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Department of Computer Science, University of Utrecht
P.0.Box 80.012, 3508 TA Utrecht, the Netherlands

Abstract. Uniform emulations are a method to obtain efficient and

structure preserving simulations of large networks on smaller (host~)
networks. We show that the problem to decide whether a connected graph
can be uniformly emulated on another connected graph is NP-complete,
even if one requires that the graphs have bounded degrees or that the
host network is a grid, a cube, or a shuffle-exchange graph, or is

fixed to be a graph with 3 nodes and 2 edges.

1. Introduction., Parallel algorithms are normally designed for exe-

cution on a suitable network of N processors with N depending on the
size of the problem to be solved. In practice N will be large and
varying, whereas processor networks will be small and fixed. The
resulting disparity between algorithm design and implementation must
be resolved by simulating a network of some size N on a fixed and
smaller size network of a similar or different kind, in a structure
preserved manner, For thié purpose, a notion of simulation, termed:
emulation, was first proposed by Fishburn and Finkel[5].. Independently
Berman[1] proposed a similar notion. An extensive analysis of emula~

tions was made in [2,3].

Definition. Let G-(VG,EG) and Hs(VH,EH) be networks of processors

* The work of this author was supported by the Foundation for Com-
puter Science (SION) of the Netherlands Organisation for the Advance-
ment of Pure Research (ZW0).



(graphs). We--say that G can be emulated on H if there exists a func-

Gt f(g)=f(g') or

. The function f is called an emulation function or,

tion f: Vv +VH such that for every edge (g, g') € E
(f(g), f(g')) e By
in short, an emulation of G on H. We call G the guest graph and H the

host graph.

Let f be an emulation of G on H. Any processor h € V must
actively emulate the processors belonging to £ (h) in G. When g e
f’1(h) communicates information to a neighbouring processor g', then h
must communicate the corresponding information either "internally",
when it emulates g' itself or to a neighbouring processor h'=f(g')

otherwise, If all processors act synchronously in G, then the emula-

max If—1(h)|-

tion will be slowed by a factor proportional to hev
H

Definition, Let G, H be as above., The emulation f is said to be (com~
putationally) uniform if for all h, h' & V |f (h)|= |f (h')

Every uniform emulation f has associated with it a fixed constant ¢,
called: the computationfactor, such that for all h € Vgt |f-1(h)|=c.
It means that every processor of H emulates the same number of proces-
sors of G.

In this paper we examine the following problem:
[(UNIFORM EMULATION]
Instance: Connected graphs G=(VG,EG), H-(VH,EH)

Question: Is there a uniform emulation of G on H?

The variant of this problem in which the computation factor
c=|V;|/|Vy| 1is fixed will be called c-UNIFORM EMULATION. Note that
the related question whether G can be emulated on H without the con-
straint of uniformity always yields the answer yes (provided H con-
tains at least one node): every constant function is an emulation. We
assume that the reader is familiar with the theory of NP-completeness

(see Garey and Johnson[6]).
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We will prove that c~-UNIFORM EMULATION is NP-complete, for every
c € N+. The problem remains NP~complete under several additional con-
straints on the guest and host networks. Realistic constraints are:
the graphs are connected (or strongly connected 1in the case of
directed graphs) and the nodes of the graph have a bounded degree. We
Wwill only consider connected and strongly connected graphs, respec-

tively.

This paper is organized as follows. In section 2 we prove that
c-UNIFORM EMULATION is NP-complete and consider undirected graphs of
bounded degree. 1In section 3 we consider directed graphs of bounded
degree. In section 4 we prove that ¢c-UNIFORM EMULATION is NP-complete
if the host graph is restricted to be a grid, for every cz2. in sec~
tion 5 we prove that c~-UNIFORM EMULATION is NP-complete if the host
graph is restricted to be a cube, for every c21. In section 6 we prove
that c¢~UNIFORM EMULATION is NP-complete if the host graph is res-
tricted to be a 4~pin shuffle or a shuffle-exchange graph, for every
c27 and c¢215 respectively, (The 4-pin shuffle and the shuffle-exchange
graph are two versions of Stone's original shuffle~exchange network.,
Cf.[9].) In section 7 we prove that for certain graphs H (for instance
the graph with 3 nodes and 2 edges), one can fix the hostgraph to H,
and the UNIFORM EMULATION problem remains NP~complete,

2 c-UNIFORM EMULATION and undirected graphs of bounded degree. The

following result was observed in [2].

Theorem 2,1. [2] UNIFORM EMULATION is NP-complete.

—————

f: VG*VH, and check whether it is an emulation and‘whether it is uni~
form.) To prove NP-completeness, observe that one can polynomially
transform HAMILTONIAN CIRCUIT to the problem., Let H=(VH,EH) be a con~
nected, undirected graph and let Gs(VG,EG) be the undirected graph
consisting of one cycle of lVHI nodes. G can be uniformly emulated on

H if and only if H contains a Hamiltonian circuit, o
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Theorem 2,2. For every c1, 02 € N+, the following problem is NP-
complete:

Instance: Connected, undirected graphs G=(VG,EG) and H=(VH,EH),

with each node of V., of degree at most c1+1 and each node of

G

Vy of degree at most c,+2, and IVGl=c1.02.|VH|.

Question: Is there a uniform emulation of G on H?

Proof. Clearly the problem is in NP. To prove NP-completeness, we
transform HAMILTONIAN CIRCUIT for undirected graphs with nodes of
degree exactly 3 and no cycles of length 3 or 4, to this problem.
This version of HAMILTONIAN CIRCUIT is NP~complete [6,7]. Note that
the result in [7] did not state the last constraint, but the (planar)
graphs resulting from the construction in [7] indeed do not have

cycles of length 3 or 4,

Let an arbitrary graph Hos(vo,Eo) be given with nodes of degree 3
and no cycles of 1length 3 or U4, Construct a graph H =(VH,EH) with

IVH|=|V0|+|VO|.2.(02—1) nodes by adding to each node of Hj c,-1 extra

o
"branches" of 2 nodes. An example is given in fig. 2.1. (with 02=3).

—

H, fig. 2.1. .

Let n=c, |V, |=c, (|V ]+|V |:2:(cm1)). Let G=(V,,E;) be the graph
defined by VG={(i,j)| Ofisn-1 A 1sjsc,}, and E.={((i,,3,),
(12,32))|(11,J1), (1503,) € Vg A (Uiy=1, AJ,=i,) V (3,=], Ady=i,
+1(mod n)))}. So G consists of n cliques of ¢, nodes and thus has
¢,+¢,.|V | nodes; each node is also connected to a node in the "suc-
cessor clique", and a node in the "predecessor clique",., We assume for

the sake of argument that G is oriented, say, counter-clockwise. An
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example of G, with n=6 and c =3 is given in fig. 2.2.
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fig. 2.2,

The construction of G and H can be done in time polynomial in

|V0|, and G and H satisfy the conditions of the problem,

Claim 2.2.1. HO contains a Hamiltonian circuit if and only if there

is a uniform emulation of G on H.

Proof. Suppose we have a uniform emulation f of G on H. Let Aj =
{(1,J)|O§i§n—1} g'VG, for every Jj, 1=J$C1. Note that for every j,
1§j§c1, Aj is a cycle of G. We consider two cases: -

Case I : 0222. Let v € VO c VH and let j be fixed, 1§j$c1. Now
1ook at the set of successors of nodes (i,j) € G with f£((i,j))=v. For
every branch attached to v in H, there is at least one node of VG that
is mapped upon the "end of the branch", (that is, the node with degree
1). This node is connected to a node of the form (x,3), so the "cycle"
f(Aj) will visit this branch. So there are 02—1 successors of nodes
(i,j) with £((i,j))=v that are mapped upon branches of v. There must
pe also one such successor that is mapped upon another node v' € VO
= VH.
for every j, 15jsc

So there are at least c, nodes of Aj that are mapped upon V,
1° Due to the uniformity of f, this number must be

exactly c, for all j, 1s5j<=c (This means essentially that the

"cycle" f(A ) after visitin; a node v € VO for the first time, must
visit succe531vely all branches of v, and then leave v to another node
v' € VO and cannot return to v for a second time thereafter.) Now we
have that for each node v € VO < \IH there is a unique v' € VO; VH

such that there is a 1 € {0,..,n~1} with f((i,1))=v and
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£((i+1)mod n)=v'. We can call v' the successor of v. By successively
visiting the successors of the nodes in VOEZVH we have a Hamiltonian
circuit of HO.

