THE QUEST FOR COMPOSITIONALITY -
a survey of assertion-based proof systems for concurrent programs

Part 1: Concurrency based on shared variables

Willem P. de Roever Jr.

RUU-CS-85-2
January 1985

Rijksuniversiteit Utrecht

Vakgroep informatica

Budapestiaan6 3584 CD Utrecht

Corr. adres: Postbus 80.012 3508 TA Utrecht
Telefoon 030-53 1454

The Netherlands

THE QUEST FOR COMPOSITIONALITY -
a survey of assertion-based proof systems for concurrent programs

Part 1: Concurrency based on shared variables

Willem P. de Roever Jr.

Technical Report RUU-CS-85-2

January 1985

Department of Computer Science
University of Utrecht
P.0.Box 80.012, 3508 TA Utrecht
the Netherlands

To appear in the proceedings of the IFIP Working Conference
"The Role of Abstract Models in Information Processing",
Vienna, January 30th - February 1st, 1985, E.J. Neuhold
(ed.), North-Holland Publ.Comp. »

THE QUEST FOR COMPOSITIONALITY -
a survey of assertion-based proof systems for concurrent programs

Part 1: Concurrency based on shared variables

Willem P. de Roever Jr.
Departments of Computer Science,

University of Nijmegen!) / University of Utrecht?)

3rd version - december 1984

Compositionality asserts that 'the specification of a program
should be verifiable in terms of the specification of its
syntactic subprograms". A number of proof systems for sequen-—
tial and concurrent programs is analysed from the viewpoint

of this principle.

TABLE OF CONTENTS

0. Introduction
1. Floyd's method for partial correctness proofs of sequential programs
. Partial correctness proofs using proof outlines

. Hoare's proofsystem - principles

. Compositionality

2

3

4

5. Generalization of Floyd's verification method to concurrent programs

6. Characterization of concurrent execution

7. Is this characterization justified?

8. Generalizing Floyd's method to nondeterministic sequential interleavings of
atomic actions

9. Proofoutlines for concurrent programs - the method of Owicki & Gries

10. There exists no syntax-directed proof rule for concurrent composition based on
Hoare triples

11. A syntax—-directed proof rule for concurrent composition - Lamport's Generalized
Hoare Logic ;

12. Modular specification of concurrent processes — a rule for modular concurrent

composition due to Jones

13. References

0. Introduction

"How can one check a routine in the sense of making sure that it is right?

1) Address: Toernooiveld 1, 6525 ED Nijmegen, the Netherlands
2y Address: Budapestlaan 6, 3508 TA Utrecht, the Netherlands

-2 -

In order that the man who checks may not have too difficult a task the programmer
should make a number of definite assertions which can be checked individually, and
from which the correctness of the whole programme easily follows."

These sentences date from 1949. They are the opening sentences of the paper
Checking a large routine by ALAN TURING, and mark the birth of so-called assertion-
based proof systems for programs.

Although originally concerned with a-posteriori verification of programs, i.e.,
after they are written, the emphasis of these proof systems changed when it was
realized that they should be part of the design process of a program itself.

This resulted in the development of compositional proof systems.
Compositionality asserts that

"the specification of a program should be verifiable in terms of the

specification of its syntactic subprograms".

Equating compositionality with syntax-directedness as LAMPORT does, is useful when
designing programs top-down. But it has the disadvantage that it leaves the option
open that the specifications S of both the original program P and its components
C1,...Cn are the same. I.e., verifying the combination P + S 1is reduced via syn-
tactic reduction of P to its components Ci only, and not via reduction of specifi-
cation S; this results therefore in verifying the combinations Ci + S , i=1...n.
JONES, ackowledging the usefulness of bottom—up design in the hierarchical (de)-
composition of programs, advocates that verifying the combination P + S should

be reduced to combinations C; +8; , where S; is a specification of module C;
which is independent of any environment (such as P) in which Ci may ultimately
function. Such specifications are called modular, and lead to the design of modular
proofsystems.

In this paper, a number of proof systems for sequential and concurrent programs 1is
analysed from the viewpoint of the compositionality primciple.

For proving sequential while programs partially correct, a comparison is made
between the methods of FLOYD's and HOARE's; Hoare's method is compositional whereas
Floyd's is not.

For concurrent programs, compositionality is known as DIJKSTRA's requirement that
“for a concurrent program the complexity of its proof should be of the order of the
sum of the complexities of the proofs for its parallel components (and not of the
order of their product)”.

Then various'proof systems for invariance properties of concurrent shared variable
programs are discussed. First the extension of Floyd's method for shared variable
concurrency is explained, and its formulation in the vein of Hoare by OWICKI &
GRIES; both of these are noncompositional.

Then these are compared with LAMPORT's syntax-directed concurrent Hoare logic, and

JONES' modular proof rule for parallel composition.

For Hoare's CSP similar results exist.

For proving termination and liveness properties of concurrent programs most widely
known is the noncompositional temporal logic approach of PNUELI's, MANNA & PNUELI's,
and LAMPORT & OWICKI's. Modular proof methods for temporal properties of concur-
rent programs have been presented in recent publications by BARRINGER, KUIPER and
PNUELI.

This survey proposes a general strategy.

As starting points, noncompositional proofmethods a la Floyd are taken, which in-
troduce verification conditions (§1, §5, §8).

Secondly, these verification conditions are formulated in syntax-directed fashion
by introducing proofoutlines (§2, §9). '

Thirdly, proofsystems are obtained by formulating the resulting proofobligatioms
in the vein of Hoare (§3, §9).

