THE COMPLEXITY OF FINDING UNIFORM
EMULATIONS ON PATHS AND RING
NETWORKS

Hans L. Bodlaender

April 1988

Rijksuniversiteit Utrecht

g ~ 3 Vakgroep informatica

Budapestisan$ 3584 CD Utrecht

Cor. adm:Pbmao.o'iz 3508 TA Utrechtt
Telotoon 03083 1452

The Netheriands

THE COMPLEXITY OF FINDING UNIFORM
EMULATIONS ON PATHS AND RING NETWORKS*

Hans L. Bodlaender
Department of Computer Science, University of Utrecht
P.0.Box 80.089, 3508 TB Utrecht, the Netherlands

Abstract

Uniform emulations are a method to obtain efficient, balanced simulations of large
processor networks (guests) on smaller processor networks (hosts). Each uniform
emulation has associated with it a constant ¢, called the computation factor, which is
the size of the guest network divided by the size of the host network. In this paper we
prove that the problem to decide whether a given connected graph (guest network) G
can be uniformly emulated on a path or a ring network is NP-complete, even if G is
required to be a binary tree. If the computation factor c is fixed, then these problems
become solvable in polynomial time for arbitrary connected graphs G. However, if we
keep the computation factor fixed, and at least 4 or 2 for the path- or ring-version,
respectively, but allow disconnected graphs G , then the problem again is NP-complete.
Similar results are shown for directed graphs.

1 Introduction.

Often the need arises to simulate one processor network on another processor network,
for instance when a parallel algorithm is designed for execution on a certain network, but
must be implemented on another network. In this paper we study a notion of simula-
tion, termed emulation, proposed by Fishburn and Finkel [4], which is suitable to obtain
efficient simulations of large networks on smaller networks. Independently, Berman [1]
proposed a similar notion.

Definition.
Let G = (Vg,Eg) and H = (Vy, Egr) be networks of processors (graphs). We say that
G can be emulated on H if there exists a function f : Vo = Vg such that for every edge

(9,9)) € Eg : f(9) = f(¢') or (f(9),f(¢")) € Eg. The function f is called an emulation
function or, in short, an emulation of G on H.

Let f be an emulation of G on H. Any processor h € Vg must actively emulate the
processors € f~1(h)in G. When g € f~(h) communicates information to a neighbouring
processor g/, then h must communicate the corresponding information “internally”, when

*This research was supported by the Foundation for Computer Science (SION) of the Netherlands
Organization for the Scientific Research (NWO).

it emulates g’ itself, or to a neighbouring processor b’ = f(g') in H otherwise. If all pro-

cessors act synchronously in G, then the emulation will be slowed by a factor proportional
to max |f~1(h)).

Definition.

Let G, H and f be as above. The emulation [is said to be (computationally) uniform if
for all h,h' € Vi : |f~1(h)] = |F~1(R)|.

Every uniform emulation f has associated with it a fixed constant ¢, called: the compu-
tation factor, such that for all h € Vy | f71(h)| = c. It means that every processor of H
emulates the same number of processors of G.

Graphs representing the interconnection pattern of a processor network will be con-
nected (in the undirected case) or strongly connected (in the directed case). Therefore
we will be mainly interested in uniform emulations of (strongly) connected graphs on
(strongly) connected graphs.

In [3] variants of the following problem were considered:

[UNIFORM EMULATION]
Instance: Connected graphs G = (Va, Eg), H = (Vy, Eg).
Question: Is there a uniform emulation of G on H?

This problem is NP-complete, even if the problem is restricted to instances with H a
hypercube, a grid or a shuffle-exchange network, and the computation factor is fixed, or
with G and H of bounded degree and the computation factor is fixed. Also, UNIFORM
EMULATION is NP-complete for fixed host graphs H, for every connected graph H, that
is not a complete graph [3]. Note that the related question whether G can be emulated on
H (without the requirement of uniformity) is trivially solvable, as every constant function
is an emulation.

In this paper we consider UNIFORM EMULATION for the case that H is a path or
a ring (cycle). We will call these problems UNIFORM EMULATION ON A PATH and
UNIFORM EMULATION ON A RING, respectively.