Case 1I: c.=1. First notice that H=H We claim that there are no

2 0°

11*12 with f((i1,1))=f((12,1)). Suppose there are. In the following we

let + be the addition modulo n and - the subtraction modulo n.

Let J, = (J|f((1,3) = fELINL Jy = EN1EGC P DA
£((1,,1NY, vy = £, 3, 8 J,, and vy = £(14,350).

Claim: f£((i,+1,d,)) # v, and leCi+1,90] = 1.

Proof. First suppose f((i +1, J, ))=v . The nodes in f((i +1, J2))
must be equal of adjacent to f((11,J )) =V, and to f((1 +1 J }) = Ve
As H=H, does not have 3-cycles, we have f((1 +1,J )) {v v,}. so

({V "y }) = {(11,3*)]1<j*<c } u (U +1,3*)|1<J*<c }. Now ?
f((11—1,1)) must be adjacent to v, = f((l ,1)) (it cannot be equal to
it due to the uniformity of f), f((i -1, AP }) must be adjacent to
v =f((11,3 )) (again it cannot be equal to 1t) and f((l -1,1)) and
f((i 3o )) must be equal or adjacent, so H=H, contains a 3-cycle or
a M—cycle. Contradiction., Suppose If((i +1,d ))|>2 Notice that every
node in f((l +1,d, )) is equal or adjacent to v, and H does not contain
3-cycles, so v, € f((1 *1,d, ). If v, € f((i +1,d, )) then £ ((v1,v ))
= {(11,3*)|1<J*<C } U {(i +1,j*)|1<3*<c } and a contradictlon can be
obtained as before. So there is a node v3 e {v1,v } with v3 e
f((l +1 J }). Every node in f((i +1 J )) must be equal or adjacent to
Vs and v3, and vy is adjacent to v3, S0 f((i +1,d )) =V, which con~
tradicts uniformity. (We did suppose there was a 1 with f((i1;1)) =

£((1,,1), s0 £ (v 21U LINE U {130} U {(12,1m. o

Now every node in f((i1+1,J2)) must be adjacent or equal to Vv,
and to vy = f((i1+1,J1)). Note that V3 is adjacent to v, and, because
H does not contain 3-cycles or l4-cycles we have: f((l +1 J )) = {v }
and f (v ) 2 {(1 +1,d ), (i 'y ), (i ,1)}, hence |f (v )| 2 c, +1
which contradlcts unlformity. This completes the proof of the cla1m

that there are no 11¢12 with f((i1,1)) = f((12,1)). This shows that
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f1 restricted to the set of nodes {(i,1)|1§i$n} is a graph isomorphism
of a cycle with n nodes to a subgraph of H-HO, S0 HO has a Hamiltonian
circuit.

0 has a Hamiltonian circuit. First note that f: VG >

{0,..,n-1}, given by f((i,j)) =1 is a uniform emulation of VG on a

Suppose H

cycle with n nodes. Because uniform emulation is transitive, it 1is
sufficient to give a uniform emulation of a cycle with n nodes on H

for showing that G can be uniformly emulated on H.

First we derive a cyclic path in H that visits each node at least

2
path parts that visit the branches, added to the nodes of H. This path

once and at most ¢. times: add to the Hamiltonian circuit of HO extra

can be transformed to a uniform emulation of the cycle with n nodes to
H, by mapping successive nodes on the cycle-on the same node v in H,

if the path visits v less than 02 times. o

Corollary 2.3. For every c € N+, the following problem is NP-complete:
[c~UNIFORM EMULATION]

Instance: Connected graphs G=(VG,EG) and H-(VH,EH), with

[vgl=clvyl.
Question: Is there a uniform emulation of G on H?

By further refining the technique of the proof of theorem 2.2
slightly better results can be obtained.

Theorem 2.4. For every 01, 02 e N+ with e, 2 2 the following problem
is NP-complete:
Instance: Connected, undirected, planar graphs G=(VG,EG) and

H=(VH,EH), with each node of V., of degree at most 3, and each

vyl

G

node of Vy of degree at most 02+2, and |VG|=01.02.

Question: Is there a uniform emulation of G on H?

Note: the theorem is stronger than theorem 2.2. in two ways: we can
choose G and H planar, and the degree of the nodes in G is not depen-

dent on c1.
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e e

again transform HAMILTONIAN CIRCUIT for undirected planar graphs with
nodes of degree 3 to this problem [6,7]. As noted before, this version
of HAMILTONIAN CIRCUIT is NP~complete.

Let HO=(VO,EO) be an arbitrary undirected planar graph with nodes
of degree 3. We construct a graph H=(VH,EH) by adding to each node of
VO 02»1 extra branches, each branch now consisting of 2c,+1 nodes. An

1

example is given in fig. 2.3., with c1=3 and c¢.,=2. Note that |V0| must

2

be even (every node in H, has exacty 3 adjacent edges), hence |VH| is
even. Let n=|V,|.
OO0 O0O-O0—0O0— O-O—O00O0—0O0C—=0
Cx O X
@ ) Oo—O0O—-O0O-0O00OCO0OC O-O—0—0—-0—0—O

fig. 2.3. H

0 and H with c1=3 a?d 02=2.

Let G=(VG,EG) be defined by VG = {(i,j)lOSisn—1 A\1$j§c1}, and EG
= {0,370, U 030, 0,5,3,) € Vo A =1, A [3,-3,] =1 A
(min(j1,j2) is odd<=1, = odd)) \/(j1=j2 ﬁ\i1=12 + 1 (mod n))}. Thus
the cliques of the graph G of the proof of theorem 2.2. are replaced
by structures that have a much smaller number of edges. The example
of fig. 2.4, 1illustrates the construction. In this example n=6 and
c1=5.



fig. 2.4, G with n=6 and c1-5.

Again we claim that HO contains a Hamiltonian circuit if and only
if there 1is a uniform emulation of G on H. The proof of claim 2.2.1.
for the case 02 2 2 can be followed to obtain a proof for this case,

with the following observation: for every v € V_ and every branch of v

there is at least one node that is mapped upon ghe last "node of the
branch (i.e. the node with degree 1). For every j, 1.<.j§c1 there is a
node (i,j) € VG that has a distance < 2¢c to w. This means that (i,j)
must also be mapped upon a node of this branch, so the image of the
cycle Aj = {(i,j)|0$isn~1} must visit this branch. Now the remaining
part of this proof c¢an be done in a similar way as in the proof of

claim 2.2.1. Notice that for every n, c, G is planar. If H, has a Ham-

1 0
iltonian circuit, then one can construct a uniform emulation of G on H

similar to the construction in claim 2.2.1. o
We mention the following corollaries of theorem 2.2 and 2.4:

Corollary 2.5. c~UNIFORM EMULATION FOR PLANAR GRAPHS is NP~-complete.

Corollary 2.6. For every c € N+, ¢ even, the following problem is NP-

complete:
Instance: Connected, undirected, planar graphs G = (VG,EG) and H
(VH,EH), with each node of G of degree at most 3, each node
of H of degree at most 4, and |V/| = c. vyl

Question: Is there a uniform emulation of G on H?
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Proof. This is a special case of theorem 2.4, with ¢,=¢/2 and ¢,=2. O

Corollary 2,7. For every c € N+ the following problem is NP-complete:

Instance: Connected, undirected, planar graphs G=(VG,EG) and
Hs(vH,EH), with each node of G of degree at most 2 (i.e. G is
a path of a cycle), each node of H of degree at most c+2, and
lvgl"chVHI .

Question: Is there a uniform emulation of G on H?

Proof. This is a special case of theorem 2.2, with ¢,=1 and c,=C. Note
that the graphs H, resulting from the construction in the proof of

theorem 2.2, are planar. o

The result of corollary 2.7. should be contrasted with the fol-
lowing proposition:

Proposition 2,8, For every c € N+, and connected, undirected graphs

G-(VG,EG) and Ha(VH,EH) with G a cycle or a path (i.e., each node of
VG has degree at most 2), each node of H of degree at most ¢ and
[Vgl=c.|v |, there exists a uniform emulation of G on H. The emulation
function can be found in O(|V|+|E |) time.