Fourthly, it is observed that in case of concurrency the formulation of these
proofobligations requires a metalevel (w.r.t. an ‘object level), which destroys
the property of syntaxdirectedness, as exemplified by interference freedom tests
expressing properties of (sequential) proofs (§10).

Finally, various assertion languages are investigated according to their capacity
to allow a formulation of these proofobligations within a unified framework, so as

to enable syntax-directedness (§11) or even modularity (§12).

Acknowledgements: This article arose out of a set of notes for a survey lecture

given for the dutch "Landelijk Project Concurrency", and for the opening lecture
of the computing science seminar of Philips Research Laboratories. The support of

Rob Gerth and comments by Leslie Lamport are gratefully acknowledged.

1. Floyd's method for partial correctness proofs of sequential programs

The one trait which distinguishes Floyd's method for proving partial correctness

of programs from its more sophisticated successors is that it is so obviously

sound, and therefore intuitively appealing. (Its soundness proof uses a simple in-

duction argument on the length of execution paths.)

In a nutshell, Floyd's proof method and its rationale run as follows:

‘Represent a program (composed from assignments, conditionals, sequential compo-
sition, while loops, ...) by a flowdiagram.

sEvery executionpath of this diagram is a sequence of elementary paths taken from
a fixed finite collection; this collection is determined by the diagram's shape
only. (Observe that a flowdiagram admits infinitely many execution paths, in
general.)

.Consider the collection of beginning and end points of elementary paths, called
locations.

«[Verification conditions] Associate with every location a predicate s.t. every

-4 -

elementary path satisfies the following verification condition:

If a state satisfies the predicate associated with its beginning (its precondi-
tion), and that path is taken, then the reéulting output state satisfies its end-
predicate (its postcondition).

(Predicates, also called assertions, are in general first order, involving propo-
sitional connectives and quantifiers.)

«If every elementary path satisfies its verification condition, then the diagram
(together with its associated assertions) is called locally correct. Observe that
checking this involves a finite number of checks.

«[Partial correctness] A flowdiagram m is called partially correct wrt predicates
p (its precondition) and q (its postcondition) - notation: {p}n{q} - iff if p
holds for an input and the diagram terminates for that input, then q holds for
the resulting output.
«[Theorem of FLOYD-NAUR] A locally correct diagram is partially correct wrt pre-

condition p and postcondition q associated with its beginning and end points.

Example: Euclid's integer division

]y:=y-bi B...pB:a=b*x+yA...

pD:a=b*(x—1)+yAy2bA... ... 4D M

true false
w E...pg* (a=b*x+y)A(y<b)A...
C

pC:(a=b*x+y)Aysz...

a

This account of Floyd's method raises the following questions:

+What is an elementary path?

+Why is every execution path a sequence of elementary paths taken from a fixed,
finite, collection?

.For a given input, when is a given execution path "taken", and what is "the re-
sulting output"? How can verification conditions be expressed (as assertion)?

The answers are provided below:

.Given a fixed collection V of locations in a diagram w, an elementary path of w
is a nonempty path between two locations of V, possibly the same, containing no
other locations of V.

.Such a fixed, finite, collection of elementary paths from which every execution

path of 7 can be composed is obtained by requiring that
-n's beginning and end points are contained in V,
-every loop of 7 contains at least one location in V.
+Defining the verification condition for execution path a, precondition p, and
postcondition q, requires determining:
-when execution path a is taken, i.e. when the path condition C(a) (x) holds for
inputvector 1,
its associated input/output transformation a(x). .
Below, C(a)(;) and a(;) are defined by induction on the length of a:
-aZempty path :C(a)(;)égzgg, a(x)=x
~azg-test (x):C(a) X)=C(B) (X)atest (B(X)), a(x)=B(X)
~azg+ (x:=£ (X)) :C(a)=C(B), a(D)=£(B (X)),
where test denotes a propositional predicate (involving only propositional con-
nectives), and x:=£(X) is a simultaneous assignment.
sConsequently, the verification condition for execution path a, precondition p,
and postcondition q is expressed by V;-(p(i)AC(a)(;)+q(a(§))), notation: {pla{ql.

Example (continued): the verification conditions for the flowdiagram plus associa-

‘ted assertions given above are:
{pA}w{pB} .o+ aENADEN~ a=b*0+a,,
al pB(aI(x,y))
{pg} y2b {p .} ... a=b*x+yAy2b + asb*x+y Ay2b ,
->. s
a2 pB(x) test(x) pC(aZ(x,y))

{pC} X :=x+1 {pD} .« a=b¥x+yAy2b-+a=b*(x+1-1)+yAy2b,
{PD} y:=y-b {pB} .. a=b*(x-1)+yAy2b + a=b*x+(y-b),
{pB} -1y2b {bE} ... a=bxx+yA7y2b > a=bix+yAy<b.

o

Although presented here for sequential while programs, Floyd's method extends to
programming constructs involving recursion [HPS] and concurrency (§5, §8). A more
rigourous treatment of Floyd's method, in which flowdiagrams are also formalized,

can be found in Livercy's exquisite book [Livercy].

2, Partial .correctness proofs using proofoutlines

In general programs are not represented by flowdiagrams but as linear text in a
programming language. This raises as question how to extend Floyd's method to pro-
grams written in such a language. The answer is straightforward: chose as collec-—
tion of locations all beginning and end points of every syntactically contained
statement of a program, associate again assertions with locations, and define veri-

fication conditions for every programming construct.

However, this strategy overlooks an important aspect of representation of programs

in a programming language, which is absent from flowdiagram representation. Namely,
a program has a structure determined by the syntax of a language which shows how

it is composed from its direct, so-called constituent, parts. This structure should

be present in correctness proofs, too, and leads to the following:

[Principle of compositionality] A partial correctness proof for a program

should be similarly structured as that program, showing that a proof of a
program is composed from the proofs of the constituent parts of that pro-

gram.