The UNIFORM EMULATION ON A PATH-problem is strongly related with the prob-

lem to determine whether a graph G has a bandwidth of at most K , for some K € N+,
To be precise, the BANDWIDTH problem is the following:

[BANDWIDTH]

Instance: A graph G = (Vg, Eg) and an integer K < Vel

Question: Is there a bijection f: Vg — {0,...,|Vg| — 1} such that for all (v, w)
€ Eg |f(v) — f(w)] £ K, in other words: does there exist an arrangement
of the nodes of G on a straight line, such that adjacent nodes in G have
a distance of at most K on the line.

Leung, Vornberger and Witthoff 8] introduced a variant of BANDWIDTH, called CYCLIC
BANDWIDTH. In this problem one is asked to arrange the nodes of G on a cycle (ring),
such that adjacent nodes in G have a distance of at most K on the cycle. The CYCLIC

BANDWIDTH problem is strongly related with the UNIFORM EMULATION ON A
RING-problem.

This paper is organized as follows. In section 2 some preliminary definitions and results
concerning the relation between (CYCLIC) BANDWIDTH and UNIFORM EMULATION
ON A PATH (RING) are given. In section 3 we prove that UNIFORM EMULATION
ON A PATH and ON A RING are NP-complete, even if G is required to be a binary
tree. In section 4 similar results are derived for directed variants of the problems. In
section 5 we give polynomial time algorithms for the UNIFORM EMULATION ON A
PATH (RING) problems for the case that the computation factor is fixed. In section 6
we show that the problem becomes again NP-complete, if we keep the requirement that
the computation factor is fixed, but drop the requirement that G is connected, for each
computation factor ¢ > 4 (UNIFORM EMULATION ON A PATH) or each computation
factor ¢ > 2 (UNIFORM EMULATION ON A RING).

2 Preliminaries.

We first give a number of basic definitions. The notion of cyclic bandwidth was introduced
in [8].

Definition.
The path with n nodes is the (undirected) graph P, = (V,,, EF) with V,, = {0,...,n -1}

and Ef = {(b,c)|b,c € V,, and |b — ¢| = 1}. The ring (or cycle) with n nodes is the
(und.trected) graph R, = (V,,EE) with EF = {(b,c)|b,c € V,, and |b - c| 1 or

|b ¢| = n—1}. The directed path with n nodes is the (directed) graph P= (Vs EP) with
EP {(d,¢c)lb,c€ V,and c = b + 1} The dlrected ring (or directed cycle) with n nodes
is the (directed) graph Ro= (V,.,ER) with ER— {(b,¢)|b,c € V,, and ¢ = (b + 1)modn}.

With dg(b, c) for b, c € V,, we denote the distance of b to c in the graph G, i.e., the length
of the shortest (directed) path from b to c.

Definition.

Let G = (V,E) be an undirected graph. A linear ordering of V is a bijection f :
V — V,. f is said to have bandwidth K if K = max{|f(u) — f(v)||(u,v) € E} =
max{dp,(f(u), f(v))|(u,v) € E}, i.e., the maximum distance in P, between the image of
adjacent nodes in G is K. The bandwidth of G is the minimum bandwidth over all linear
orderings of V, i.e., Bandwidth (G) = min{bandwidth(f)|f is a linear ordering of V'}.

For cyclic bandwidth, the nodes are mapped upon a ring, instead of on a path.
Definition.

Let G = (V,E) be an undirected graph. A linear ordering f is said to have cyclic
bandwidth K if K = max{dg,(f(u), f(v))|(u,v) € E}. We write: Cyclic Bandwidth
(G) = min{Cyclic Bandwidth (f)|f is a linear ordering of V'}.

For directed (cyclic) bandwidth, if (u,v) € E then we want to have a path of length at

most K from f(u) to f(v) in I—’:, (I:’,:.)

Definition.

Let G = (V, E) be a directed graph. A linear ordering f is said to have directed bandwidth
K, if for all (u,v) € E f(v) > f(u),and K = max{d};. (f(u), f(w)|(u,v) € E}. fis said
to have directed cyclic bandwidth K if K = max{d— (f(u), f(v))(u,v) € E}. H there
exists a linear ordering with directed bandwidth K a.ﬁa no linear ordering with a smaller
directed bandwidth then we write Dir Bandwidth (G) = K. Similarly we write Dir Cyclic

Bandwidth(G) = K if K is the least possible cyclic bandwidth for all linear orderings of
V.