Proof. It is easy to construct a cyclic path that visits each node at
least once and at most c times: construct a spanning tree T of H. Now
visit the root of T; visit recursively the nodes in the subtree of the
leftmost son of the root, starting and ending with the root of this
subtree, then visit the root of T, then visit the nodes in the subtree
of the one-but~leftmost son of the root, then again visit the root of
T, etc. In"this way a node v is visited at least once, and at most

degree(v) s ¢ times.

We can map the nodes of the path or cycle G on the successive
nodes visited by this algorithm. If the algorithm visits a node v less
than ¢ times we have to map some successive nodes of G on v. In this

way a uniform emulation can be obtained.
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The time necessary to create the spanning tree is O(|EH|), the rest of

the work can be done in time O(|v,|). o

Interesting open problems are: given a computation factor ¢, what is
the complexity of the problem to determine whether a path or a cycle
can be uniformly emulated on a graph with maximum node degree c+1; and
is the c-UNIFORM EMULATION problem for G and H graphs with maximum

node degree 3 NP~complete (for c>1)?

3. Directed graphs of bounded degree. For directed graphs the c~
UNIFORM EMULATION problem remains NP~complete if we restrict G to be a
cycle and H a graph with each node involved in at most 3 edges:

Theorem 3.1. For every c € N+ the following problem is NP~complete:
Instance: Directed, strongly connected, planar graphs G=(VG,EG)
and H=(VH,EH), such that every node in G is involved in at
most 2 edges (i.e., G is a cycle), every node in H is involved
v

H
Question: Is there a uniform emulation of G on H?

in at most 3 edges, and |V |=c.

Proof. Clearly the problem is in NP. To prove NP-completeness we

- . e
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transform DIRECTED HAMILTONIAN CIRCUIT for directed, strongly con-
nected, planar graphs with each node involved in exactly 3 edges to

this problem. This version of DIRECTED HAMILTONIAN CIRCUIT is NP~
complete [6].

Let a directed, strongly connected, planar graph HO=(VO,EO) be

given, with each node v € VO involved in exactly 3 edges. HO has two

types of nodes., (See fig. 3.1.)

WV

fig. 3-1-

We first replace HO by H1 by replacing nodes as in fig. 3.2.
(The digits 0, 1, 2 indicate the "type" of a new node for later refer-

ence.)

—_ﬁ 5O 3(1)

= XO—0
2
fig. 3.2.

To each node of type 2 in fig. 3.2. we add a binary tree with c-1
leaves, with the edges in the tree directed towards the leaves.
Another tree with edges directed towards the root is placed on these
leaves. The root of this tree 1is connected with an edge to the
corresponding node of type 1. An example is given in fig. 3.3., with
c=7. An example of the whole transformation is given in fig. 3.4,
(with c=3).

N/
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fig. 3.4,

Let H=(VH'EH) be the graph that is obtained from H1 in this way.

If c¢=1 then one can take H=HO. We let n=[VH[, and G a directed cycle

of c.n nodes.
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Claim 3.1.1. HO contains a Hamiltonian circuit if and only if there is
a uniform emulation of G on H.

Proof. If H, contains a Hamiltonian circuit then there exists a cyclic

path in H ghat visits each node at least once and at most ¢ times. We
visit nodes of type O in the order of the Hamiltonian circuit and,
when we arrive at a pair of nodes of type 1 and 2, we go ¢-1 times
over the added structure of the two trees, each time visiting another
leaf. This path can be transformed to a uniform emulation of G on H by
mapping successive nodes of G on the same node v in H, if the path

visits v less than ¢ times.

Now suppose we have a uniform emulation f of G on H. For every
node v* of type 1, look at the c predecessors of the ¢ nodes that are
mapped upon v¥ by f, Because every leaf in the two~tree structure
added to v¥*, ( and the neighbour of v* of type 2) must be visited by
£(G), and there are c~1 such leaves, c-1 of these predecessors must be
mapped upon the root of the tree with edges towards v* and exactly one
is mapped upon a node of type 0 or 2. This means that every node clus-
ter, consisting of a node of type 0, a node of type 1, a node of type
2 and the added two~tree structure can be visited at most once from
another node cluster, It has also to be visited at least once from
another node cluster. Look at the successive node clusters in H that

are visited., The corresponding nodes in HO form a Hamiltonian

circuit, o

The graphs G and H fulfill the conditions and can be obtained
from H, in time polynomial in |VO| and ¢. This completes the proof of

theorem 3.1. O

L, Uniform emulation on the two-dimensional grid network. The two~

dimensional grid (or mesh) is often used as a processor interconnec-
tion network. We use a version of the grid with "wrap-around" connec-
tions along the boundaries, Let GRn be the nxn'grid network (with n2
nodes), with wrap~around connections, and let GRn be the nxn grid net-

)
work without wrap-around connections. The nodes of GRn and GRn are
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named by their plane coordinates (i,j) with 0£i,jsn-1 in the usual

representation of the nxn grid.

Definition. The two~dimensional grid network with wrap-around - connec-
tions is the graph Gan(Vn,En) with Vn-{(i,j)li,j € N and 02%i,jsn-1}
and E ={((1,3), (1',3'N|,3), (1',3') € V_ and (i=i' A j=(j'#1) mod
n) or (i=(i'+1) mod n A j=j')}. The two~dimensional grid without
wrap-around connections is the graph GR; = (Vn’E;)’ with E; = {{(i,]),

(i',j'))l(i,j), (i*,j') e Vn and (i=i' AJ=j'+1) or (i=i'+1 A j=j")}.

Theorem 4.1, For every c & N+, cz22, the following problem is NP~
complete:
[c~UNIFORM EMULATION ON A GRID]
Instance: A connected, undirected graph G-(VG,EG), such that
there is an n € N' with |VG|=c.n2.

Question: Is there a uniform emulation of G on GRn?

-

consider the following problem.

Given a set of V ;_vn in a two~dimensional grid GRn-(Vn,En), the
subgraph  of GRn induced by V 1is the graph GV-(V,EV), with
Ev-{(v1,v2)|v1,v2 € V and (v1,v2) € E }, i.e. every two nodes in V
that are adjacent in the grid are adjacent in the subgraph induced by
V. The following problem is known to be NP-complete [8]:

[HAMILTONIAN CIRCUIT IN A GRID GRAPH]

Instance: n € N and a set of nodes V é Vn.

Question: Does the subgraph of GRn, induced by V contain a Hamil~-

tonian circuit?

We show that HAMILTONIAN CIRCUIT IN A GRID GRAPH can be polynomi-
ally transformed to c-UNIFORM EMULATION ON A GRID (for every c22)., Let
n € N+ and a set of nodes V;Vn be given and let c22, c & N+. We will
=c.(2n)2,

such that there is a uniform emulation of G on GRZn’ if and only if

construct a connected undirected graph G=(VG,EG), with IVG

the subgraph of GRn induced by V contains a Hamiltonian circuit.
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We let G=(VG,EG) consist of the following parts:
a) c-1 gridlayers of 2nx2n nodes:
A = {v;’k|1§i§c-1, 0$js2n~1, 0sks2n-1}
b) one gridlayer of 2nx2n nodes with the nodes of V omitted:
B {vg’klosjszn-1, osks2n-1, (j,k) & V}
c) a cycle of |V| points:
C = {w, |osis|v]-1}.

We connect points whose (j,k)-coordinates are adjacent in GRZn’

without regard to the layer, and one node of the cycle to some point
v3 K with (j,k) € V, Choose an arbitrary (j*,k*) & V.
? T
Now V, = A U B U C
G . . R
o 12 | o i,
E, = {(v, , V. )| v, . V. € A U B A ((j,,k,),
G LR PYL SERLIRNE PYLP L
(35,k5)) ? Eopd U {(w, wj)lwi’wj € VAi=(j+1) mod |V|}
U {(w1,vj*,k*)}. (E2n is the set of edges of GRZn’)

Claim 4,1.,1. The subgraph of GRn induced by V contains a Hamiltonian

circuit if and only if there is a uniform emulation of G=(VG,EG) on

GRZn'

—— g g

iltonian circuit. Then the subgraph of GR induced by V contains a
K € A U B.

n—v has ¢ nodes of A U B mapped upon it, every

. 2n
Hamiltonian circuit. Now let f(v; k) = (j,k), for all v§
H

Then every node in V2

node in V has c~1 such nodes mapped upon it. Now we can map W, on

(j*,k%), w2 on the node that is visited by the Hamiltonian circuit
after (j*,k*), etc., i.e., we let f map w, on the i'th node on the
Hamiltonian circuit, where (j*,k*) is considered to be the first node,

In this way a correct uniform emulation of G on GR2n is obtained.