Obviously, this principle implies syntax-directed proofs. Technically, adopting
this principle requires generalization of verification conditions for elementary

paths to more complex constructs. This generalization is called proofoutline.

Examples:

*Assignment x:=e:{pl}x:=e{q} is a proofoutline for x:=e iff p+q[e/x] holds, i.e.,
iff execution of x:=e in a state satisfying p results in a state satisfying q -
Floyd's verification condition for x:=e.

*Sequential composition X:i=e jy:=e,: Suppose you want to prove {p}x:=e1;y:=e2{q}

using proofoutlines {p1}x:=e1{q1} and {pz}y:=e2{q2} for x:=e, and y:=e,. Then

1 2
{p}{p1}x:=e1{q1};{pz}y£=9{q2}{q} is a proofoutline for proving {p}x:=e1;y:=e2{q},
provided p+p1,q1+p2, and q2+q hold. This can be understood as follows: Every

execution path for xi=e,;y=e, consists of an execution path for x:=e, followed by

1
an execution path for yi=e,. Let its input satisfy p, then PP, implies that Py

holds, and therefore, since {p1}x:=e1{q1} is a proofoutline for x:=e,, that after

>
executing xi=e, q, holds. By q,7P, this implies that P, holds for th; resulting
intermediate state which acts as input for y:i=e,, and therefore, since {pz}y:=e2{q2}
is a proofoutline for yi=e,, that q, holds for the resulting output. By 4,79 this
implies that q holds for the resulting output of the combined execution of
x:=e1;y:=e2. Q.E.D.

Observe that direct correspondence with Floyd's original method for flowdiagrams
is obtained by chosing P=p,, 4,%p, and q,3q - suggesting {p}x:=e1{q1}y:=e2{q} as
simplified notation.

=]

Definition [Proofoutlines] Inductive definition of proofoutline pfo(p,S,q) for

{p}S{q} by complexity of S:

+ Szx:=e : {plx:=e{q} is a proofoutline for {p}S{q} iff p»>q[e/x] holds.
- 828,38, :{p}pfo(p1,5131);pfo(p2,82,q2){q} is a proofoutline for {p}S{q} iff PP,
9,7Py>» and 959 hold.

» S=if t then S1 else 82 fi: {p} if t then pfo(p1,S1,q1) else Pf°(P2’Sz’q2).£i {q}
is a proofoutline for {pl}S{q} iff PALZP ,PAEP,, 4, and 9,79 hold.

-7 -

+ Szwhile b do S1 od: {pHTI} while b do pfo(p1,s1,q1) od {q} is a proofoutline
for {p}s{q} iff p»I, Iabp,, q,°T, and IATb+q hold.

u]

Theorem: {p}S{q} holds iff there exists a proofoutline for {p}S{ql. o
Proving this theorem requires in general an assertion language stronger than first
order predicate calculus, such as a language with infinite disjunctions and con-

junctions, or predicate calculus over the standard model of the natural numbers.

3. Hoare's proofsystem - principles

Requested: A strategy for proving {p}s{ql.

For example, suppose you want to prove {p}S1;Sz{q}. Then which proofobligations do
you have to fulfill concerning S1 and S,» taken separately? The answer is provided
by the definition of proofoutline for {p}S1;SZ{q} and the preceding theorem.
Namely, find proofs for {pi}Si{qi} for i=1,2 , and for p*p,, 4;°P,, 95°9:

This is schematically represented by:

ppy > {P3S la,} , qp2p, 5 (Ry)S,lay) 5 ay7d

{p}S1;Sz{q}

Soundness and completeness of this rule follow from the preceding theorem.

Its soundness is proved by observing that {pi}Si{qi} holds iff there exist proof-
outlines pfo(pi,Si,qi), for i=1,2. By the definition of proofoutline,
{p}pfo(p1,81,q1);pf0(p2,32.q2){q} is a proofoutline for {p}S1;Sz{q}, and hence, by
the theorem, {p}S1;SZ{q} holds. The completeness proof is equally simple.

Similarly, rules for assignment, conditional, and while statement can be formulated.
By adding to these rules a proofsystem for properties of the underlying states in
order to prove the implications whose proofs are required by these rules, ome ob-
tains a proofsystem in the sense of Hoare. For more about Hoare style proofsystems,

consult Apt's authoritative "Ten years of Hoare's logic" [Apt].

4, Compositionality

The main reason for first presenting Floyd's method for flowdiagrams, then proof-
outlines for while statements and finally a corresponding proofsystem in the sense
of Hoare, is to illustrate the notion of compositionality, and to suggest sound-

ness, of course. This leads to the following definition.

Definition [Compositional proofsystem] A compositional proofsystem for proving
{p}s{q} is a proofsystem in the sense of logic in which a proof for {p}s{q} is ob-

tained by composing proofs for S's constituent parts. O
1Y gpP

Examples involving compositionality:

- 8 -

-A Hoare style proofsystem for while programs is a compositional proofsystem.
Floyd's method is not compositional since it is not syntax-directed. Although a
syntax for flowdiagrams is feasible, Floyd's method is based on a proof of local
correctness, whose proof obligations reduce immediately to proofs about the atomic
constituents of a diagram, and not to proofs about its constituent parts.

.Proofoutlines as defined in section 2 are compositional, but represent no proof-

system.

5. Generalization of Floyd's verification method to concurrent programs

Our next goal is to generalize Floyd's verification method for sequential while
programs to concurrent while programs operating upon shared variables. To reach
this goal, first concurrent execution is characterized by nondeterministic sequen-
tial interleavings of atomic actions in section 6. Next, section 7 contains a cri-
tical discussion, mentioning some alternative characterizations of "true" concur-
rency. In section 8 Floyd's verification method is generalized to the interleaving

model.

