R1, respectively Rz, denote the relations associated with y>0;x:=x+1,
respectively y>0;y:=y-1. i

From section (3.2) we obtain that both R1 and Rzg occur infinitely
often in an infinite fair merge. '

; .
Now, we ask the question by what term the existence of an infinite fair
sequence can be deseribed. We consider such a sequence as consisting of
an infinite number of so-called impartial parts, roughly being a finite
subsequence of the infinite sequence in which every move occurs at least
once.

+

Such an impartial part can be described as follows: R1

+
oRZU R2°R1 .
This characterization stems from ([11]).
Remembering that truth of the predicate vp.[Rop] expresses the existence

S . _
of an infinite Sequence X;,X,,X,;... such that Xini+1 for i20, the ex

istence of an infinite fair sequence is captured by the predicate

vp.[(R;oRZLIR;oR1)op]. Hence, program S terminates fairly 1in § iff

. + b - - : ’
~wp.[(R]sR,U RyoR,)op] (up.[(R]eR,V RyoR)+p]) holds in E.
It can be shown that this prédicate holds for every §; consequently, S

terminates fairly.
A

PSR

6.2

- 18 -

IMPARTIAL TERMINATION

At first, we ignore enabledness and disabledness of directions. I.e., we

n
consider programs *[D b+Si].
i=1
For such programs fairness and impartiality coincide. ‘
Assume that R1""’Rn are the relations associated with the state-

ments b;S1,...,b;Sn and also assume that truth of b in a state implies

proper termination of S, (i=1,...,n) » when started in that state.

Consequently, we first consider the problem of deseribing in L the ex-
istence of an infinite sequence of R.-moves in which each of the R, oc-
s o i i

curs infinitely often (i=1,...,n).
Consider such an infinite sequence.

Since each Ri (i=1,...,n) occurs an infinite number of times, this se-

quence may be viewed as consisting of an infinite number of finite se-
quences, the so-called imp(artial)parts.
Every imppart satisfies:

(i) each R, occurs in the imppart.

(i1) this imppart is the smallest sequence satisfying (i);

i.e., any initial fragment of imppart leaves some Ri out.

To define a relation Imppart(R1,...,Rn), which expresses for every
pair of states (g,g'); whether E' can be reached from £ by executing an

imppart (w.r.t. Rl""’Rn)’ it suffices to consider impparts in which

the first occurrences of the moves are in some predescribed order, S0-

called impsegments, since any imppart of R1""’Rn is an impsegment of

some permutation Ri ,...,Ri .
1 n

More clearly, an impsegment of the ordered sequence of moves R1""’Rn

is a finite sequence in which for no 18i<jsn a Rj—move occurs before a

Ri—move has occurred.

The relation Imppart(R1;;;;;Rn) is defined inductively (w.r.t. n) as
follows: o
The case n=1 is simple: take Impsegment(R1)=R1.

Now, suppose that Impsegment(R1;...,Rk) has been defined.

Then, Impsegment(R1,.;.;Rk+1) looks like R1;...,Ri,.;.,R ;Rk+1’ where

k’ooo

the first occurrences of R1’Ri’Rk’Rk+1 are shown (1<i<k).

First, observe that Rk+1 oceurs only once; this is a consequence of re-

quirement (ii) above.

Secondly, observe that the prefix R1""’Ri""’Rk of the above sequence
is an impsegment of R1""’Rk' Hence, the sequence up to, but not in-
cluding Rk+1 is not necessarily an imppart of R1""’Rk' However, it
starts at least with an impsegment of R1""’Rk' The remaining part may

contain any (finite) number of Ri4occurrences (but no Rk+1)'
This motivates the following definitions. '

6.3 DEFINITION

Impsegment(R1)=R1

and for nz2t:

Impsegment(R1,...,R

*
n+1)=Impsegment(R1,...,Rn)o(R.lU ...\!Rn) °Rn+1'

EXAMPLE: . .
Impsegment(R1,R2,R3)=R10R10R20(R1U R2) oR3.

6.4 DEFINITION
For nz21:
Imppart(R1,...,R)= \) Impsegment(R, ,...,R,).
nt oy 1 £ 1 1 1
qreeeo i, perm o) yessyh
(I.e., in Imppart(R1,...,Rn) the order of the R, (i=1,...,n) is immateri- .
al.)

Remembering the example given in section (6.1), the existence of an
infinite sequence of impartial parts, starting in a state § is expressed
by satisfaction of a predicate Imp(R1,...,Rn) in g, defined as follows:

6.5 DEFINITION .) |
For n21: Imp(R1,...,Rn)=vp.[1mppart(R1,...,Rn)op]
(Recall that Ri denote relations.)

n
So the program s=*[o b*Si] admits an infinite fair execution se-
i=1

quence in g iff Imp(R1,...,Rn) holds in E.