Note that there exists a K with Dir Bandwidth(G) = K, if and only if G is cycle free.
The following lemma’s relate the (cyclic) bandwidth of a graph and its capacity to be
uniformly emulated on a path or a ring. Note that the computation factor of each of
uniform emulations mentioned in the lemma’s equals K.

Lemma 2.1
Let G = (V, E) be an undirected graph and K| |V|. Let n = |VI/K. Then:

Bandwidth(G) < K
= G can be uniformly emulated on P,
= Bandwidth(G) < 2K - 1.

Proof.

(i) Let f be a linear ordering of G with bandwidth < K, K | V] and n = |V|/K. Then
g :V — V,, defined by g(v) = | f(v)/K| is a uniform emulation of G on P, : if
(4,v) € E then |f(u) — f(v)| < K, hence |g(u) — g(v)| < 1, and g(u) and g(v) are
adjacent in P,.

(i) Let g be a uniform emulation of G on P,. For every i € Viy we can number the
nodes in g=!(¢) from 0 to K — 1. Let nb(v) be the number given to v, le. Vo,w e
Vv # wAg(v) = g(w) = nb(v) # nb(w) and Vv € Vnb(v) € {0,...,K — 1}. Now
f:V = Vly), defined by f(v) = K.g(v) + nb(v) is a linear ordering with bandwidth
at most 2K — 1.

a

Lemma 2.2
Let G = (V, E) be an undirected graph and K| |V|. Let n = |V|/K. Then

Cyclic Bandwidth (G) < K

= G can be uniformly emulated on R,

= Cyclic Bandwidth (G) < 2K — 1.
Proof.
Similar to 2.1.)

Lemma 2.3

Let G = (V, E) be a directed, acyclic graph. Let K| |V|and n = |V|/K. Then

Dir Bandwidth (G) < K

= G can be uniformly emulated on I_’:.
= Dir Bandwidth (G) < 2K — 1.

Proof.
(i) Similar to 2.1.

(ii) Let g be a uniform emulation of G on P,. For every ¢ € V;, we can number the nodes
in g=1(%) from 0 to K — 1, such that if (u,v) € E,u,v € g71(4), then nb(u) < nb(v).
Now f: V — Vjy|, defined by f(v) = K -g(v)+nb(v) is a linear ordering with directed
bandwidth at most 2K — 1.

O

Lemma 2.4
Let G = (V, E) be a directed graph, let K| |V|, and n = |[V|/K. Then

(i) Dir Cyclic Bandwidth (G) < K
= G can be uniformly emulated on R, and G does not contain a cycle with length
less than n.

(ii) G can be uniformly emulated on R, and G does not contain a cycle with length < K
= Dir Cyclic Bandwidth (G) < 2K — 1.

Proof.

(i) Let f be a linear ordering of V with directed cyclic bandwidth at most K. A

uniform emulation of G on R, can be constructed similar to 2.1. Suppose G

contains a cycle with length less than n, with nodes vo,. -y1-1(l < n). Then
5;}, dRT;i(f(”")’f(”(iH)modl)) = n, 8o there exists a 1,0 < ¢ < [— 1 such that

dR- (f(”")’f(”(i+1)mod1)) > |V|/1 > [V]/n = K : the directed cyclic bandwidth of
i

f is greater than K. Contradiction.

(ii) Let g be a uniform emulation of G on I-i-;,, and suppose G' does not contain cycles
with length K or less. Then for every 1,0 < i < n—1, the subgraph of G, induced by
node-set g~1(1) is cycle free. So there exists a bijection nb; : g71(3) - {0,...,K -1},
such that u,v € g=1(4) A (u,v) € E = nb;(u) < nb;(v). Now again f : V — Vivis
defined by f(v) = Kg(v) + nbg(v)(v) is a linear ordering with bandwidth < 2K — 1.

O

3 NP-completeness for finding emulations of trees.

The problem to determine whether a given connected graph G = (V| E) has bandwidth
< K is NP-complete, even if G is required to be a binary tree [5]. On the other hand,
when the bandwidth factor K is fixed, then there exists an algorithm that is polynomial
in |V], (but exponential in K), to determine whether a given graph G has bandwidth
< K [9]. In contrast, CYCLIC BANDWIDTH is NP-complete even for fixed K > 2, if
we allow the graphs to be not connected. If G is required to be connected then CYCLIC
BANDWIDTH can be solved in polynomial time for any fixed K [8]. It is not difficult to
prove that the CYCLIC BANDWIDTH problem for connected graphs, but with variable
K, is NP-complete, by transformation from BANDWIDTH.