6. A characterization of concurrent execution

In this section a model is developed for characterizing concurrency in concurrent
programs operating upon shared variables.

‘Requirement 1: More than one process cannot have simultaneous access to the same

memory location.

‘Requirement 2: The execution speed of every nonterminated process is positive and

arbitrary.

Example 1: {true}P::[x:=0}| (x:=1;x:=2)]{x=0Ovx=2} holds, for execution of P amounts

to execution of one of the following sequences of atomic actions, as follows from
the two requirements above: {x:=0;x:=1;x:=2 , X:=1;x:=0;x:=2 , X:=1;x:=2;x:=0}.
+Example 2: {x=0}Q::[Q1::x:=x+1HQZ::x:=x+1]{x=2} does not hold, because execution
of Q is not equivalent with the sequential execution of x:=x+1;x:=x+1 since x:=x+
is not atomic.

Assume execution of x:=x+1 to be equivalent with execution of tir=xjtis=ti+1;x:=ti
with ti standing for a local register of Qi’ i=1,2. Then ti:=x, ti:=ti+! and x:=ti
are considered as atomic actions, since ti is local to Qi’ and at most one access
to a shared memory reference occurs per action.

Now, {x=0}Q{x=1vx=2} holds, for execution of Q is equivalent with a nondeterminis-
tic interleaving of the atomic actions of

tis=x;ti:=ti+1;x:=ti , for i=1,2, such as

tls=x;t2:=x;t2:=t2+1 x:=t2;t1:=t1+1;x:=t1 , or

t2:=x;t2:=t2+1;x:=t2;tls=x;tls=t1+1;x:=t1 .

This suggests as central question: When has the concurrent execution of processes

-9 -

the same net effect on variables as the nondeterministic interleaved execution of

the statements of those processes?

Answer: [Reynolds'criterion] Concurrent execution of processes P1"°'Pn has

the same net effect on program variables as the nondeterministic inter-
leavings of their tests and assignments, provided every assignment and

test contains at most one shared memory reference. O

Let a eritical reference (of P1,...Pn) denote an occurrence of a shared variable
(of P1"“Pn)' Furthermore, let every test and assignment of P, contain at most
one critical reference. Since local actions on local variables in one process com—

mute with every action from other processes, the following principle holds:

[Generalized criterion] Join in every process Pi statements together to
groups containing at most one critical reference. Then nondeterministic
interleaved execution of those groups is equivalent with (i.e., has the
same net effect upon program variables as) concurrent execution of

e, Il... lIe1. o

Example of the generalized criterion:
A B
~ - e ey,
[[1: Tocal][s1 : shared] || [s2: shared] 1 s

(by Reynolds' criterion)
: { G . O » OEE b=
_—-—v—————l
(since: &)

{ A3;B , B3A } .

In this example "' denotes equivalence as far as the net effect on program varia-

bles is concerned. O

When several processors are involved in executing [P,l‘...“Pn], then the set of all

nondeterministic interleavings of the sequences of atomic actions of P1""Pn needs

not faithfully model concurrent execution of Pt""Pn’ since not necessarily all of

these interleavings are realistic. To remedy this situation, this set is pruned by

imposing appropriate fairmess restrictions.

To explain this point, first two additional aspects of concurrent programming must

be incorporated within our model of concurrency:

(1) the semantics of boolean tests in sequential and in concurrent programming is
different, and

(2) the additional use of indivisible operations toexpress synchronization between

concurrent processes.

Ad (1): - In sequential programming boolean tests serve to decide between two

possibilities for advancing control flow;e.g., the value of b in if b then
S fi determines whether S is executed or passed.

- In concurrent programming boolean tests serve as traffic lights for deci-
ding whether or not control flow advances. (That sequential conditionals,
as the one above, can still be expressed using this notion of tests can
be understood by expressing them using guarded selections with simulta-
neous evaluation of the guards.)

Ad (2) : Let <T> signify that statement T should be executed as an indivisible
operation, i.e. without interleaving actions from other processes. Then
synchronization between concurrent processes can be expressed using the
semaphore operation P(s)::<if s>0 then s:=s-1 fi>.

Consequently, in sequential programming P(s) would always terminate, whereas in

concurrent programming this is possibly not the case.

To continue our explanation, let us make the following assumptions:
« P(s) operations are executed on separate processors with similar properties.
« Concurrent execution is modeled by nondeterministic interleaving of atomic actions

in which tests act as traffic lights, and execution of <T> is indivisible.

Observe that in this interleaving model both Reynolds' and the generalized criterion
still hold.

Now the point raised above, that this model does not faithfully reflect "true" con-
currency, is due to the fact that it admits the following unrealistic execution

sequence:

An infinite sequence in which the test s>0 in operation P(s) happens to be
evaluated only when s=0 happens to be true, whereas s>0 is also infinitely

often true in that sequence (due to concurrent activity).

During truly concurrent execution (as is the case when several processors are in-
~volved), this sequence should not occur in case P(s) operations test s>0 at random
moments (as permitted by the arbitrariness of execution speeds — requirement 2 of
section 6 -) since the fact that s>0 holds infinitely often implies that the pro-
bability of its occurrence is zero.

This discrepancy between the interleaving model and concurrent execution on several
processors is removed by imposing fairness assumptions. An example of such an as-
sumption is requirement 3:

Requirement 3: If an operation is infinitely often enabled in an execution sequence

(i.e., its associated test is infinitely often true) then it is eventually per-
formed.
Example: Under this fairness assumption the following program terminates:

{x=1As=1}[(P(s);x:=x—1;s:=s+1)||while x>0 do P(s);s:i=s+l od]. o

7. Is this characterization of concurrent execution justified?

Imagine a nondeterministic interleaving of the atomic actions of a symphony of
Mozart's; obviously the result is cacophony.