Here R1 denotes the relation associated with b;Si (i=1,...,0).

6.6

6.7

DEFINITION

20

FAIR TERMINATION

I . - n
Now, consider a program s=*[n bi+Si]
i=1

in which moves can be disabled. Assume that truth of bi in a state im-

plies proper termination of Si’ when started in that state. Let .

Ri denote the relation associated with si (i=1,...,0).

The case of an infinite fair execution-sequence in which every move

bi°Ri is infinitely often enabled is easily tackled by the predicate

Imp(b1oR1,...,bnoRn).

Next, suppose that move bn°Rn becomes eventually never enabled anymore.

Then an infinite fair sequence of b1oR1,....bnoRn—moves consists of some

finite sequence of b1oR1,...,bnoRn-moves followed by an infinite fair se-

quence of b1oR yeoesD ~1oRn_1-moves in which every intermediate state sa-

tisfies "b_. In case no other move becomes eventually continuously dis-
abled, this is expressed by a predicate

* .
(b1oR1U ...\)bnoRn) oImp(b1A ﬂbnoR1,...,bn_1a'ﬂbnoRn_1). The possibility

that other moves may become disabled, too, leads to the following defini-
tion:

)1

Let n22 and suppose that 11’;’:’in is some permutation of 1,...,n.

For k, satisfying 1sk<n, define
fair(b, oR, ,...,b, oR yfin(b oR., seeesb, oR)=
LIRS UV, Leer i i In

n * n n
(U b.OR) OImp((b. A A b)OR- ’o-o’(b- A A -'b-)OR)0
g=1 + 1 L7 geknt 13 L gernt 15 Tk

REMARK:
fair'(bi oRi ,...,bi oRi)fm(bi oR ,...,bi oRi) holds in state

1M k Tk K+l Tkl n 'n |
g iff there exists an infinite fair sequence, starting in g, in which the

moves b, " oR ,e.syb, oR, are eventually never anabled anymore.
i i i i
k+1 k+1 n n

Now, finally the predicate expressing the existence of infinite fair se-
quences can be formulated.

" This definition is due to P. van Emde Boas.

6.9

6.10

-21_

DEFINITION

FAIR(b1oR1)=Imp(b1oR1).

and for n22:
FAIR(b1oR1,...,bnoRn)=Imp(b1oR1,...,bnoRn)v

v A\ ~ fair(b, oR yeeesb, oR,)fin(b, oR vee 5 oR,).
11""’in perm of 1,...,Nn i1 i1 ik Y. Yk ik;1 ’, 1n in 1
15k<n {

In the sequel we assume that the guards bi are incorporated in the rela-

tion Ri’ Also, with Ri we always associate bi as enabling-condition.

LEMMA

W] EFAIR(R,, ... R)) &

(W1 Imp(R,,...,R,) and for all k such that 1S k<n

n * n n
L41= A (VU R,) > Imp(A by Ry ..., A b, oR;)1,
11""’in perm of 1,...,Nn i=1 3=k+1 J 1 j=k+1 J K

15k<n

PROOF /

For n=1 this follows by definition (6.8). So assume that n22. Then
the lemma follows from definition (6.8) , definition (6.7) and section
(5.2)(the representability of the greatest fixed-point operator in terms
of the least fixed-point operator).

As a last preparation for the soundness and completeness proofs, we
mention the notion of the weakest precondition:

DEFINITION _ _ .
An assertion p=wlp(S,q) is the weakest liberal precondition Ww.r.t. a com-
mand S and a condition q if

(1) WE{p}s{q}

(ii) For each r Wif{r}sS{q} implies WiErop.
Here {p}S{q} holds iff for all E: if input state g satisfies p and if S
terminates, when started in E, then each output state satisfies q (par-
tial correctness).

n
Let S=*¥[O bi+Si] and let Ri denotes the relation associated with bi;Si
i=1
(i=1,...,0).
It has been shown that for each assertion q the wlp(S,q) is definable in
L (see [3]). It is useful to mention that in this case

n P ¢
wlp(S,q)=(({) Ri) o A "'bi->q).
i=1 i=1
nif the repetition S terminates then q is satisfied in each final state,
provided wlp(S,q) is satisfied at the start of the execution".

6.12

22

DEFINITION
An assertion p=wp(S,q) is the weakest precondition w.r.t. a command S and
a condition q if

w1 Elplslql and for all r, WElrisiql implies¥TlEro p.
"S always terminates in a state satisfying q, provided wp(S,q) is satis-
fied at the start of the execution" (total correctness).

