A Note on Gaussian Elimination with Partial Pivoting on an MIMD Computer

Marinus Veldhorst

RUU-CS-84-1Y4
December 19814

Rijksuniversiteit Utrecht

Vakgroep informatica

Budapestlaan6 3584 CD Utrecht

Corr. adres: Postbus 80.012 3508 TA Utrecht
Telefoon 030-53 1454

The Netherlands

A Note on Gaussian Elimination with Partial Pivoting on an MIMD Computer

Marinus Veldhorst

Technical Report RUU-CS-84-1U4
December 1984

Department of Computer Science
University of Utrecht
P.0.Box 80.012, 3508 TA Utrecht
the Netherlands

i
f
i

i

A Note on Gaussian Elimination with Partial Pivoting on an MIMD Computer

Marinus Veldhorst

Department of Computer Science, University of Utrecht
P,0.Box 80.012, 3508 TA Utrecht, The Netherlands.

ABSTRACT

A parallel algorithm for an MIMD computer will be presented
that runs in time n2—1 and needs 0.3536..n processors in
order to perform a Gaussian elimination with partial pivot~

ing on an nxn matrix.

Keywords: Numerical linear algebra, parallel algorithms, Gaussian elim-

ination, MIMD computer,

1. Introduction

The problem of solving a system of linear equations on an MIMD caom~
puter has been dealt with by R.S. Lord, J.S. Kowalik and S.P, Kumar (cf.
[1]). They solved the problem with a special selection of tasks of
Gaussian elimination with partial pivoting (see Figure 1). This selec~
tion led to a precedence graph for the set of tasks J = {Ti
15isn-1,183sn} (see Figure 2). The precedence relation << is defined as

Ti((T; {ff 3<k 1i=m, 1<m. (1)
1f Ti<<T; the execution of task T; is not allowed to start before the
execution of TJ is finished. The authors assigned to each task a weight

i
W that denotes the number of time steps required for the execution of

this task. They considered one time step to consist of one multiply and

pParallel Gaussian Elimination

Program LUDECOMP(A(n,n))
for k := 1 to n-1 do
Find p such that
|a(p,k)| = max(|A(K,K)|,eees|Aln,k)])
PIV(kK) := p {pivot row}
interchange A(PIV(K),k) and A(k,k) } T
¢ = 1/A(Kk,k)
for i := k+1 to n do
A(i,k) := A(i,k)*c {elements of L})
for j := k+1 to n do
interchange A(PIV(k),j) and A(k,J)
for i := k+1 ton do b Ti,
A(1,3) := A(1,3) - A(1,k)*A(K,])

K
k

J>k

one subtraction or one multiply and one compare; Thus they ignored any
overhead for 1loop control. This assigned the following weights to
tasks:

J n+1-1 if i=j
WiTy) ’{_n—i if 1< (2)

In this way the precedence graph with the weights becomes a weighted
graph; They observed that the longest path consists of the tasks

1
1

n

1 2 2 T3
n-1

T1, T1, T2, 51 sees Tn- » T .
Any scheduling of the tasks on several processors will therefore require

at least

n-1
T (W(Ti) " W(Ti+1)) = n2-1 (3)
=1

time.

The authors of [1] specified a schedule of these tasks on /2] proces-
sors such that these processors execute the task system in time n2~1.
With this result they obtained an efficiency Ep of 2/3 for p=[n/2] pro-

cessors.,

Parallel Gaussian Elimination

e s sy e
o g o s 3 i o L wd
o Tl Lad o be Bl

o B o s ek g e ey e o 3 P I P R P ST Y TPP- S X Py~ § 2
R s = o i ta s e b T ot la T Ta Lot s tala Ll BAEMAARRES S

&
)
(o

Fig. 2. Precedence graph for task system given in Fig. 1.

aaﬁ#AaAhéAA&AééahAanAasasnnaaaéé&Aaanaﬁaauﬁaé4@5&4&anaﬁaﬂ&3ﬂﬁa&aﬁaéaA&

E = 1lim S _ /p = 2/3 in which
n#>00
Sp = t1/tp is the speed up and

ti is the execution time when i processors are used.

They derived also an asymptotic lower bound of
an processors (a=0.34729...) (4)

that can execute the task system in time n241 (a¢ is a solution of the

5 3 =

Parallel Gaussian Elimination

equation 3a-a3=1). This lower bound on the number of processors gives

an upper bound on the efficiency of
1/3a = 0.9589... for large n.
In the next section we will derive a smaller number of processors that

ean execute the task system J in the same time n2—1. We will prove that

gn processors will do the job for each B with

1+\J2n"+2n+1

Rn 2

Thus B is rather close to the lower bound (4) and the corresponding

asymptotic efficiency for the smallest B will be

EBn = SBn/Bn = 0.9428..