Thus, if one's goal is "to yeeld to sweet Musick", then the nondeterministic inter-
leaving of atomic actions is not justified as a model for concurrency.

Petrinet theory supports the point of view that concurrency adds an essentially

new element to computation.
Lamport writes in "What good is temporal logic" [Lamport 2]:

"Computer scientists often feel that something is lost by sequentializing a

concurrent program ... and that one should use a partial ordering among ac-

tions, instead. However, as long as we consider safety and liveness proper-
ties only, there is no loss of generality in considering totally ordered
sequences of atomic actions. Our model includes all possible sequences, and
a partial ordering is completely equivalent with the set of all total order-—
ings Qonsistent with it. The real assumption implicit in the model is the
existence of atomic actioms.

This assumption is made invirtually all formal models of concurrency ... "

Realtime concurrent execution is modeled using Salwicki's model of maximal parallel-
ism [8] in whlch the number of instructions in concurrent processes, which can be
executed s1mu1taneously without violating synchronization restrictions, is maximal-
jzed. For concurrent realtime ADA a spectrum of models, varying from pure maximal
parallelism to purely nondeterministic sequential interleavings of atomic actions,

is described in [S deRGKA]J.

8. The generalization of Floyd's verification method to nondeterministic inter-

leavings

The essence of Floyd's method is the observation that a partial correctness proof

can be reduced to checking finitely many verification conditions, i.e., for every
elementary path BC : if execution arrives at B, and the associated predicate Py
holds, and if path. BC is taken, then p, holds at C. This observation is based upon
the fact that every execution sequence is equivalent with a sequence of elementary
paths taken from a fixed, finite, collection.

Since concurrent execution is now modeled by nondeterministic intgrleavingscﬁfatomh:
actions the incorporation of concurrency within Floyd's method dictates that every
nondeterministic interleaving of atomic actions should be described using such element-
ary paths. According to the generalized criterion, this concerns interleavings of
groups of statements containing together at most one critical reference.

Conclusion: an elementary path should eontain at most one eritical reference.

Thus, execution of [P1|‘. HP] is characterized by the interleaved execution of

such elementary paths taken from a fixed, finite, collection.

12

Furthermore, during execution of an elementary path contained in P no execution
is modeled in P for j#i. This implies that an elementary path of [P ” J|Pn]
contained in P 1s characterized bytwon-trlplesofcomposzte locatlons, beginning
in an n-triple X1X2...X X, 1...X and ending in an n—trlpleXIXZ...Y1X1+1...X with
XI,...X and Y locatlons in P1,...P and P. i and elementary path X, Y in Pi con-
taining at most one critical reference.

Example:

. composite locations: AA , AB, AE, EA , EB, EE
+ elementary paths (AR , EA) , (AB, EB) , (AE, EE) , ...

= = =
A fixed B fixed E fixed

v

AE contains one critical reference

a

Therefore, since elementary (and execution) paths are now described by composite
locations, Floyd's method is generalized to nondeterministic interleavings by:
. associating predicates with composite locations,

. proving for elementary path o from X1...X ...X to X1... i-1 lxi+1...xn

ety © 1 |
{ X1 .0 .Xn X1 [3] . 1-1 1x1+1 LR .Xn

for all i=1,...n, and all X1,...Xn and Yi'
Observe that the definitions of path transformation a(x) and path condition C(a) (x)
remain the same.
This leads to the following formulation of Floyd's method generalized to concurren-—
cy:

Floyd's method of inductive assertions for verifying the concurrent composition

[P1||...HPn] of sequential schemes P.

1. Associate every scheme P with a correct*) labeling Labels (Pi) s.t. every
2 critical references are separated by a label.

2. Associate an assertion p 1 with every tuple (A; ,...A?) s.t.
A ...A
A € Labels (P).

*) A 1abe11ng is correct if every execution path is a sequence of associated

elementary paths, and the set of elementary paths is finite.

- 13 - .

3. Prove for every elementary path

1 n
(Al,...A) > (A s AD)
with AE ? excepting possibly one value of k,

that {pA1 Ap} {pA1 n} holds., O
L3I] 1 J... J

Then {pA1 An}[P1||...HPn]{pE1 n} holds, with Ai,Ei denoting, respectively,
beginning.;;d end point of Pi’ ;;;...n.

However, this formulation of Floyd's method is unsatisfactory for it doesn't enable

one to understand the annotated schemes 7. in isolation. This leads to the follow-

ing question:

Suppose every P. is associated with a set of assertions which is locally correct

w.r.t. sequentzal execution of P. in isolation. Then, what else must one prove to

coneclude partial correctness of [P1H...||Pn]?

Consider a composite location A1"'An' With every single label Ai an assertion P;
has been associated in the local labeling of P..