The key theorem of this section is the following

THEOREM
n

For every £: wp(fair(*[o bi*Si])(£)<¢$
i=1

n n
YNE-FAIR(R, , ... ,R DA (CU Ry) 0 ATD)+q)(E),
1 Y e
where Ri are the relations associated with bi;si (i=1,...,0).

PROOF
We have to show that

n
Wiklrlfair(*[o b1+Si])[q:\ =
i=1

n « D
¥l ke > (FFAIR(R, oo R) A (U R,) o Abya),
i=1 i=1
n
n=y Suppose thatWlrlfair(*[o bi*Si:I)[q:I holds.
i=1
Choose some state £ such that tMEr(g) holds.

Assume to obtain a contradiction that WFAIR(R,, .. .,R) (E).

Then this leads immediately to a contradiction, since this implies
the existence of an infinite fair execution sequence, starting in g.

So \‘m:"'FAIR(R1,...,Rn)(€) holds.

n « D .
It remains to prove that MEWC VL Ri) 0 A\ﬂbi)*Q)(E) holds, too.
i=1 i=1

n « D
To do this, choose some &' such thatrﬂkd(v Ri)) Auﬂbi)(i,i').
i=1 i=1

n
Clearly, then also Wifair(*[o bi+Si])(E,€'), and so by the hy-

i=1
pothesis WIfFa(g').

6.13

23

n « D ‘
m.n Suppose that Wl o ("FAIR(R,, ... R)A ((1\'.,1Ri.) oi/:1"bi)*q)- Choose

state £ such that ¥Er(£).

Since, by hypothesis ‘T1FﬂFAIR(R1,...,Rn)(£), the repetition always

terminates fairly. To prove, that in this case, each final state sa-

tisfies q.
n
Choose some E' such that Wifair(*[o b5, 1(E,€").
i=1
n « 0 .
Clearly, then also E((V Ri) ° ﬁ*bi)(E,E') and so by the hypothesis
1=1 i=1

fWEaq(g'). holds, which had to be shown.

COROLLARY
For every &:

n

wp(fair(*[o bi*Si]),true)(E)<:$
i=1

W EFAIR(R,, ..+ 5R) (E).

PROOF

Immediately from theorem (6.12).

This corollary states that fair termination of a repetition is indeed ex-
pressible in the p—-calculus.

The remainder of this paper deals with the soundness and completeness
proof of our proofsystem.
Note that the only rule for which this is non-trivial 1is Orna's
rule.
The proof that this rule is both sound and complete is given by induction
on n, the number of directions of the repetition. The case of only one
guard is trivial, so assume that nz22.

3 — A

In the next two chapters, Qe prove completeness and soundness of this
rule under the induction hypothesis that for all repetitions

k
S=*[o bi*Si], where k<n, and for all r and g,
i=1
kK k
W E [rifair(*[o b,;»S, 1Iq) <> Th(IN)Hrlfair(*[o b,»5;1laql
R T i=1

where Th(¥fl)={peL | &N [=p}, i.e., we assume that the theorem has been
proved for syntactically simpler fair repetitions (meaning programs with
less then n directions).

e e e R AP A e

7.1

..2)4_

Chapter 7
COMPLETENESS

THEOREM

Let W be a first-order acceptable structure. Then our system is relative

complete, meaning that for any statement 3 and assertions r,qeL:
wilrisial = Th(v)Hr1slql, where Th(M)={peL|wp}.
PROOF

n
The only non-trivial case is when S=fair(*[o bi+Si]), and n22. In
i=1
that case, we must show that Orna's rule can be applied.
Assume that Tﬂ}:[r]S[q] holds. By theorem (6.12), we may assume, too,

T n n
that % Fr 2 ("FAIR(R,,...,R a ((UR Yo A b)),
n joq 1 oga 1

At first, we must define a well-founded set W and a predicate
w:W*(States*{true,false}), ranking every state (reachable by S).

To do so, We observe that the usual approach of counting moves does
not work, because not every move need to bring the program closer to ter-
mination. (E.g., in case of Dijkstra's random number generator (see sec~
tion (3.1)) move R1 will not help reaching termination.)

Now S terminates fairly and hence also impartially (see section
(3.4)). At any time, there is at least one decreasing move (otherwise
there exists a state in which no move would bring the program closer to
termination, resulting in the existence of an infinite fair sequence;
contradiction). So, if in a successive sequence of iterations, "every
enabled move has been executed at least once", then certainly the program
has come closer to termination. This shows that viewing execution-
sequences as consisting of impparts, is a natural thing to do. Unfor-
tunately, counting impparts does not quite work, because we have to rank
all states in order for Orna's rule to apply.

Consider such an imppart. It suffices that the states reached by exe-
cution this imppart, are ranked in such a way that it reflects the "pro-
gress" that is made w.r.t. executing this imppart itself.