Now suppose f is a uniform emulation of G=(VG,EG) on GRZn' We
claim that for all (j1,k1) € {0,..,2n-2} x {0,..,2n-2} - {0,..,n} x
(0,.-4n3, (k) € {0,..,2n-1} x{0,..,20~1}, 15i,,1 %S¢, with (372ky)

1 12

1
= (j,,k.): f(v, )y = (v,
22 NPRLY 3ok,

2
). Suppose there do exist (j1,k1),
i i
1 2
k ) = f(V. k )c

(i,»k,), i,,i_, fulfilling the conditions, with f(v,
eret I J2r %2

2
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Then we can reach a contradiction as follows: Vg {0,..,n-1} X

{0,..,n~1}, so (j1,k1) ¢ V and (j1,k1) is not a neighbour of a node in
i i

V. So v.1 has 5¢~1 neighbours in G*, and v.2 has at least one
'K Jssk
1 i 2" 2 i
neighbour in G* that is not v.1 or a neighbour of v.1 , SO at
RLY Jq0K

i
least 5¢+1 nodes must be mapped upon f(vj1 K
1°71
GRZn' This contradicts uniformity. In the same way one can prove that
i
for (j1,k1), i, as before, and osis|v|-1, fw,) = f(v.1 y
i 1771
only nodes that can be mapped to f(v, ) ((J1,k1) e {0..2n-2} «x

) and its 4 neighbours in

). So the

1
1’k1

{0..2n-2} - f{0..n} x {0..n}), are the nodes vY 12agc., There are

ok’
1’1
exactly ¢ such nodes, so for all (j1,k1) € {0..2n-2} x {0..2n-2} -
i i
{0..n} x {0..n}, i,, i, € {1,..,c}: £(v. | ) = £(v.> ). Now we
e RS PR
claim that the set {v} 2n’2|i=0..2n—1} must be mapped upon a cycle in
?

GR, (that is a set of the form {(j,k)|osks2n-1} or {(k,j)|0sks2n-1},

with j fixed). Suppose this is not the case, Then the successive nodes

1

£V one2

Suppose there is a bend in the form as shown in fig. 4.1. (The other

cases are similar.) Then the nodes {f(vl* 2n_3)|i* e{i,i+1,i+2}} can~
9

not be mapped such that adjacencies are preserved. Contradiction.

) (i=0..2n-1) form a path that must make a bend on the grid.

1 1
i+1,2n-2° U440 on-p)

O

f(v

FOVy on-2

fig. 4.1.

1 .
2n-2,1
Without 1loss of generality one may

In the same way one can prove that the set {v i=0..2n~1} must be

mapped upon a cycle in GRZn'
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suppose £(v) ) = (2n-2,1). With induc-

) = (i,2n-2) and f(v

i,2n-2 2n-2,1
tion one can prove that for all (i,j) f(v ) = (i.J). Now f(v j
1
(1,3) for all va 1, €A B. This means that f(w yev for all Wy € ¢
1

(use uniformity of f). So f(w ), £(w ),...,f(w'vl) form a Hamiltonian
circuit in GV‘ 0

Note that |VG| = c.(2n)2, and the construction of G can be carried out
in time polynomial tn |V| and n. Hence c-UNIFORM EMULATION ON A GRID
is NP-complete, for c22. a

Theorem 4.2, For every c & N+, c22 the following problem is NP-
complete:

Instance: A connected, undirected graph G'(VG’EG)' such that
there is an néN' with |VG|-c.n2.
Question: Is there a uniform emulation of G on GRn?

Proof. Similar to that of theorem 4.1. o

5. Uniform emulation on the cube network., Let C denote the cube net~

work with 2 nodes. The nodes in the network are given n-bit addresses
in the range 0..2 —1, and there is an edge from node b to node c¢ if
and only if ¢ is obtained by flipping precisely one bit in b. The i'th
bit of an address b is denoted by bi (18isn). We use x, y to denote
segments of bits. For |x|=|y|, let d(x,y) be the Hamming distance
between the bitstrings x and y, i.e., the number of bitpositions in
which x and y differ. We use g io denote a single bit, that can be 0
or 1. For a bitstring x=x,..x_ let (X 00X ) | =x 1+Xy» 1.e., the first
m bits of x.

Definition. The cube network (or n-cube) is the graph C -(vn,E ) with

n = {(b,..b )|V 15isn b, }mms = {(b,e)|b,c € V. Ad(b,e) = 1},

We recall the following fact from [2]:
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Theorem 5.1. [2] For nz21 GRZn can be uniformly emulated on C i.e.,

2n’

G2n is isomorphic to a spanning subgraph of CZn‘

The main result in this section is:

Theorem 5.2. For every c & N+, the following problem is NPécomplete:
[c-UNIFORM EMULATION ON A CUBE]
Instance: A connected, undirected graph G-(Vg,EG), such that
there is a k € N' with |V |=c.2¥,

Question: Is there a uniform emulation of G on Ck?

Proof. Clearly the problem is in NP. To prove NP~completeness we will
transform the HAMILTONIAN CIRCUIT IN A GRID GRAPH problem to this
problem. (For details on this version of HAMILTONIAN CIRCUIT see the
proof of theorem 4.1.)

Let ne N+ and a set of nodes V in GRn be given. We may suppose
that n--2k for some k € N+. (If not we can reduce the problem to this
case in polynomial time.)

Let f be a uniform emulation of GRn on CZk (as implied from
theorem 5.,1.) (Note that f is a bijection, i.e. a subgraph isomor-
phismf) Let g be the mapping C2k -+ C6k+2’ defined by g(x1...x ) =

x1x1x1x2x2x2.f..xzkx2kx2k00.

2k

Let V.l = gof(V), and
let v, = {x1x1x1x2x2x2...fxi_1xi;1xi_1oo1xi+1xi+1xi+1...x2kx2kx2k00|
x1...x1;10x1+1...x2k, x1.‘.‘.xi__11x1+1...x2k € f(v)},

011x

Vo o= (XX X, X X X, 000X ceeX, X 00|

3 111 %%2%%; 1=171m1 =1 O K Xy X g o XXX oy
x1f..xi_10x1+1.f.x2k, x1...xi;l1xi+1...x2k § f(v)},
v, - {x1x1x1x2x2x2ff..x2kx2kx2k01|f (Xy.0.%5) € V and has
at most 3 neighbours in v}
Vg = {x1x1x1x2x2x2.f..x2kx2kx2k10|f (x4e..x, ) € V and has
at most 2 neighbours in v}

We let W = V1 U V2 U V3 U Vu U V5 g;V6k+2 and Gw be the subgraph of
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Coysp induced by W: G,=(W,E) and Ew-{(v,w)| V,WE WA (v,W) e Egyan}
(where E6k+2 is the set of edges of C6k+2)' Gw resembles the subgraph
of GR_ induced by V, Gy=(V,Ey), with E, = {(v,w)|v,w € V and v,w adja-

cent in GRn}. One can obtain a graph isomorphic to G from Gv by

W

adding on each edge 2 extra nodes (these correspond to the nodes of V2

and v3), by adding to each node in V with 3 neighbours one extra
neighbour (these correspond to nodes of Vu) and by adding to each node
in V with 2 neighbours 2 extra neighbours (nodes of V‘4 and V5). In
figf 5.1. Wwe show an example of this transformation. Although Gw is a
subgraph of a (6k+2)-cube and not of a grid, we draw it as a subgraph

of a grid, for convenience,

S GR

fig. 5.1.

Let G=(V,,E.), with V. ={v, _|0sis|V|-1 and 15js5}, and
G’"G G i,
= <4
Eq {(vi,l’vi,j)lvi,l’vi,j € V., and 25js5} WV {(Vi,z’vi+1,5)|vi,2’
vi+1 56 VG}, where + is the addition modulo |V|. For example, if

|v|=6, then G is the graph of fig. 5.2. Notice Vg l=5.]v]=|w].
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—eo
® \ g

G, with |v|=6.
fig. 5.2.