The intention is to associate Py AeeoAPy with A1...An.
1

. a - . . .
Consider elementary path (A1...Ah) +(A1“'Ai—1AiAi+1"'An) with associated verifi

cation condition
AT P a P, AP «-0
j=1 A, j= 1 A Ai
J j¥i
Now observe that (*) holds only if Py is invariant under state transformation
j
a(;), for j+i. Since the local correctness of the associated assertion pattern of

P, implies already that {pA }tx{pz—} holds, (*) reduces to checking

{ n 1 1
Ay P }(x{p }, for k#i.
i=1 Aj Ak

Owicki has shown that it is sufficient to check her famous interference freedom
test:
[Interference freedom test] For all Ai’Ak and o, such that Ai is a location

in Pi’ o an elementary path in P, beginning in Ai’ and Ak a location in Pk’
for k#i: {p AD }(l{p }.
AT Uk

Since only assignments change the state, interference freedom checks need only be
done for paths o containing an assignment to a shared variable.
This leads to the second formulation of Floyd's method for verifying concurrent

execution of [P1l|...HPn]:

Toprove{p}[P1H...“Pn]{q},

1. Associate with every Pi an assertion pattern such that every pair of

14

critical references is separated.
2. Prove local correctness of the assertion pattern associated with the
sequential diagrams Pi‘

3. Prove p+pA1A...ApAn and pE1A...ApEn»q with Ai’ respectively, Ei denoting
beginning and end points of P..

4. Prove, for every elementary path a in Pi containing an assignment to a
shared variable whose beginning point is associated with assertion P,
that for every assertion q from Pj’ for j#i, holds: {paq} @ {q} ... inter-
ference freedom of q ... for j=1,...n.

But ... there is still something rotten in the State of Denmark
Consider, e.g., [P::s:=x;s:=s+1;x:=s|{§::t:=x;t:=t+1;x:=t] satisfying
{x=0}[P|| P}{x=1vx=2}.

This cannot be proved using assertions containing x, s and t as free variables only.

E.g., in
[Pg ® x=0 . e e K PR : x=0 « . e K
[s:=x; s:=s+1 [eo=x; ti=t+1
120 x=0As=1 ... ¢ L ” PT ¢ x=0At=1 ... 4 L

PA- :X=1 .-.0B]

'

|

the assertion patterns are locally correct but not interference free since Py in P
is invalidated by x:=t in P. (A proof of this element of incompleteness is contained

in Owicki's thesis.)

In order to express interference free predicates, the assertion language must be
enriched with auxiliary quantities expressing that in a process control resides at
a certain location, so called location predicates.

Use predicate constants at A, atB ... to express that control resides at labels
AByooo o

Then the following locally correct assertion pattern is interference free and proves

{x=0}[P||P]{x=1v x=2} above:

{pK:‘\at AAn(nat Bax=0)A(at B>x=1) ... {K pgiiat BA(1at A»x=0)A(at Arx=1) ... K
[st=x ; s:=s+1 [Ttri=x ; t:=t+1
pL:ﬂatAA(ﬂatB+s=1) piﬁﬂatBA(WatAﬁt=1)
Aat B+(s=1vs=2)) .« . 4L “ Aat A+(t=1vt=2)) L

Pyt at AA(x=1vx=2) .. . A Py at BA(x=1vx=2) . e . ‘B]

o T, AT

- 15 -

9. Proofoutlines for concurrent processes — the method of Owicki & Gries

In the previous section tacit use has been made of the properties of location pre-
dicates. Now, we must formalize these properties, since, otherwise, no syntactic
version of Floyd's method is possible. For without auxiliary quantities such as
location predicates one cannot express interference free assertions.

Now that Floyd's method has been extended to concurrency, proofoutlines for con-
current programs must be formulated. And then the formulation of the proofobliga-
tions thus formulated must be presented. As we shall see in section 10, no compo-
sitional (syntax-directed) proofsystem for concurrency,which is syntactically based
on Hoare triples only, exists.

The system presented here is that of [Owicki & Gries]. Although formulated (in
their paper) as pioofsystem based on Hoare triples {p}S{q}, their system turnms out
to be syntactically based on proofoutlines since the intermediate assertions used
in proving {p}S{q} must be available syntactically in order to express the inter-

ference freedom tests.

In Owicki & Gries's proofsystem location predicates are modeled by fantomvariables.
These are variables occurring in a program solely for the purpose of expressing

certain assertions. Therefore they should not influence control flow.

Definition [Fantomvariables] Fantomvariables occur only.in assignments to fantom-

variables themselves, i.e., they do not occur in assignments and tests to variables
which possibly determine flow-of-control. O

Let S contain at most ome critical reference. Floyd's use of location predicaﬁes

at A and at B in ...A:S; B: ... is modeled as follows using correspondingly named

local boolean fantomvariables at A and at B:
... AtS3;Br...= ... {at AAtat BA...} At<at A:=false; S ; at Bi=true>; B...

The use of notation <T> (originally suggested by Lamport), denmoting indivisible

execution of T, is here justified by the generalized criterionm.

Our first goal is to formulate an extension of the definition of proofoutline to

cover concurrency.

Example: The following, representing a proofoutline for the annotated scheme

[P||P] of the previous section, suggests what is intended:

{x=0Anat AAat B}

[{7at AA(qat Brx=0)A(at B>x=1) }<s:=x;s:=s+1>; fﬂatAA(1atB+s=1)A(atB+s=1Vs=2)}

<x:=s ; at A:=true >; A:{at AA(x=1vx=2)}

{qat BA(nat Arx=0)A(at Arx=1) I<t:=x;t:=t+1> ; {71at BA(yat A>t=1 Ya(at Art=1vt=2)}

<x:=t ; at B:=true> ; B:{at BA(x=1vx=2)}

] {x=1vx=2}

A € TR S T ST T

16

with associated interference freedom tests such as
{1atAA(ﬂatB+x=0)A(atB+x=1)A1atBA(WatA&t=1)A(atA»t=1vt=2»x:=t;atB:=true
{71at AA(hat Bo>x=0)A(at B>x=1)}.