Now a move leads to "progress" if it is a new one that has not been
made in the imppart as yet.

This gives the intuition behind the definitions of W and ™ that we now
develop. '

From WM EFAIR(R,,...,R)) = WnInp(R,,...,R), we obtain that

¥¥1 EFAIR(R -« - R) = 0 Fup. [Imppart (R, , ... R)>p], by applying the
definitions.

As we saw in section (5.2) least fixedpoints can be obtained by
jteration: Define Tt by 1(p)=k£.(1mppart(R1,...,Rn)*p)(ﬁ)

Then there exists some ordinal 2 such that

rk(false)=up.[lmppart(R1,...,Rn)+p]. (*)

Let o denote the least ordinal satisfying (¥).

If B<a then B(false)(£) holds for some g iff in £ we are at most B imp-
parts away from termination.
This gives us a way to rank the states related by impparts.

..25;. i
"Oof course, for this idea to work we need to show that -tB(false) is
representable by a formula in L:
(Note that o is a recursive ordinal since it is less than or equal to the
ordinal associated with the execution tree of S, which is recursive, cf.

0.

THEOREM

Let ¥1l be a first-order acceptable structure.

There exists a formula ¢ in L such that for all E and all ESE

B(rarse)(£) holds iff YHE6(B)(E)
PROOF

Define ¢(B)§ur;[3a<8(1mppart(R1;;:;,Rn)*r(a))]; By induction on BSa we

prove that for all B<a and all &, B(ralse) () iff WEo(B)(E).

B=0: trivial, since for all E, To(false)(E)<:>false
and mE6(0) (£) <>Wi=false(E) <> false.

e——

Inductionhypothesis (IH): suppose that for all A< and all &,

(ralse)(£) holds iff WTEe(R)(E).
For B#0 we have that

m Eo(B)(E) &

w kmr.[3a<§(1mppart(R1,...,Rn)+r(a))](€) (definition of ¢) <&
1 E3a<B(Imppart (R, ... JR,) +¢(a))(E) (fixedpoint property) <

for some A<B, W{E(Imppart(R,,... ,Rn)*¢(7))(ﬁ) =

for some A<g and for all E', \f1 =l Imppart (R, voeesR)(E,ET)D oM (EN)] =
for some A<p and all for E',

WL Imppart (R, -« « R) (E,€")] =" (false) (') (IH) &
for all &', \
rlkimppart(R1,...,Rn)(g,g') = (I<B 1 (false)(E')) &

for all E',“1Fﬂnmpart(R1,...,Rn)(E,E') =2 | M(false) (E') &

_ <8
TB(false)(E).

oL

7.3

7.4

7.5

- 26 -

Now, we define the well-founded ordered set W and the ranking predicate
n: Each WeW, ‘w,_not minimal, consists of two components: the first one
counts impparts, the second one records "progress" within the last (in-
complete) imppart, and is a sequence of length at most n (the number of
directions of_the repetitioﬁ"'), which records the directions within this
imppart, that have already been taken.

DEFINITION
seqn(s)=Seq(s)A 1ih(s)snaAvY i[(1$i81h(s)) 2 (1S(s)iSn)]n

AV 1,3[(181,351h(s) A i#j)> (s)i;‘(s)j].
(ef. definition (5.8))

Note that only directions are recorded in ssseqn and each direction at

most once!

DEFINITION

W_ ={(%,s)|0sXsa a seq (s)}V {0}.
a,n

The ordering 4 defined on W_ 1is the following:
04 (%,s) for all (A,s)eW_ and
a,n

(71,s1)4 (X,.8,) iff (K1<X2)v ((X1=T2)A 1h(s,)<1n(s,)A
A VAL (151510(8,)) D (8,)3=(87)41)-

DEFINITION)
The predicate m:W_, *(States*{true,false}) is defined by:
(’.,n
- 3 n x 1
n(x,<>)=1" (false)a rof LJRi) AV bi’
= i=1 y
- *
1r()\,<i1,...,ik>)=1)‘(false)o(Impsegment(Ri - Yol \J Ri Y IA
1 kK i=1 7]
n « D
aro(UR,) A VD (for 1sk<n),
R i . i
i=1 i=1
_ -é' n * n
LICVES PFRRIYS gl || <"(false)a ro(U R;) A Vb,
—B'<7 i=1 i=1
_n
w(0)= /\‘Vbi.
i=1

REMARK _ _
Note that accessibility is demanded in case w)—O(i.e.,O{ w).