Claim 5.1.1. G is isomorphic to a (spanning) subgraph of Gw if and

only if G, has a Hamiltonian circuit.

v

Proof. Let GV have a Hamiltonian circuit. Number the successive nodes
visited by this circuit VO’V1""’VIV|—1' So vi € V and vi is adja~

cent to v Now we can give a subgraph isomorphism f of G

(i+1)mod|V]|*
into G . Let f(vi 1) = gof(vi), for all i, 05ig|v|-1. We now map the
b}

nodes vi’2 and vi+1’5 on the two nodes between gof(vi) and gof(vi+1).

(This is a -node in V2 and a node in V3.) There are two other nodes

adjacent to gof(vi) and we map vy 3 and Vi y on these nodes. In this
? ?

way an isomorphism of G to a (spanning) subgraph of Gw is obtained.

If £ is an isomorphism of G to a (spanning) subgraph of Gw then
consider the row f(v y, £(v

¢ 0,1 IR RARRTLA TP
f(vi 1) must have at least U4 neighbours in Gw, so is of the form
9’

). Each of these nodes

f1x1x1x2x2x2....fx2kx2kx2k00 and there is a node w of GRZk with

f(vi’1)=gof(w). Let wo,...,w‘v|_1 be the nodes in GR2k such that
- . <i<lvl-1. . . ‘

gof (w, ) Vig for all i, O0sis|v]|—1 w, is adjacent to w(1+1)mod|V|

(this is because f‘(vi 2) and f(v( ) must be adjacent), so
’ .

i+1)mod|Vv],5

wo,w1,..,w|v|_1 form a Hamiltonian circuit in V g,GRn. o
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Let m=6k+2, To complete the proof we will use basically the same
technique as in section 4: we take a graph G' with the property that,
for every emulation f of G' on Cm—1’ if f maps at most ¢ nodes of G'

upon each node of C f maps c~1 nodes on the nodes of W and c nodes

m-1’
on the nodes of cm\w. To this graph we add G, which will have to Dbe

mapped upon the nodes of W.

Choose a x' € (9)m+1, such that x',...x' € H and x' =1, and
1 m m+1

1

X'1"'X'm , has degree y én 1G . “Now let ~G*=(V*,E*) with
m+

V*svG U {vx X 1o oX € (T)

1 m+1 1

or x = 1)} and E, = E, U {(vx,vy)i v

m+1 G
toy in Cm+1} U {(v0 1 vx,)}.
9

| x and 1<igc and (i=c or x .o Xp ¢ W

1

and x is adjacent

m+1

Sov) e Vv

x''y G

Notice that G, is connected and [V*|=c.2m+1.

Claim 5.1.2. G, can be uniformly emulated on Cm+1 if and only if G is

isomorphic to a (spanning) subgraph of Gw.

Proof. If h is an isomorphism of G, to a (spanning) subgraph of G

- g g

w’
then we can suppose without 1loss of generality that h(v0 1)=x'.
— s
(Notice that h™ | (x') must be a node v, | for some 1, 0sis|v|-1, and
1

= h(v, .,).,0 for all v, ., €V
i.J) ( 1,3) i,3 G

One can easily check that f is a

use the symmetry of G.) Now let f(v
i i
and f(vx) = x for all Ve € V*—VG.
uniform emulation of G, on C .
m+1

Now suppose f is a uniform emulation of G¥* on Cm We will show

+1°
that G is isomorphic to a subgraph of Gw. We first need:

- i s , ,0.m i J
< < —— =
Claim 5.1.2.1. Vi,j, 1si,jsc Vk1..xm 6(1) f'(vX X 1) f‘(vx x 1).
1 m 1 m
Proof. f‘(vl ) and £ (vI -~ ) are equal or adjacent, If they are
s x1...xm1 x1..xm1

adjacent then every node r(ve -
x .O.x C.lx 1
1 io m

J
Lx 1) and to f'(vx Cx 1). Because C__.
1 m 1 m

does not contain triangles (cycles with length 3), each of these nodes

} (12asc, 18i,.Sm) must be

0

adjacent or equal to f(v;
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must be equal to f‘(vl ) or to f(vJ ). So at 1least me+2
x1...xm1 x1..xm1
nodes are mapped upon the 2 nodes f(vi X 1), f(vi x~1)‘ This con~
1 LN N ] . L ] m
tradicts uniformity. Hence f(vi ) = f(vJ ).
. x1...xm1 x1..xm1

Definition. For 0spsn, a p-face of Cn is any subgraph of 2p nodes of
Cn that have 1identical bits in n-p corresponding positions (i.e.: a
p-face of Cn is a subgraph of Cn’ isomorphic to Cp).

Consider A = {v1

| x
x1..xm1 1

A, v#w and f(v)=f(w), else at least 2¢ nodes are mapped upon f(v)=f(w)

Xy e (%)m}. There do not exist v,w €

(use claim 5.1.2.1.) This means that f(A) is isomorphic to A, so is an

. Without loss of generality we may suppose f‘(v1 )

x1..x 1

..x_ 8 <-1-)"‘

m-face of C
m+1

= X,..X_1 for all x
m

1 X e (%)m. Now for all i, 1Sise, x

1 1

i o.m i

= <ig =
f(vx1..xm1) x1..xm1. For all i, 1sisec, XqeaXp e (1) with VX1--Xm0
€ V, we have that f(vi ) must be adjacent or equal to f(vi )

* x1..xm0 x1..xm1
= x1..xm1. Due to the uniformity of f, f(v; X o) cannot be mapped
- e m

s o\m

upon a node in {y1.fym1|y1..ym € (T) }, so f(vx1..xm0) = x1..xm0.

Let B = {x1...xm0|x1...xm € W}. We now have that each node in
Vm+1\B has ¢ nodes of V*—VG mapped upon it by f and each node in B has

¢~1 nodes of V*-VG mapped upon it by f, So the nodes of VG must be

c is a bijection of VG to B.

Because f must preserve adjacencies and GB (the subgraph of C

mapped upon nodes of B; f, restricted to V
m+1
induced by B) is graph-isomorphic to G;;, G is isomorphic to a (span-
ning) subgraph of Gw. The function y: x~» f(x)|m is a graphisomorphism

VG > We O

Combining claim 5.1.1, and 5.1.2. and noting that every construc-
tion can be done in time polynomial in |V|, we have a polynomial time
transformation from the HAMILTONIAN CIRCUIT IN A GRID GRAPH problem to

the c¢~UNIFORM EMULATION ON A CUBE-problem., Hence the latter is NP~
complete, 0
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Corollary 5.2. The following problem is NP-complete:
[SUBGRAPH ISOMORPHISM IN A CUBE GRAPH]

Instance: A connected, undirected graph G=(VG,EG) and a set of

nodes W < Cn
Question: Is G isomorphic to a subgraph of Gw, the subgraph of Cn
induced by W?

6. Uniform emulation on the shuffle-exchange network. The shuffle-

exchange network was proposed initially by Stone {971 and has been suc-
cessfully used as the interconnection network underlying a variety of
parallel processing algorithms. There are two slightly different types
of graphs, both realizing Stone's concept of a shuffle-exchange net-
work. We will use the terminology of [5] and call these graphs the
shuffle-exchange graph and the U-pin shuffle. The nodes of the
shuffle-exchange graph and the 4-pin shuffle are given n-bit addresses
in the range O..2n-1. In the shuffle-exchange graph there is an edge
from node b to node ¢ if and only if b can be "shuffled" (move the
leading bit to tail position) or "exchanged" (flip the tail bit) into
c. In the 4-pin shuffle there is an edge from node b to node ¢ if and
only if ¢ can be reached from b by a shuffle or by a shuffle followed

by an exchange. We use the following notations:

% : a bit that can be 0 or 1

a : the complement of bit a (0=1, 1=0)

b : the n bit address b1"bn

b the address that is obtained by complementing each bit of b
(6,775, = By...5)

[0] : zero or one occurrence of bit O (i.e. 'empty' or '0')

[1] : zero or one occurrence of bit 1 (i.e. 'empty' or 1Y)

(01)*: zero or more repetitions of the string 01 (as required)

(10)*: zero or more repetitions of the string 10 (as required)

The length (n) of a bitstring will always be clear from the context

and is usually not given by separate indices. For example, the nota-
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tion (01)*¥[0] for n odd will denote the string (01)Ln/2JO. For n even
it will denote the string (01)Ln/2J.