The resemblance of these results to the results for UNIFORM EMULATION ON A
PATH and UNIFORM EMULATION ON A RING, respectively, is not very surprising,
given lemma’s 2.1 and 2.2., but the details are tedious.

Theorem 8.1
The following problem is NP-complete:

[UNIFORM EMULATION ON A PATH for binary trees]

Instance: An undirected, connected graph G, that is a binary tree, and a
positive integer n € N+,

Question: Is there a uniform emulation of G on P,?

Proof.
Clearly the problem is in NP. To prove NP-hardness we transform the BANDWIDTH
problem for binary trees to this problem. This version of BANDWIDTH is NP-complete
[5].

Let G = (Vg, Eg) be a binary tree; let 0 < K < |Val, and n = |Vg|.

We will construct an undirected graph G; = (V1, E1), that is again a binary tree, and
a positive integer m € Nt, such that G, can be uniformly emulated on P,,, if and only if
the bandwidth of G is < K.

Let k € N* be the smallest integer, such that k + 1 is a power of 2, and 2% > 42kK. Let
c = 281 /(k + 1). Note that k is polynomially bounded in logn, and ¢ is polynomially
bounded in n. ¢ will be the compuation factor of a possible emulation of G1on P,,. Let
m = 4(k+ 1)+ 6k(n — 1) + 3(k + 1)n.

We now describe the construction of G,, together with a sketch of the main ingredients of
the proof. The complete proof is given afterwards.

(a) Take two perfect binary trees of depth k (i.e. with 2% leaves and 2% — 1 internal
nodes each), and connect the roots (see figure 3.1.). We call this structure a “tree-
block”. G; contains two such treeblocks. We will show that these treeblocks must be
mapped to the “ends” of P,,.

Figure 3.1

(b) Take a path with length 6k(n—1)+ $(k+1)n between a leaf of one of the treeblocks
and a leaf of the other treeblock. It will follow that the i’th node on this path must
be mapped to node 2(k + 1) +i — 1.

(c) Take a perfect binary tree of depth k, and remove (k + 4)k leaves. A copy of this
tree is connected to the j'th node of the path of (b), for every j € {3k +1)i+
6k(i~ 1)+ all < i< n-1,0 € {kk+1,3k,3k+ 1,5k,5k + 1}}. In this way
each “interval” 3(k + 1)i + 6k(i — 1) + 1---3(k + 1)i + 6k(i — 1) + 6k (for each
t,1 <1< n—1), has “many” nodes that must be mapped upon it from these trees,
whereas no or only few nodes of these trees can be mapped to nodes in intervals
3(k+1)i+6ki+1-.-3(k+ 1)i 4+ 6ki + 3(k + 1). In this way we have n “slots” of
%(k + 1) consequtive nodes each, and n — 1 “mountains” of 6k nodes each.

(d) Each vertex z € Vg is represented by a (k — 1)-deep perfect binary tree T,. It will
follow that each of these trees must be mapped to a unique “slot”.

(e) For each edge (z,y) € Eg, connect a leaf of T, and a leaf of T, with a path of length
2(k+ 1)(K + 1) + 6kK. This makes that T, and T, must be mapped “at most K
slots away”.

(f) Connect an arbitrary leaf of an arbitrary T, to the first node of the path of (b), with
a path of length 3(k + 1)n + 6k(n — 1). This path serves to make G, connected.

(g) Add to the last node of the path of (b) a path with just enough nodes to total the
total number of nodes in the constructed graph to cm.

Let Gq be the graph, obtained in this manner. G; is a tree, and without difficulty, G; can
be chosen such that no node has degree > 3.

Claim 3.1.1
There is a uniform emulation of G; on P,,, if and only if bandwidth (G) < K.

Proof.

We will say that a node p in P, has a free places left, if we have designated ¢ — a nodes
of G’ so far to be mapped on p.