If 1sk<n and w(7,<i1,...,ik>)(a) holds, then there exists a state &' in

which the program is at most % impparts away from termination. It takes
a fragment (i.e., an initial part) of an impsegment to reach £ from &',

K
namely Impsegment(Ri yeeeaRy)o(\,JRi)
1 K j=1 73

*

7.6

T.7

-27.—

Satisfaction of the clauses (a),...,(d) of Orna's rule for this
choice of W and w follows from several lemmata and definitions, by check-
ing that its four clauses hold indeed. §

Defining Stw and Dw for w0 is simple now. If we are at the start

of an imppart (i.e., w=(%,<>) or w=(7,<i1,...,in>) for some ASa) then
every move leads to eventual completion of this imppart.
Otherwise, w=(A,<i1,...,ik>) for some A, 1sk<n, and only moves different

from Ri ,...,Ri lead to eventual completion of this imppart.
1 K

DEFINITION

Let wew_ , w=(},8).
a,n

If 1n(s)=0 or if lh(s)=n then D_={1,...,n} and St =d. _
If 0<lh(s)<n then D _={i|(15isn)A VjSlh(s)[(s)j#i]}. st ={1,...,n}-D.

Note that for all wswE n, W) O:Dwn Stwsd, Dw#d and Dw\JStw={1,...,n}.
?

LEMIA
Let weW_ , jeDw; (i.e., Rj is a decreasing move).. Suppose that YT
is a fizéz—ordgr acceptable structure and that

n n

* :)
M Er o ("FAIR(R,,...,R)A ((U Ry o A "b,)+q) holds.
i=1 i=1

Then Th(¥) w(w)A WwhOA bjjsj[ﬂvg w m(v)] holds, too.
PROOF

We have to prove that for all E,E'eStates such that \T]kﬂj(g,g')s

MGG wy 8 (8) W m(oen)).

Choose states £,£' satisfying VTIFQJ(E.E') and suppose that
YriE(n(w)A w)y 0)(E) holds.

We distinguish two cases:
n

i=1
In this case, W[Em(0)(£'), and we are done.

1
) Remember that Rj is the relation associated with bj;sj‘

..28..

n ' .
(b) m|=Vb1(s').‘ . S (D)
i=1

n
Since m|=1r(w)(£) holds, Wlfre(U Ri)*(g) holds, too.
i=1

. n
Le., WIE3E Ir(E') A CURD (E11,0)]- (11)
i=1

n .
Now (U R,) R, (uai)* (fact (5.3)).
i=1 i=1

So it follows from h‘H:RJ.(E,E') and (ii) that

. - n
mhﬂa"[r(a"n (URi)*(s",a')]; i.e
=1
\’ﬂ}:r'(UR) *en). (1i1)

i=1

Let w=(},s). To prove“ﬂ:ﬂv(w w(v)(E').
We distinguish three cases:

(1) 1h(s)=0, so 8=<>.
Since m‘:-rr(w)(i),ﬂﬂ:t (false)(&;) holds. Consequently, it follows

that W{}=3¢" '['tx(false)(ﬁ")h RJ(E' e .

Hence, from Rjg rR' (fact (5.3)) we have that

Wik3e [(false) (&') ARJ(E'1,EDT, Lo, (< (fa1se) R} (EM).

Together' with (i) and (iii), “1]=1r(x <j>)(g') follows and hence
wmESvg w m(v)(E').

(2) 1£1lh(s)<n, so s=<11 ..,1k> for some 11,...,ik such that

{11""’1k}‘{ ,...,n} and 1sk<n, From MEn(w) (E) we derive

W}:(-t)‘(false)oImpsegment(Ri yeoes) (U R,)*)(E).
1

K k t=1 t
: *
Since Impsegment(R. ,..) (V R, oR,

e t=1 t J

=Impsegment(Ri1,...,Rik,Rj)

(definition (6.3) and j#i ,...,i for jeDw)

R.)o (ua RO (fact (5.3).

i BRSO
This, together with the fact that m]:n (£,E') holds, implies that

cImpsegmen‘t:(Ri yooos

- 29 -

11| TA(false)oImpsegment(R PN ,R.)(E') holds, too. It fol-
e i ik J

lows together with (i) and (iii)that m|=n(i,<11,..,,ik,j>)(£')

holds. _
Again, WA w(v)(g') follows.

(3) lh(s)=n. _ ! - -
From \Tl\:w(k,s)(t;) and definition (7.5), the existence of a B<A

such that YHET(B,<>)(E) follows.
As in case (1), mﬁvA(B,O)[n(v)(E')], and 80

W B 4 (7,) Im(EN D

LEMMA

Let weW_ ,ngt-,w,(i'.e.,Rj is a steady move). Suppose that (¥
a,n_
is a first-order acceptable structure and that

, i n n
W(Ero ("FAIR(R , ... R A (CVR ' o A b,)*q) holds.
1 n e 1 gt t

Then Th(¥t) n(w)a wr0 Abj]Sj[av‘w n(v)] holds, too.