Definition. The shuffle~exchange network is the graph SEn=(Vn,§n) with

0 ~
== <ig S — = =<=§
Vn {(b1...bn)|V 1€ign bi 1} and En {(b,c)lb,c € Vn’ and (V 25isn

by=¢;_, Aby=c ) or (V 15ign=1 by=c, A b.=c )}. The U-pin shuffle
network 1is the graph S =(V ,E ) with E = {(b,e)|b,c € VA (V 25isn
by=Ci_q}-

We recall the following facts from [2,3]:

Lemma 6.1. [2,3] For all n21 every graph isomorphism of S, (or of SEn)‘
is one of the following list:

f: f(b)=b

T: T(b)=b.

Definition. For directed graphs G=(V,E) 1let GR be the (directed)
graph obtained by reversing the direction of the edges, 1i.e.,
cRatv, 8™ with R = {(g',8)|(g,8") € E}.

Definition. The inverse shuffle-exchange network 1is the graph

R
ISEn—SEn‘

The inverse U-pin shuffle is the graph Isn=Sﬁ.
Lemma 6.2. [2] f is a (uniform) emulation of G on H if and only if f

is a (uniform) emulation of GR on HR.

Theorem 6.3. For every c € N+, with c27 the following problem 1is NP-
complete:
[c-UNIFORM EMULATION ON A 4~PIN SHUFFLE]
Instance: A directed strongly connected graph G=(VG,EG), such
that there is an neN' with |VG|=c.2n.

Question: Is there a uniform emulation of G on Sn?

—————

transform HAMILTONIAN CIRCUIT for directed graphs with each node
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involved in exactly 3 edges to this problem. As noted in section 3,
this version of HAMILTONIAN CIRCUIT is NP-complete [6]. Let c27 be
given, Note that c is the computationfactor of the uniform emulation.

Let a directed graph G=(V,E) be given with each node involved in
exactly 3 edges. We will construct a strongly connected graph
G*=(V*,E*) such that G* can be uniformly emulated on S (where
c.2n-|v*|), if and only if G contains a Hamiltonian circuit. Without
loss of generality we may suppose that G is strongly connected with no

selfloops or parallel edges,

Let a be the smallest integer such that 20i12|V|. Let f1 be an
injection of V to the set {x,...x |[VI x=0 V x;=1 A3i x,=0} =
(%)a\{1a}. Such an injection can eaéiiy be found in time polynomial in
[v]. Let n=5a+7. Let f, be the mapping (%)“*(%)n, given by f,(x) =
01%x01%" Tox01%.

Let W ¢ (%)n be given by W = {y| y is a substring of length n of
a string 01%x01%""0x01%y01%* '0y01%), where there are v, w & V, with
(v,wWw) & E and x-f1(v) and y € f1(w)}. With the subgraph of S, induced
by W we denote the graph Gw'(w’Ew)' with E. = {(v,w)| (v,w) € Ep» VoW
€ W}l.

W

Now we claim:

Claim 6.3.1. G has a Hamiltonian circuit, if and only if there is a
cycle of |V|.(4a+5) nodes in G, that visits each node of W at most

once,

Proof. First suppose V has a Hamiltonian circuit Let v1,...,v| be

v|
the successive nodes on this circuit.

For every pair of nodes v,, v, ., (+ is addition modulo |[V])

notice that every substring of length n of the string
a at+l a a+l a

01 0f1(vi)01 Of1(v1)01 0f1(vi+1)01 0f1(vi+1)01 0 is an element of

W. So there is a path of length Ua+5 of f_of (v.) to f of1(vi+1). By

2 7171 2
adding these paths together one obtains a cyecle in GW of length
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|[V].(4a+5). It is not difficult to check from the construction of £
f2 and W that no node of W can be visited more than once, in this
cycle,

Now suppose there is a cycle of |Vl.(ua+5) nodes in G that

visits each node of W at most once, ‘

Note that every address of a node of W has exactly one substring
1“+1. When we follow the cycle this substring moves in the addresses
of the nodes we visit one place to the left, i.e. we visit succes-

sively nodes of the form (o)n’(°+1) m a+1( "

(?)n—(a+1) -1 a+1(0)m+1’ ete. After a node of the form
a+1(0)n—(a+1)

a node of the form
(o)n’lﬂ‘*‘ ) a+l

is visited. This means that every (4a+5) steps on the
cycle a node of the form (1)20‘+3 a+1( )2("+3 is visited. Necessarily

this node is of the form O1 Ox01 0x01 0 e f of ).
Now let v ,...,vlv' be the nodes of V, such that the cycle succes~
sively visits fzof (v Yseoeof zof (V|V|) after every la+5 steps. There
is a path of length Ma+5 from f of (v ) to ¢ of (v, .); due to the

2 2 i+

construction of f1, f2, and W there now must be an edge (vi, v
E. (+ is the addition modulo |V|.) So VireeeaV)y| form a Hamiltonian

v
circuit., o

Now we will give the definition of G*=(V*,E¥), G* consists of the
following parts: we take c-1 layers, each consisting of a copy of Sn'
Between the layers there are connections between copies of the same
nodes and copies of adjacent nodes. From the upper two layers we leave
out the nodes that are a member of W To this we add R|v|(ua+5)[K 1:
that 1is two cycles with length |V|(l4a+5), with connections between
copies of the same and adjacent nodes; and one c¢ycle with Jjust the

right number of nodes to fill up all the remaining free places,

Definitions.
V=t | v ", 1sise-3)

U v, | xe (P, x @ W, 1mc-2 V i=c-1]}
v, = “’1,3' 0sis(4a+5).|V]|-1, j=1 V j=2}
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n4
r o= °f2 "V1I'lv2I
L {z,| osisr-1}

V¥ = V. UV,UV

1 . Let an arbitrary v*¥ € V be given,

2 3

E* = {(v
U {(w

)' vx,i’vy,j e V1 A ((Xp)') € En AV (x-y A 1¢J))}

M (=1, AJied,) V (=141 mod (a+5)[V])

x,1°Vy,3
W
?

Lidy T iads

and w e V2}

oW
1103771503,
(i+1)mod r)l Zy» z(i+1)mod r e V3}

Yo (Mg 4 vf20f1(v*).1

U {(z;,2

U {(v ), (v

£,0f, (v#),1° 0,1 n

One may notice that G¥=(V*,E*) is strongly connected, and |v*|-c.2n.

Claim 6.3.2. There exists a uniform emulation of G¥ on Sn’ if and only
if there 1is a cycle of length |V|(l4a+5) in G,, that visits each node
of W at most once.

Proof. First suppose there is a cycle of length |V|.(4a+5) in G,» that
visits each node of W at most once. We will now construct a uniform

emulation £ of G¥* on Sn‘ For v e V1 we let f(vx i)-x. In this way

x,1i ’
1 on every node in v1\w and ¢~3 nodes on

every node in W. From our previous observations it is clear that the

we have mapped c-1 nodes of V

cycle must use every node of the form f of1(v), for some v € V, so it

2

must use also f2of1(v*). We can now map the nodes of Vz-on the nodes
i

of W, in the following manner: f(wo 1) = f(w0 2) = fzof1(v*). Let w
’ [
be the i'th node after f2of1(v*) on the cycle. Then f‘(wi 1) - f'(w1 2)
. 9 14
= wi. In this way adjacencies are preserved and every node in (-?-)n has

c-1 or c-3 nodes of V1sﬂ V2 mapped upon it, We now use that Sn has a
Hamiltonian circuit (this follows from the existence of binary the

Bruyn sequences [4]). The successive nodes of V, are mapped on the

3
successive nodes of this Hamiltonian circuit, starting with f(zo)- On.

However when we arrive in a node that has c-3 nodes of V, g v mapped

2

upon 1it, we map 3 successive nodes of V_, on this node. In this way a

3
uniform emulation of G¥ on Sn is obtained. o

e 2.0, (zZ., Vv
"1 O 0" om,1

)}
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Now suppose there exists a uniform emulation f of G* on Sn'

).

Claim 6.3.2.1. For all v e V1 t‘(vx i) = f(v
" N N ]

X,i° vx,J X,J

Proof. Suppose there are v s V_ . € V., with f(v ):f(v ). Note
—amELe x,1i X,J 1 X,J°°

*
that (vx,i’ v ) € E* and (vx,j’ v ) &8 E¥, So (f(v ), f(vx.J)) e
E_ and (f(v

x'J ) X.i 91
n x'J), f(vx,i)) e E» hence {f(v x,1 ). f(v )} = {(01)*[0],
(10)*[11]}.