This test is satisfied since
. 1atAA(1atB+x=0)A(atB+x=1)A1atBA(1atA&t=1)A(atAﬁt=1vt=2) »at AAnat Bat=1, and
. {1atAA1atBAt=1}x.=1;atB:=§£EgjﬂatAm(13tB+x=0)A(atB+x=1)} @ (by Hoare's
assignment axiom)
(rat Aanat Bat=1)>(1at AA(Ttrue>1=0)A(true>1=1)), q.e.d. '

a

Proofoutlines are generalized to concurrency by extending the definition of proof-
outline in section 2 with the following clauses:

. S=<S1>:{p}<pfo(p1,S1,q1)>{q} is a proofoutline for {p}s{q} iff p»p1 and qi-qg.

. s=[s1]|...||sn] :{p}[pfo(p1,S1,q1)Il...pro(pn,Sn,qn)]{q} is a proofoutline for

{p}siq} iff:

- Every assignement and test in S1,...5n, insofar not enclosed by "<" and '">",
contains at most 1 critical reference of S1,...5n.

- prapl , Aqirg.

- Everf proofoutline pfo(pi,Si ,qi) is interference free, i.e. for every two
assertions r1€pfo(p1 Si,qi) and rj€pfo(pj,Sj,qi) , i*i, with rj a precondition
of an aSSLgnment a to a shared variable or of a statement a of the form <al>
with ol containing a critical reference,

there exists a proofoutline for {riarjla{ri}.

This applies to assertions ri not enclosed between "<'" and '">", only.

=)

Again, the following theorem can be proved for sufficiently strong assertion
languages:

Theorem: {p}S{q} holds iff there exists a proofoutline for {p}s{ql}. O

Next, observe that the following problem is associated with this definition:
In the example above we suggested a proofoutline for

{ x=0OA7at AA1at B }

[<s:=x;s:=s+1>;<x:=s;at Ai=true>
eee (¥

||<t:=x;t:=t+1>;<x:=t;atB:=true>
] {x=1vx=2}

»

However, our aim is to prove:

{x=0}[(s:=x;s:=s+1;x:=8) H(t:=x;t:=t+1;x:=t)]{x=1vx=2}... (Rx¥X)
This poses the following questions:

« How to get rid of at A,at B, and possibly "<" and '">" in (*)?

. How to justify x=0 as precondition on the basis of (*), since (x—0+x-0A1atAA1atB)
does not hold.

e R T ST S e

17

The answer will be provided in three stages.
Question 1: How to get rid of atA and atB in (¥)?
Answer (first stage):
. atA and at B are fantomvariables.
. Therefore they do not influence control flow.
. at A and at B do not occur in postcondition x=1vx=2.
. Hence, (*) implies that (**) below holds:
{x=0Aqat AAnat B}
[<si=x3si=s+i>;<xi=s> | (k)
H <t:=xjti=t+i>j<xi=t>
] {x=1vx=2}
o
The general form of the rule applied above is:
[Owicki & Gries's fantomvariable rulel:

{p}siq}
p¥s'{q}’

provided 4 contains no fantomvariables, and S' is obtained from S by deleting

assignments to fantomvariables.

o

Question 2: How to justify x=0 as precondition on the basis of (’i‘*)?

Answer (second stage): (**) is of the form {p}S{q} such that:

« Neither at A nor atB occur in S or q.

. Hence, execution of § is independent of the values of atA and at B, as is satis-—
faction of q.

. Hence, satisfaction of {p}s{q} is independent of what p expresses about the
values of atA and atB.

. Therefore one can substitute arbitrary values for atA and at B in p without af-
fecting validity of (**),

. Substitute, respectively, false and false for at A and atB in p in (**¥), result-

ing in:

{x=0}[(<s:=x;s:=s+1>;<x:=s>)||(<t:=x;t:=t+1>;<x:=t>)]{x=1vx=2}... (¥X)
)
The genmeral form of the rule applied above is:
[Substitution rule II]

{p}siq}
(plexp/21}sla}

provided z N free var (s,q)=0@, and e;p denotes a sequence of expressions of the

same length as Z.
a
Question 3: How to get rid of "<" and ">" in (¥*%)?

Answer (third stage):

R AR R £ 8t B 1 S T

- 18 -

+ By adapting the generalized criterion to Hoare triples.
. By specifying which atomic actions are involved in executing an assignment.
o

Thus one may derive (¥***).

Finally, the diligent reader might have noticed that we extended Floyd's use of
location variables only to statements S containing at most one critical reference.
How is this use extended to move general constructs? The solution given below models
location predicates for conditionals and iteration by a dynamic extension of the
use of the "indivisibility" brackets "<" and ">".

+ Conditionals:

...A:ifp thenQ:...;Q':elseR:...;R':f_i;A': =

...A:<at A:=false; if p then at Q:= true>Q:.. .Q': <at Q':=false

else at R:= true>R:...R': <at R':=false

E;atA':=true>;A’:...

Here p should contain at most one critical reference, and the following con-
structs are regarded as indivisible:
- if p(x) is true: <at A:=false;p;at Q:=true> and <at Q':=false;at A':=true>,

- if p(x) is false:<at A:=false;p;at R:=true> and <at R':=falsejat A':=true>.

« Iteration:
...A: while p do Q:...Q':0d;A':. .. =
...A:<at A:=false;while p do atQ:=true>;Q:...Q':<atQ':=false

od;at A':=true>;A':...

Again, p should contain at most one critical reference; the following constructs
are regarded as indivisible:

- upon first evaluation of p, if p(x) is true:<at A:=false;p;at Q:=true> ,

- upon later evaluation of p, if p(x) is true:<at Q':=false;p;at Q:=true> ,

- upon first evaluation of p, if p(x) is false:<at A:=false;p;at A':=true> ,

- upon later evaluation of p, if p(x) is false:<at Q':=false;p;at A':=true> .