2. A more efficient scheduling

In this section we will present a scheduling of the task system J

on p processors P1,§;;,Pp (p2(1+\|2n2+2n+1)/u) such that the tasks of

J can be executed in time n2-1; Let us define the following sequences

of tasks
1, 02, 02, 03, e o1 Lnloon
ryo= {T9s Tys Toi Toi weed Tpogs Tpogs Tooy
(5)
3, pd, o o ‘
r‘j = {T1, T2, s0 0y Tj—2} BSjsno

Observe that (i) the tasks in one rj must be executed in the order as
they are enumerated in (5) and (ii) that no task in r, (123) is a direct
predecessor of any task in rj (j23) in the precedence graph., We will
use the term r-sequence to denote a sequence rj of tasks for some J.

With the weight W(rj) we denote the sum of the weights of the tasks of

Parallel Gaussian Elimination

r..
Niw we will look for a scheduling of tasks such that all tasks of one
r-sequence are to be executed by one processor. Thus, the problem of
scheduling the task system is split into two problems:

(1) How to assign r-sequences to processors?

(ii) How to schedule for each processor Pj the tasks of the r—sequences

assigned to PJ?

The assignment and scheduling chosen should allow all tasks to be exe-

cuted in time n?—1 satisfying all precedence constraints,

Assignment of r-sequences.

P1 executes all tasks of r1,

)od
Po-3 executes the tasks of -3 P h-2p+3+] and P h-2p+2-3
if 0sjsn-2p-1,

p - - -
Po- executes the tasks of rn—j and rn—2p+3+J if n-2p-1<jsp-2.

Proposition l; With p2(n+1)/3 each r-sequence is assigned to some pro-

cessor.,

Example. With n=16 and p=7 we obtain the assignment
P, executes all tasks of r1,

P; executes all tasks of r11 and r10,
P3 executes all tasks of r12 and r9,
Pu executes all tasks of r13 and r8,
Ps
6

executes all tasks of r1u and r7,

P, executes all tasks of r ., rg and r .

3

P_ executes all tasks of and ru;

7 r‘16’ rs S
The r-sequences r3,...,r16 are assigned to processors Pz,...,P7 in a
snake-like way.
Let us now consider the scheduling of tasks on one processor. If we do
not want P1 to wait, then there must be deadlines for tasks of rj (j23)
that precede directly some task of r1. Thus we have deadlines dj for

each r,:

J

rarallel Gaussian Elimination

j-2
dy =mn+ 2 £ (n-h) = n(2j-3)-(3-2)(3-1). (6)
h=1

On the other hand a task Ti cannot start before task Ti is finished,

Thus there is a starting time s for each task:

3 i 2
S(Ti) = 1+n + 2 T (n-h) = 2ni-i"-n+i+
h=1

Whether a process Ti can really start on its starting time (i.e., all

J

m
processes Tk<<Ti

have finished then) depends on it whether P1 had to

wait or not.

Let us now give the scheduling of tasks on one processor; For this we
distinguish between processors that have been assigned two r-—sequences
and processors that have been assigned three r-sequences. As already
observed in [1] the scheduling of the tasks of two r~sequences on one

processor is not difficult.

Schedule S.
(1) If n-2p-1<jsp-2 the tasks of rn-2p+3+j and rn—j are scheduled in

the order (with m=n-2p+3+j and gq=n-j) on processor Pp—j

m

T mn-2’

1, T1, T2’T] ooo’T Tm_2, Tm_.‘, TR NN Tq_zo

(2) If 0sjsn-2p-1 the tasks of r and L are

n-2p+2-3° ' n-2p+3+]
scheduled in the order (with K=n-2p+2-3, m=n-2p+3+j and gq=n-Jj) on

processor P

p-J
k m- .k m- - - k m
Ty Tys Tor Tor eees Teopr Tk-2?
m qQ M 9 m q
Tk—1’ T1, Tk, T2, [2 Tx+k-3, Tx,
Txak-2° Tx+k-17 °*°* Th-27 Txe1? o0 Tq-2

in which x is the largest integer such that the deadline dm for rm

is met.

Parallel Gaussian Elimination

The only thing that remains to prove, is that this schedule allows the

task system to be executed in time n2-1.

proposition 2. With n-2p-1<jsp-2, Schedule S satisfies the starting
times and deadlines.