X,J

Every node vo e V1 must be mapped adjacent or equal to
X K
1 1..‘ 1’

) and to f(vx,J)’ so f(vgx N k) e {(01)*[0], (10)*[1]}f

1"1°°"n=-1? ' :
In the same way one shows that for all v 0 e V1 f(v ) &

x2..x 1,k x2..xn1,k

{(01)*[0], (10)*[1]}. If x & {0 , 1" » (01)¥[0], (10)*[1]}, then notice
that neither these nodes and neither their neighbours are members of
W, so we have at least 3(c-1)>2c nodes mapped upon {(01)*[ 0],
(10)*[1]}, which contradicts uniformity. If X ¢
{o",1 ,(01)*(0) (10)#[11}, then all 5 nodes {1x1...x mqr XqeeeXo,
x2...x 11} are different, so there are at least 5(c-3) nodes mapped
upon the 2 nodes {(01)*[0], (10)*[1]}, again contradicting
uniformity. o

flvy .t

Claim 6.3.2.2. For all Ve x,i e V1 f(vx,i) = X

or for all . x,1 e V1 t‘(vx’1

)';u

Proof. If x=y then f(v ) * f(v ). (Suppose f(v_ .,) = f(v ).
, .

X,1 X,1 ¥,!
Then at least 2(c~3)>c nodes are mapped upon one node, contradicting

uniformity. Here we use c27, and claim 6.,3.2.1.). So the mapping x-»

f(v 1) is an isomorphism of S onto itself. Using lemma 6.1. we now
O

have that either for all x e ( f(v Ve 1)-x or for- all x & (To)n

f(vx )=x. With claim 6. 3. 2.1. the result follows. o

9

Without loss of generality we may suppose f(vx }J=x for all L
14

e V1. Now we have shown that on nodes of (—) W there are c~1 nodes of

v that are mapped upon that node, and on nodes of W there are c¢-3
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nodes that are mapped upon that node by f.

Claim 6.3.2.3. For all i, 0%is(4q+5).n~1 f(wi 1) = f‘(wi 2).

’

Proof. f(wi,1) and f‘(wi’2

to check that f(wi 1), f(wi 2) ¢ {(01)*[0], (10)*[1]} ( (01)*[0],

(10)*¥[1] are not elements of W and neither are their neighbours; now

) must be adjacent to each other. It is easy

use uniformity). Hence f(w, ,) = f(w, ). O
it i,2

Now we have that uniformity forces that- every node of V2 is

mapped upon a node of W. Furthermore, if 0Si,j<(4a+5)|V|-1, i#j and
f‘(wi 1) = f(wj 1) then a contradiction with wuniformity arises. This
? 9

shows that the successive nodes f(w, .), i=0...(4a+5)|V|~1 are mapped

i,1

upon the successive nodes of a cycle of length (4a+5)|V| in Gy» that

visits each node of W at most once. o

Corollary 6.3.3. G* can be uniformly emulated on Sn if and only if G

has a Hamiltonian circuit.

The construction of G¥* can be done in polynomial time in |V],

hence the problem stated in theorem 6.3. is NP~complete. O

Corollary 6.4, For every c € N+, c27 the following problem is NP~

complete:

[c~UNIFORM EMULATION ON AN INVERSE 4-PIN SHUFFLE]

Instance: A directed, strongly connected graph G=(V ),

. . o*Eg
such that there is an n € N with [VG|=c.2 .

Question: Is there a uniform emulation of G on ISn?

Theorem 6.5, For every ¢ € N, c¢215 the following problem is NP-
complete:
[c~UNIFORM EMULATION ON A SHUFFLE-EXCHANGE GRAPH]
Instance: A directed, strongly connected graph Gs(VG,EG), such
that there is ann € N' with |VG|=C.2n.

Question: Is there a uniform emulation of G on SEn?
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Proof. The proof is more or less similar to that of theorem 6.3.
Clearly the problem is in NP. To prove NP-completeness we transform
HAMILTONIAN CIRCUIT for directed graphs with each node involved in

exactly 3 edges to this problem.

Let c¢215 be given and let a directed graph G=(V,E) with each node
involved in exactly 3 edges be given. We may suppose that G is
strongly connected. Again let a be the smallest integer such that 2%
12{v| and let f, be an injection of V to the set ( YN{1%), Let

n=120+6. Let f2 be the mapping (O)a+(0) given by f (x) = 01 20’Ox)-(

Ma 10 012a. Let w1 = {yl y is a substring of length n of a string

012 Oxx01ua 1Oxx01 Oyy O1Ma 10yy01 » Where there are v,w € V with
(v,w) € E and x=f, (v) and y & £.(W)}. Let W = WU {y| YyeooYpo 1 n €
w }. Let the subgraph of SE n? induced by W be the graph G -(W Ey )

w1th E, = v WY (v, w) e E ne VoW € Wl G, has the property that
2of‘1(w1) and f2of1(w2), with (w1,w2) € E
there is a path that uses exactly 10a+5 shuffle-edges and 4g+2

exchange edges of SEn. One can prove in a way similar to claim 6.3.1.:

between every pair of nodes f

Claim 6.5.1. G contains a Hamiltonian circuit if and only if there is

a cycle of |V]|.(140+7) nodes in G,» that visits each node of W at most
once,

We will now define G¥*=(V*,E*), such that G* can be emulated on
SEn’ if and only if G has a Hamiltonian circuit. G* consists of the
following parts: we take c~2 layers, each consisting of a copy of SEn,
with connections between the layers between copies of the same node
and copies of adjacent nodes, but from the upper five layers we leave
out the nodes that are a member of W. To this we add R|V|(1Ma+7)[K5]’
(that is: five cycles with connections between the 1layers between
copies of the same node and between copies of adjacent nodes), and
~again- one cycle with just the right number of nodes to fill up all

the remaining free places.

Definitions.
Oo\n .
v, = {vx i1 xe ()7, 1sise-7}
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utv, | ¢ ", x & W, c-6sisc-2}
x,i 1
Vy = W, -1, 15j55}
r=c.2'- |v |- |v,|
vy - {zil 0sisr-1}

LANE I PV v, u V3. Let an arbitrary v* € V be given.

)| Vi, 1'Vy,3 8 Vi A oy € E V (x=y Aisj))}
(1y=1; A =d,) V (=141 mod (1ba+T)|V])
A (w ev )}

(i+1)mod r)' Zy» z(i+1)mod r & V3}

y Wo L), (w » Vo ), (v v Z0)y (2., v )}
2ofI(V*),1 0,1 0,1 20f1(v*),1 on’1 0 0 00'1

u {(Zioz
U {(v

Again G*=(V*,E¥) is strongly connected and |V*|-c.2n.

Claim 6.5.2. There exists a cyclic path in SE that visits each node
of SE at least once and at most twice,

Proof. We use the fact that there exists a Hamiltonian circuit in
n-1.

Sn#1° Let bo. b1. b2,..;,b2 -1 be the successive nodes on this cir-
cuit, The following algorithm generates the desired path: (let + and
~ be addition and subtraction modulo 2" ).
For i := 0 to 2"’1
i=-1
do begi visit b11+1 L T i —
if b = b then visit b” b = b'b
1 i 1g11 1 n~1
visit b b
n-1

end

It is clear that this algorithm visits each node at 1least once

and at most twice. Furthermore note that bi ! : ! can be obtained from
bibi ! from one cyclic shift, so the successive nodes indeed form a

n-1
path in SEn' o

Claim 6.5.3. There exists a uniform emulation of G* on SEn if and only
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if there is a cycle of length |V|.(14a+7) in G, that visits each node

of W at most once.

-

Proof. If there is a cycle of length |V|.(14a+7) in G, that visits

each node of W at most once, then we can map the nodes of V1 and V2 on

Vn in the same way as in the proof of claim 6.3.3. Notice that in this

way each node has at most c¢-2 nodes of V1 V2 mapped upon it. We can

use the nodes of V3 to fill up the remaining free places, wusing the
circular path of claim 6.5.2.
Now suppose there exist a uniform emulation f of G¥* on Sn' We

first need:

Claim 6.5.3.1. For all Vx,i’ vx,j € V1 f‘(Vx,i) = f(vx.j)°

Proof. Suppose there are v. ., v_ ., € V, with f(v_ .) = f(v_ .). Then

————— X,i X,J 1 X,1 X,J

f(vX i) and f(vx J.) must be mapped upon mutually adjacent nodes., By
? ’

observing adjacencies one shows that every node of the form

v or of the form

? v ? v ’
x1...xn,k x2...xnx1,k an1”’xn—1’k
Ve ox % K in v1‘must be mapped upon f'(vx i) or f‘(vx .). So at

1 n-1"n’ »J
least U4(c-7)-- > 2c nodes are mapped upon 2 nodes, contradicting

uniformity. o

Claim 6.5.3.2. Either for all v i eV

. f(v,i)=x or for all v e Vv
X, 1 X

y1 1

f(vx,i)=x.