PROOF
We have to show that for all £,E'eStates such that mt:Rj(E.E'),

(G0 A 03 () = THEIvaW w(V)(ED.
Choose states £,£' and suppose that Y E(m(w)a w)0) (g) holds.
Let w=(},s). As in lemma (7.7) there are two cases.

n

(a) M A, (E).
i=1
Trivial.

n
(v) MEvV bi(E'). (1)
i=1

To prove M E3vqw pi(v)(E').
Note that lh(s)#0 and 1h(s)#n, because ih(s)=0 or 1lh(s)=n implies
that Stw=d.

So let w=(’i,<11,...,1k>), 1sk<n, {11,...,1 e {1,...,n}.

4

Since jesSt , j=i, for some t, 1Stsk.
Now, ¥t1 t:n‘('w)(g), S0

— . k
“11}:(Tx(f‘alse)oImpsegmem:(Ri ,eeesR; Jo(\J R,)*(E), i.e.,
—_— i i
1 K t=1 't K

m‘:ag"[r)‘(false)(i")h Impsegment (R, ,...,R; Yo(U R
4 L e 1t

*
Yy (g'',E)]. (ii)

K k
* *
since (\JR,) oR. €(UR y" (fact (5.3)), we obtain that
i J i
t=1 "t t=1 E

¥ k
Impsegment(Ri ,...,Ri Yo(\) Ri YoR.E Impsegment(Ri seeesRy Yol \J Ry)*
1 A 1 t t=l 't

—30_

From (ii) and the fact that \11|'=RJ(E,E') it then follows that

) 3 k
\'\'(|=3g-[1’\(fa15e)(gvv)t\Impsegment(Ri veresRy Do U R, Y (e, e,
1 t=1

k t

!

d.e., \’“|=(-r)‘(f'alse)oImpsegmen'c,(Ri veeesRy)o(U Ry)*)(E')], (iii)
1 k t=1 "t

1

Moreover, as in the proof of lemma (7.7), we see that

n
MU R)(E') (iv)

=1
Now, (1), (iii) and (iv) imply WlEm(X,<i,,...,1>)(&"),
whence I |ﬁv$w w(v)(E").

LEMMA
\ , n « N
Suppose that \'\1|==r‘9("FAIR(R1,...,Rn)i\ (Vv Ri) o A "bi)+q) and the
i=1 i=1

inductionhypothesis (i.e., for all k such that 1sk<n

k
WiElrlfair(*[o

K
bi+Si])[q]<=>Th(\‘ﬂ)|—[r]f‘air(*[o b;»s;1)[ql) Dboth
i=1 = *

, 1=1
hold.

Then Th(YR)Hw(w)a wpOlfair(*[o b, 4 A "bj-*si])[tr'ue] holds,
ieSt jeD
W W
too.
PROOF

Observe that for all weW_ such that w) 0, D *¢.
o,n

So Stw§{1 ,...,n}. It follows that the program

St=%[o b.,Aa A "b.*Si] contain less directions, than the original
ieStw jt-:Dw

program, SO We may apply the inductionhypothesis. If Stw=d then by
convention S'=skip (x:=x), in which case the lemma is trivial. So

assume St #d.
w

After a possible renumbering, we may assume, too, that Stw={1,...,k},
1s&k<n. So, Dw={k+1,...,n}.

n

Let b' denote A ~b,= A "b,, and let R!=b'oR,.
: J i i
JeDw J=k+1

k n
By induction Th(¥W1)H{m(w)A wy0lfair(*[o b, A A ﬂbJ+Si])[tr'ue]
i=1 J=k+1

iff WIE(x(w) A w) 0)2 FAIR(R], .. - Ry) (ef. section (5.2)).

So, to prove the lemma, it suffices to show that
YiE(n(w)A w) 0)D AFAIR(R],...sR[).

This follows from the next two claims:

- 31 -

CLAIM 1
Under the aforementioned assumptions,

W E(n(w)a wp0)2 '-'vap(R;,'L;L,Rl'()) holds.

PROOF (of claim 1)
—Suppose that TyET(W)(E)a wy 0.

n . n %

Then (Tl Ero({ Ri)*(g), i.e., W Ee'Ir(e')A (U R (E',8)].
i=1 i=1

As a consequence of our assumption, we obtain

MEr> “FAIR(R,,... ,Rn) and so

tN ESe' '[FAIR(R,,...,R)(E")A(\J R;) *(g',£)]. Thus,

i=1
n
m|=3a"[((u Ry) *snImp((A b)oR1,...,(/\ 7b,)eR))(&:")(UR Y e,
i=1 i=k+1 i=k+1 : i=1