First let a linear ordering f : Vg — V,, with bandwidth < K be given. We will show that
there is a uniform emulation g of Gy on P,,.

a) The treeblocks are mapped to the first 2k + 2 and the last 2k + 2 nodes of P,,,. We will
only give the mapping of the first treeblock to {0,1,...,2k + 1}, the other case is similar.
One of the two subtrees of the treeblock is conected to the path of (b), the other is
not. We map ¢ nodes of the latter subtree to 0, and %c leaves of this tree to each of the
nodes 1,2,...,k — 1. In this way we have mapped every leaf of this tree. We let nodes
with similar ancestors be mapped as much as possible on the same node. Then we can
map the parents of the nodes, that are mapped to i, to i + 1, for each i € {0,...,k — 1}.
The rest of this tree we map to k. When we would map the other half of the tree in the
same manner to {k+1,...,2k+1}, then every node in {0,...,2k+1} would have mapped
¢ nodes upon it, except k and k + 1, which would have mapped ¢ — 1 nodes upon it. We
can now alter this mapping slightly (we move some nodes one place to the left), such that
every node in {0,...,2k} has ¢ nodes mapped upon it, and 2k +1 has ¢ — 2 nodes mapped
upon it. Omne has to take care that the leaf, connected to the path of (b) is mapped to
2k + 1.
b) We now can map the nodes of the path (b) to the nodes 2k + 2,...,m — 2k — 3 (i.e.
the j'th node of the path is mapped to 2k + 1 + j).
c¢) We can map the trees of (c) in a manner, similar to the mapping of the trees in (a),
such that

* a tree connected to the j'th node of the path (b), where j € {3(k +1)i + 6k(i — 1) +
a|]l <i<n-1;a € {k,3k,5k}} is mapped to the nodes {2(k+1)+j —k,...,2(k+
1) +j-1}.

® a tree connected to the j'th node of the path (b), where j € {3(k+ 1)i + 6k(i — 1) +
e1<i<n-1l;a€{k+1,3k+1,5k+ 1}} is mapped to the nodes {2(k+ 1)+ j —
L..,2(k+1)+j+k-2}.

o every node in H has at most ¢ — (K + 4) such nodes mapped upon it.

d) Now notice that we have n “slots” S; = {3(k+ 1)i+6k(i — 1)+ (a - 1)1 < a <
3(k+1)},(0 £ i £ n—1). Each node in these slots has ¢ — 1 free places. We now map
each T, to the slot Sy(,;). This is done in a manner, similar to (a), but leaving in each
node in the slot at least k + 6 free places. Note that |T.| =2F — 1= 1(k + 1)c— 1, s0 we
have in a slot in total 3(k+ 1)e— (3(k+1)e—1) - 3(k+ 1) = 1(k+ 1)(c — 3) + 1 free
places left.

e) Note that if (z,y) € Eg, then the trees T, and T, are mapped at most K slots apart, so
the leaves of these trees have distance at most 3(k + 1)(K + 1) + 6k K. It follows that we
can lay out the paths between T, and T}, of (¢). In some cases the path must be folded.
This can be done in the space left in the slot Sy,ax(#(2),f(y))» Such that each node in a slot
has at least 3 free places left. Note that each slot contains 3(k + 1) nodes of the path of
(b), 2¥ — 1 nodes of a tree T, at most 3(k + 1)K nodes of paths that connect trees T, T,
that are both mapped to other slots and at most 3 (%(k +1)(K — 1)+ 6k(K — 1)) nodes
of the folded paths to the tree T, that is mapped to the slot. As %(k +1)+2F-1+ %(k +

DK +3 (3(k+ 1)(K +1) + 6k(K — 1)) < 24+21(k+ 1)K 3 (3(+ 1)) < $(k+1)(c—3),

it follows that we can map the paths, such that each node in the slot has at least 3 free
places left.

f) By folding it once, we can lay out the path of (), such that both ends connect correctly,
and every node in {2K + 2,...,m — 2K — 2} has at most 2 nodes of this path mapped
upon it.

g) With the path of (g) we can fill every remaining free place. The first 2 nodes are
mapped to the 2 free places of node 2K + 2. Suppose 2K + 3 has «a free places. Then

map the next a nodes to 2K + 3. In this way every free place can be filled, and a uniform
emulation of Gy on P, results.

Now suppose g is a uniform emulation of G’ on P,,. We will construct a linear ordering
f : Vg — V,, with bandwidth < K.