Proof. Actually this is already pointed out in [1]. With m=n~2p+3+J
and gq=n-j processor P -3 executes Tm and Tq during the time that P, exe~

i i 1
i+ i+1

cutes T1 and T1+1 (1Si$m—2); Pp_J will be idle only during time steps

1 to n. Thus execution of TT will be finished after

m-2 m-2
n+W(r)+ I Wit = n+2: (n1)
m i .

i=1 i=1

time steps, which satisfies the deadline. For id>m-1, Py has to exe-
cute tasks of rq only and it will start a task as soon as 1its starting
time has arrived. Obviously, the deadline for rq will be met.

Q.E.D.

Proposition 3. With 0sjsn-2p-1 and p2(1+\|2n?+2n+1)/u Schedule S satis~-

fies:

m-4 + n + W(rk) + w(rm) + w(rq) 4 dq.

Proof.
2 2 ,I 2
8p~ - 4p -n~ -n 20 for all pz(1+\|2n“+2n+1) /4.
And thus
2 2 2 2
n2-8p°+lp-j“+n+33j-2 S 0 for all § for all pz(1+\]2n“+2n+1) /4, (7

Expressing W(rk), W(rm), W(rq) and dq (with k=n-2p+2-j, m=n—-2p+3+j and
q=n~-j),1in terms of only n, p and J, yields

Parallel Gaussian Elimination
2 2 2
m-4 +n + W(r) + W(r) + W(rq) - dq = (n“-8p“+lip+n-j~+33)/2

Wwith (7) the Proposition holds.

Q.E .D.

This means that in Schedule S we are allowed to have m~4 idle time for

processor P (05j$n—2p—1); Maybe there is even more idle time avail-

p-J
able. In Schedule S it is not explicitly stated where the idle time

occurs, but it certainly will not occur before T$_1 finishes.

Proposition ﬂ; With 0sjsn-2p-1 and p2(1+\|2n2+2n+1)/4, Schedule S sa-
tisfies all starting times.

Proof. Starting times and deadlines of T?, T?, cees Ti_z, T$_1 are cer-

tainly met. Because W(T?)>W(TE), the starting time of TE is also met.
Thus, starting times of all tasks in Schedule S until T2+k—1 are met and
there is no idle time between the execution of these tasks.

There are two cases:

1. The execution of T" S vee, T® does not introduce idle time.
x+k-2 m-2

Then starting time and deadline of Tz_z are met by definition of x.

But then the starting time of T$_3 is also met, etc. The starting

times of all tasks of the schedule until Tg_z are met without idle

time. Then obviously the schedule works.

m e m
2. The execution of Tx+k—2' cens Tm_2 requires some 1dle time It'
Without loss of generality we can assume that It is concentrated just
m

after Tx+k—1; This means that the execution of T:_z starts exactly
m - m m m
on time s(Tm_z). Thus T _, finishes a. s(Tm_2)+1 W(T _,) time steps

before d_.

m
m
x+k-1
deadline of To_, (by definition of x). Thus

Inserting T§+1 just after T (absorbing It) would violate the

_ m _ m q :
I, +dy - s(Tp) +1 = W(Tp) <W(T).

Hence

parallel Gaussian Elimination

It < n-x-1-n+m-2 = m-x-3.

and

-y - < -

It < m-x-4 S m-U
We were allowed to have m-4 idle time (cf. Proposition 3). Thus, if
idle time I is required, then it is less than what is available.

t
Hence Schedule S works in time n2-1.

Q.E .D.

Theorem. With pz(1+\|2n2+2n+1)/u the task system J can be executed on
an MIMD computer with p processors in time n2-1.

Proof. Follows from Propositions 2, 3 and y,

Q.E .D.

Schedule S is not given precisely enough to be transformed into a pro-
gram: though x is well defined, it is not given as a formula. For each
processor Pp-j (0s8jsn-2p-1) its x is defined as the largest integer such
that the deadline dm of L is met. Hence x is the largest integer such
that

X
q
n + W(rk) + W(rm) + 1E1W(T1) < dm

with k=n-2p+2-j, m=n-2p+3+j and g=n~j. This means that x is the largest
integer (0sxsn-j-2) such that

x2 - (2n-1)x + 8pj-4j+4p-2 2 0 (8)

Knowing that the left hand side of (8) is monotone decreasing in x on
the segment [O,n-1], & binary search can be used to determine the larg-
est x that satisfies (8). This takes O(log n) time and can be done on

each processor Pp-j (0sjsn-2p-1) in the time that P1 executes T1;

Parallel Gaussian Elimination

References.

[1] LORD, R.E., J.S. KOWALIK and S.P. KUMAR, Solving Linear Algebraic
Equations on an MIMD Computer, J. ACM 30 (1983), pp. 103-117.

- 10 -