(lemma (6.9)). Consequently,

n
(M e LU R > Imp(R? .. R NG (U Ry Y er,el,
i=1
from which YR Imp(R],...,R;)(E) follows (definition of R+p). ®

Now, if k=1, the lemma follows immediately from claim 1 and defini-
tion (6.8). So assume that ka2.
CLAIM 2

Under the aforementioned assumptions,

M E(n(w)4 wy) A -vfair(Ri ,...,R i)rin(RY ,..+,R'}) holds.
11,..., perm of 1,...,K 1141 k
1514k

PROOF (of claim 2)
Let 1S1<k. For simplicity we prove that

M E(r(w)a Wy 0)o 5fair(R;,...,Ri)fin(Ri+1,...,R&) (any other permu-

tation is treated in the similar way).
By definition (6.7), we must show that

K K
Y E(r(w)A wy 0)a((U R}) *saImp((b'V A b)eRI,...,(TBTV A 7Dy)eR Y
i=1+1 i=1+1

holds. This is a consequence of the following chain of implications:

ME(T(DA wy 0)(E) =

Mere (\J Ry) *(£) (definition (7.5)) =

rnkagv'[p(g")A (\J R,)(E",E)] (section (5.11)) =
i=1

.10

-32.—

. :) n
»‘TIFag"[ﬂFAIR(RT,...,Rn)(E")A (;31Ri)*(5",5)] (assumption) =

n % n
aEJe [V R, > Imp(A b, oR,yeees
= g1 PISPEIRE AL B 1o1
(lemma (6.9))
Hence, for all t=1,...,1

k
("b*'v A T
i=k+1
(bry A ﬁbi)A b'oRts
i=l+1 .
k
(b'A A "D.)oR =
i=1+1 i t

n Kk)
(A b, A A T YoR, =
i;k+1 i i=1+1 i t
A ﬂbioRt (since 1+1sk<n).
i=1+1

,8
1) °R¢

So (*) implies that

g n " . kK L k .
T ESer 1 [((URY™AImp((Fb* v A b,)oRI,1ue, ('Y A b)eRDIE! A
=1 1=1+1 i=1+1
AU Ri)*(F,",E)] and finally
n *1=1 " .
ME(CU R > Imp(('v A 7b,)eRj,..., (D' Vv A b,) oRy))(£).
j=1 i=1+1 jal+1
(using fact (5.3)).
COROLLARY (theorem(7.1))
n n
MErifair(*[o b,»8;1lql = Th(W)Hrlfair(*[o b,»s;Dlal.
i=1 i=1

PROOF

From theorem(6.12), chapter 4, definition (7.4), definition (7.5),

definition (7.6), lemma(7.7), lemma(7.8), lemma(7.9) and the follow-
ing two observations:

(1) Th(M)}r>Iv w(v). For let EeStates satisfy N (g).

n
If MEA "bi(a), then we are done, because ¥ Ew(0)(g) holds.

i=1
n
Hence, let Wl V b, (£). (1)
i=1
n o - ;
That M Ere(V Ry (8) holds, follows immediately. (i1)
- 1=1

Since, Y Fr(g), also W FAIR(R,, .. ,Rn)(g), and consequently

W Imp(R,, .- R (E) . (2.€0s Et%(false) (£)) (1i1)
1t follows from (i), (ii), (iii) that w (e, <) (8) holds.

n . n *
A b oRDIETINC VR (611,801 (x

33

n .
(11) ThWDF(®)D ((A)A Q).
=1

Note that actually we showed that

n n
M1Er 5 (FATR(R ... R DA (U R o Ay)7a) =
i=1 i=1

n
Th(})Hrlfair(*[O bi+Si])[1r(6]. (%)
i=1
_ n
Th{ ¥)}r(0)D A by follows immediately from definition (7.5).
i=1 -

As a consquence ofnthe hypothesis,

MErs (((UR) o Ab,)wa).
1= & gt t

So, by (*) {1 n(0) > q. Now, Th(¥Wl)pn(0)> q follows.

Chapter 8
SOUNDNESS

Soundness of Orna's rule amounts to the following

8.1 THEOREM
Let 1 be a first-order acceptable structure. Then

n
Th(¥i1)Hrlfair(s)(q] =W Elrifair(s){ql, where S=*[o b,+8,] (n21),
i=1

PROOF™

Again, the non-trivial case is when n22.
Assume that Th(¥¥1)}{r1slql.

By theorem (6.12) it suffices to show that

n n
* .
YTlEro ("FAIR(R,, ..., R)A (CU Ry o A 7b,)>q) holds, where Ry is the re-
i=1 i=1
lation associated with bi;Si (i=1,...,0).

Let W and w be the well-founded set, respectively, the ranking function,
that where used when applying Orna's rule.