Proof, Similar to 6.3.2.2. o

- - g

Claim 6.5.3.3. For all i,

).
2

o
L2
[N
(72

(1 4a+T7).

vi-1, k

<
1,k2, 1=k1,k2$5
f(wi,k1) = f'(wi’l

Proof. Suppose there exists an 1, O0sis (14a+7).|V]=1, such that

< <
f(wi ) = f(w ) (for some k k2, 1-k1,k2-5). Then f(wi,k ) and

1’
1
) are mutually adjacent nodes. Since there do not exist pairs
2

of mutually adjacent nodes b,c in SEm, such that there is a node d in

K,

YiLk

i,k2
£ (
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SEm with (b,d) & Em and (c,d) € Em or (d,b) € Em and- (d,c) € Em we

<£ig
have that f(wi—1 ’j) e {f(wi,k1), f(wi’k2)} (1=J=5)’ f(wi+1 ,j) e

{f(wi,k1)’ f(wi,k2)} (12js5), and f(wi,j) e {f(wi,k1

(1£j55). (+ and - are addition and substraction modulo (14a+7).

), £w )}

i,k2
v|.)
mapped upon each node of SEm

]| 2 2(e=7)+15 >2c. This
2

There are also at least ¢~7 nodes of V1
~1
(see claim 6.5.3.2.), so |f ({wi,k1' LI

contradicts uniformity. o

In the same way as in the proof of claim 6.3.2. we can show that the

) (0sis(140+7)|V|=1) form a cycle in G, that

successive nodes f'(wi W
s

1
visits each node of W at most once, of length (14a+7).|V|. ®©

So G*¥ can be uniformly emulated on SEn if and only of G contains a
Hamiltonian circuit, The construction of G* can be done in time, poly-
nomial in |v|, hence c~UNIFORM EMULATION ON A SHUFFLE EXCHANGE GRAPH

is NP~-complete, for c¢215. o

Corollary 6.6. For every ¢ € N, ¢c215 the following problem 1is NP-

complete:
[c~-UNIFORM EMULATION ON AN INVERSE SHUFFLE-EXCHANGE GRAPH]
Instance: A directed, strongly connected graph G=(VG,EG), such
that there is an neN with IVG|=C.2n.

Question: Is there a uniform emulation of G on ISEn?

We conjecture that also for smaller computation factors c¢ the problems

stay NP~-complete,

7. Uniform emulation on fixed graphs., Instead of fixing the computa-

tion factor ¢, one can also fix the hostgraph H. For certain (types
of) hostgraphs H, the UNIFORM EMULATION problem still remains NP~
complete. For instance, H can be fixed to the graph with 3 nodes and 2

edges.

Theorem 7.1. Let n€N+, nz3, Let H be the graph obtained by removing
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one edge from a totally connected graph with n nodes. The following
problem is NP-complete:
Instance: A connected, undirected graph G=(V,E).

Question: Is there a uniform emulation of G on H?
(Note that H is no longer part of the instance.)

Proof. Obviously the problem is in NP, To prove NP-completeness we

———— -

first need the following lemma:

Lemma 7.1.1. Let neN+, n23. The following problem is NP-complete:
Instance: Bipartite graph G=(V,E) with n| |V|, and at least one
node of V is isolated (i.e. is of degree 0).
1,\12 gV1 s, such that u €

implies that {u,v} € E and |V1|=|V2|=%.|V|?

Question: Are there two disjoint subsets V
V1, v € V2

Proof. Clearly the problem is in NP. To prove NP-completeness we
transform the (strongly related) BALANCED COMPLETE BIPARTITE SUBGRAPH
problem (hereafter abbreviated as BCBS) to it. This problem 1is known
to be NP-complete [6, p. 196], and has the following form:

[BCBS]

Instance: Bipartite graph G=(V,E), positive integer K§|V|.
1.\12 <V, such that u €
V,, v €&V, implies that {u,v} € E and [V, [=|V,|=K?

Question: Are there two disjoint subsets V

We use the following terminology: if a graph G=(V,E) contains two dis-
> < V such that u € V1, v € V2 implies that {u,v} €
=K, we say that G contains a BCBS with 2¥K nodes.

joint subsets V1, Vv
E and |V1|=|V2|
Let an instance of BCBS be given. We consider three cases:
Case I: cK>|v].
In this case add cK—lvl extra nodes of degree 0 to G. The graph
G', in this way obtained, is bipartite, has at least one node of de-
gree 0, and contains a BCBS with 2¥K = 2*%.|V'| nodes if and only if G
contains a BCBS with 2¥K nodes.

Case II: cK<|v].
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We transform this case to case I. In polynomial time we find dis-

joint sets Va,v such that V=va_ﬁgvb, and each edge € E goes between a

b
node of Va and a node of V_. (va,v

b are the two "halves of the bipar-
tition".)

b

Now add |V]| extra nodes to v, and |v| extra nodes to Vb and con-

nect each of the extra nodes to each of the nodes in the other half:
we" have extra nodes v?,..,vTvl, v:’,..,vbV and edges (v?,v?)
(151,35|v]); (v,w)(1sis|v|, w € V) and (v;,w)(15iS|v]|,w'€ V). The
graph G1=(V1,E1) 30 obtained has the following properties:

- G1 is bipartite

- G, contains a BCBS of 2*(K+|v|) nodes if and only if G contains a

BéBs of 2¥K nodes.,
- c.(K+|V]) > |v']
So now we have an instance of case I, and handle the graph as
described there,
Case III: MK=|V|. If G does not contain isolated nodes, add one, and

we are in case ITI.

We finally obtain in this way a graph, that has a BCBS of 2*%|V'|
nodes if and only if G contains a BCBS of 2*¥K nodes. Note that the
constructions can be carried out in time, polynomial in the size of
G. o

Definition, The complement of the graph G=(V,E) 1is the graph
Gc=(v,Ec), with Ec={(v,w)|v¢w and {(v,w) €E}.

Lemma 7.1.2. Let n € N', n23. Let H=(V,E,) be the graph obtained by
removing one edge from a totally connected graph with n nodes. Then
there is a uniform emulation of Gc=(V,Ec) on H if and only if G con-

tains a BCBS with 2*%|v| nodes.

Proof. First suppose f is a uniform emulation of G° on H. There are
-1 ~1

ZEH with (v1,v2)EEH. Choose V1=f (vé) and v2=f (v2).

5 implies (f(v), f(w)) & EH =>(v,w) 8 E = (v,Ww) €& E,

Hence G contains a BCBS with 2*%.|V| nodes.

two nodes v1,v

VeV, wev

Now suppose G contains a BCBS with 2*%.|V| nodes, i.e. there are
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sets V,,V, with |v1|-|v2|-%|v| and v & V,, wev,>(v,we E. Let
Vie¥s be the nodes in H with (v1,v2) e EHf Now let f(V1)-v1, f‘(Vz)-v2
and map the other nodes of V in equal portions on the remaining nodes
of VH' The function f-so obtained is a uniform emulation: suppose
(v,w) & E° and £(v)ef(w) and (£(v),f(w)) & E,. Then either f(v)av,
and f(w)-v2 or f‘(v)-v2 and f(w)-vl, hence veé V, andwé -V, orwé V

1 2 1
and v € V, 80 (v,w) € E. This contradicts (v,w) € EC. o

Lemma 7.1.2. gives a simple transformation, (that can be carried out
in polynomial time), of the problem stated in lemma 7.1.1. to the con~

sidered version of UNIFORM EMULATION. Hence the latter is NP-
complete., O '

In figure 7.1. some examples of possible choices for H are given. We
conjecture that UNIFORM EMULATION is NP-complete for every fixed, con-
nected but not totally connected graph H. (If H is a totally connected

graph with n nodes, then every graph with c.n nodes can be uniformly
emulated on H.)

O—0—0

n=3 n=4 n=5

fig. 7.1. Possible choices for H in theorem 7.1.
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