10. There exists no syntax—directed proof rule for concurrent composition, based

on Hoare triples

A compositional proof system for a language involving concurrency should contain a

.compositional (syntax—-directed) proof rule for concurrent composition. Since up to

now our proof rules have been based on Hoare triples {p}s{ql}, we look for a proof
rule for concurrent composition which is based on Hoare triples and which, there-
fore, reduces the proofobligations for {p}[SJL..lISn]{q} to proofobligations for
{pi}Si{qi}, for appropriate p. and q;, i=1...n. These proofobligations have been
formulated in the preceding section, and are as follows:

(1) Every assignment and test in S1,...Sn, provided not enclosed in between "<"

O Y A A TR T S S R R

19

and ">" brackets, should contain at most one critical reference.

(2) prap;,nM;79.
(3) There are proofoutlines for {p }S. {q }, i=1,...n.

(4) These proofoutlines are 1nterference free.

Proofobligations (2) and (3) suggest the following rule:

{Pi}Si{qi}, i={,...n
Trp 7T TT- - T15,.T0Ad;

This rule is sound for disjoint 5:5 i.e. in case no variables are shared between
any two Si and Sj’ i%j.

However, this rule is unsound when variables are shared, as indicated by clause 4).
For every S this clause requires a list of interference freedom proofs of the
assertions occurrlng in the proofoutline for S , with respect to S1""Si 1’Si+1’
eeeS - The assertions occurring in these lists concern the way in which {p }s. {q }
has been derived, and are, as such, not derivable from validity of {pi}Si{qi} it-
self. Thus, the assertions required for formulating interference freedom tests can-
not be recovered from the list p1,...pn,S1,...Sn,q1,...qn. Consequently, no gyntax—
directed proof rule a la Hoare exists for concurrent composition which is syntac-

tically based on the usual notion of Hoare triples.

The only chance left for such a rule lies in reformulating the notion of program
correctness as expressed by statement-assertions pairs.

This new notion should involve:

. the atomic state transitions occurring in a statement,

« the pre- and postconditions associated with these atomic transitioms,

. the interference freedom tests associated with every atomic transitionm.

Such a notion is provided by Lamport's "Generalized Hoare Logic" [Lamport 1], whose

bare essentials are discussed in section 11.

11. A syntax—directed proof rule for concurrent composition - Lamport's Generalized

Hoare Logic.

The message of section 10 was that there exists no compositional proof rule for

concurrent composition which is syntactically based on Hoare triples. Yet the fact,
that {p}[S I HS 1{q} holds iff there exists a proofoutline for this triple,
suggests the following proof strategy for concurrent composition:

Construct for i=1,...n proofoutlines pfo(pl, (59 .) for {p }s. {q } which are inter-
ference free w.r.t. each other, to conclude that

{ap;}pfolp,,S 1,q1)|| pro(p , n,qn)]{/\qi} is a proofoutline, and that this
proofoutline implies {Ap. }[31” HS Haq;}.

The point here is, that from n interference free objects (proofoutlines) for

- 20 -

S1,...Sn one can construct.a new object (again a proofoutline) for the concurrent
composition of S1,..;Sn. This suggests to look for a compositional proof rule for

concurrency which is syntactically based on proofoutlines.

Consider again the verification & la Floyd of
{x=0}[P::<si=x;s:=s+1>;<x:=s>|| Prictr=x;tr=t+1>;x:=t>]{x=1vx=2}.

It uses the following assertion pattern:

['pK:-;at AA(mat Bx=0)A(at Brx=1) ... {K pp:Tat BA(Rat A»x=0)A(at Avx=1) ... ¥
[s:=x; s:=s+1 [t:=x; t:=t+1
ppilat AAn(qat B+s=1) A P‘f‘ 7at BA(lat A-t=1) S 5 2
1 Alat B>(s=1vs=2)) A 19 “ Alat A+(t=1vt=2)) L
P, at AA(x=1vx=2) I 7Y Pt at BA(x=1vx=2) . « - {Bj]

Define I_ by I“E(atKﬁpK)A(atL+pL)A(atAﬂpA), and I- by IFa(atipr)A(atfbpf)A

(at B+py).

Local correctness of assertion pattern m amounts to invariance of L under the

atomic actions <s:=x;s:=s+1>andx:=s of P.

Observe the fact that {pK}<s:=x;s:=s+1>{pL}x:=s{pA} is a proofoutline for P and

this invariance are equivalent requirements.

" gimilarly, interference freedom of m w.r.t. m, or rather,

{pK}<s:=x;s:=s+1>{pL}x:=s{pA} w.r.t. {pE}<t:=x;t:=t+1>{pf}x:=t{pB},

is equivalent with Znvariance of ITr under P's atomic actions.:

The same holds mutatis mutandis for I— and P.

Thus, invariance of I“AI; under both the atomic actions of P, and of P implies in-
variance of I A= under the atomic actions of [P||P]. Or, using appropriate nota-

"I AL-satP,I Al-sat P
tion: — , which is precisely the syntax—directed pattern we
I AL- sat[P||P]

were looking for!

To summarize the discussion:
» Let Ssat ¢ hold iff ¢ is invariant under the atomic actions of S.

« Let S1 sat ¢ and S

2
of both S1 and 82,

those of S1 and Sz.

This suggests the following syntax-directed proof rule for parallel composition:

sat ¢ together, i.e. ¢ is invariant under the atomic actioms .

imply [S1||82]sat ¢, since the atomic actions of [S1|lSZ] are

S1 sat ¢,...Sn sat ¢

T8, - TTS_Tsat ¢

The merit of Lamport's notion of validity of S sat ¢, and its resulting syntax