8.2 LEMMA

n
Assume that Th(¥TD)Hrlfair(*[o bi*Si])[q] holds.
i=1
Then ¥Wr> “Imp(R,,...,R) holds, too.
PROOF
Let V‘\km(a) and suppose, to obtain a contradiction, that

‘T\Fﬂmp(R1,...,Rn)(£) holds. Since Dwﬁd for wy 0, there exists an infin-

ite decreasing sequence in W, starting in some weW such that M (W) (E)
holds. This contradicts the well-foundedness of W.

8.3

—3"-
LEMMA
n
Assume that Th(¥)Hrlfair(*[o b,»S,1)[q] holds.
i=1

Let k be given, 15k<n, and assume furthermore that i1""'in is some per-
mutation of 1,...,n (n22).

Then {Wjr> ~fair(R; ,...,R;)fin(Ry y+-+»R;) holds, too.
1 k k+1 n
PROOF

Assume that YH[r(g) holds for some E.

Possibly, after a renumbering, let 11,...,in be the identity permutation
of 1,...,n. Hence, we show that

NTFhfair(R1;.;.,Rk)fin(Rk+1,...,Rn)(a) holds. According to

definition (6.7), it suffices to prove the following
CLAIM

For all E' satisfying \11|=(UR) (g,8"),

n
m|="VImp(b'oR1,...,b'oRk)(E') holds, where b'= A b

i=k+1 .

PROOF (of the claim)
Assume this 1s false. Both § and g! are accessible;states, i,e., both

\'M=P(UR)(£) and ml:r(UR) (') hold.

From our assumption that Tﬂ]:lmp(b oR1,..., oRk)(E') holds, we infer the
existence of an infinite fair sequence of moves b'oR1,...,b'oRk. As a

n

consequence of our assumption that'rh(ktl)kfr]fair(*[o bi+Si])[q] holds,
i=1

we conclude that Orna's rule has been applied. Consequently, related to

this sequence of moves, is an infinite sequence w1,w2,w3,... in W such

that w 2w, ., and m}=1r(w1)(£'). Since W is well-founded, eventually

wi=wi+1 .

This implies that none of the moves eventually taken, are decreasing
moves.

Furthermore there is a state g'' such that
*

(a) Yﬂ}:(lmppart(b'oR1,...,b'oRk)) (E',E""),

(b) YH[EImp(b'eR,,...,b"oR J(E""), and

(¢) there is a w'' (not mlnimal) satisfying w"Sw

Mr(w' ') (E'") and {1,...,K}E St ,,.

Let Stw,,s{j1,...,jk+m} for some m20, where jtst for t=1,...,K.

(so Dw"’{jk+m+1""’3n}‘) Now, w''>0 and

- 35 - |
Th(tN)H'_-rr(w' ')A w''>0]fair(*[op A A T *Si])"tr'ue] 'hol_ds by
1eSt o 1 JeD,,,

the third clause of Orna's rule.
Hence, as a consequence of the inductionhypothesis and the fact that
T E(n(w ')A w>0)(E''), we obtain that

: n n :
WEFAIR(A b, oRy AL MICARD (1)
tek+m+l “t 1 t=k+m+1 Yt “k+m

i.e., there is no infinite fair sequence of steady moves only in
which no decreasing move is ever enabled.)

There are two cases:
(A) m=0.

Then (1) implies that VH|EImp(b'oR,...,D'oR)(E'") as
Jt-t for 1stsk (using definition (6.8)), contradicting (b).

(B) m#O0. o . : _
Note that for all S'Jk*'f\"‘"‘j-k+m‘the actually enabling-condition
n , n
for A b, oR_1is A T, ADb_.
pektmtt St ® tekemel b ° ,
By (i) and definition (6.8) n '
: n n coon ... A b, oR, ME™
m ‘:"'fair‘(A) °R1 yesos A b oRk)fin(A -'bj ORJ ' pkrm+1 Jt jk+2n
t=k+m+1 Jt t=k+m+1 t t=k+m+1 t k+1 :

nolds. So by definition (6.7)

k+m n

WMEU(A D

* .
)oRj) *"Imp(CoR1,...,CoRk)(E") holds, too,
1=1 t=k+m+1 4

t

n k+m n
where C= A "b, & A " A "bj A bj .o
t=k+m+! Jt s=k+1 te=k+m+l St Vs
Hence, we obtain miz"lmp(CoR1,...,CoRk)(E").

n
as WMlc- A b, this implies

t=k+1
n n
Wi Imp(A “boRy,eees A b, oR I (E'"),
t=k+1 t=k+1

again contradicting (b).

This proves the claim and hence the theorem.

y n n

* . -

(\‘1(1}:- Y Ri) o A -vbi)->q) 18 ¢pjvial Under the aforementioned assumptions.)
i=1 i=1