First look at the images of the “treeblocks” of (a). Suppose the two roots of the
two subtrees of a treeblock are mapped to the same node. Then a contradiction can be
derived: every node in the treeblock has distance < k to one of the two roots and there are
2.2k+1 _ 2 guch nodes. This means that 2-2%t1 — 2 nodes are mapped to the image of the
roots and the 2k nodes in P,, with distance < k to it. This contradicts uniformity. Hence
the roots are mapped to neighbouring nodes, and the 2 . 2%¥+! — 4 = 2(k + 1)c — 4 other
nodes are mapped to the 2(k + 1) nodes with distance < k to one of the images of the
roots. This means that in these 2(k+ 1) nodes only 2 free places in total are left. It follows
that the treeblocks must be mapped to the ends of P, i.e. to nodes {0,1,...,2k+1} and
{m — (2k + 2),...,m — 1}. As the path of (b) is connected to both treeblocks, it follows
that either for all 1, the i'th node of the path is mapped to 2k + 1 + ¢, or for all ¢, the i'th
node of the path is mapped to m — 1 — (2k + 1 + ¢). Without loss of generality we assume
the former.

Next look at the images of the roots of Ty, for all z € V. If there exists such a
root 7, with g(r;) € {2(k+ 1)+ 3(k+1)i+6k(i— 1)+ 0 <i<n-1,k-1<a<
5k}, (that is: g(r,) is more that (k — 1) nodes of a “slot” away), then a contradiction
arises: ¢~ 1({g(rz) — k +1,...,9(rz) + k + 1}) contains not only all 2% — 1 nodes of Ty,
but also at least (2k — 1)(c — K — 4) — 2k(K + 4) — 2¢c nodes of the trees of (c). Now
2k 14 (2k—1)(c — K —4) — 2k(K +4) — 2¢ > (2k — 1)c, which contradicts uniformity.

In a similar manner one can prove that for all 1,0 < ¢ < n — 1 in an interval 2(k +
D+3(k+1)i+6ki—k+1,...,2(k+ 1)+ 3(k+1)(¢+ 1) + 6ki+ k — 1 (that is : a “slot”
plus k extra nodes at each side of the slot), there is at most one z € Vg, with nodes of T
mapped to nodes in this interval.

So there is a one-to-one correspondence between z € Vg and slots S;, such that 7
is mapped to nodes in, or near the slot, i.e. we have for each z € Vi a unique ¢ €
{0,1,...,n— 1}, such that g(r;) € {2(k+ 1)+ 3(k+1)i+6ki—k+1,...,2(k+ 1)+ §(k +
1)(i + 1) + 6ki + k — 1} = T;. Now define f(z) = 1, iff g(r;) € Ti. Clearly, f is a linear
ordering of G.

Consider (z,2') € Eg. There is a path with length 3(k + 1)(K + 1) + 6k K between a
leaf of T, and a leaf of T;.. Hence, dg, (s, o) < 3(k+1)(K +1)+6kK +2(k—1). It follows
that |g(rz) — g(rzr)| < 3(k + 1)(K + 1) 4+ 6kK + 2(k — 1), and hence |f(z) - f(z")| £ K.
So f is a linear ordering with bandwidth < K. O

Finally, note that G; can be constructed in time, polynomial in |Vg|. Hence theorem 3.1

follows. O

One can easily adapt this proof for the case of uniform emulation on the ring.

Theorem 3.2
The following problem is NP-complete:

[UNIFORM EMULATION ON A RING for binary trees]
Instance: An undirected connected graph G, that is a binary tree.
Question: Is there a uniorm emulation of G on R,?

4 NP-completeness of finding uniform emulations for di-
rected graphs.

The technique used in section 3 can be modified in order to prove NP-completeness results
for the directed versions of the problems. The problem of finding uniform emulations of
graphs on directed paths may be less interesting from a practical point of view, as the
directed path is not strongly connected. For completeness reasons, results on uniform
emulations on directed path graphs are included.

Theorem 4.1
The following problem is NP-complete:

[UNIFORM EMULATION ON A DIRECTED RING]

Instance: A directed, strongly connected graph G = (V, E), and a positive integer
n € Nt.

Question: Is there a uniform emulation of G on R,?

Proof.
The proof is similar to, but easier then the proof of theorem 3.1. Clearly the problem is in
NP. To prove NP-completeness we transform DIRECTED BANDWIDTH to this problem.
Let a directed graph G = (Vg, Eg), and a positive integer K < |Vg| be given. W.lo.g.
suppose |Vg| > 3. We will construct a strongly connected graph G’, that can be uniformly
emulated on Rjy,|41, if and only if bandwidth(G) < K.
Let n = |Vg|. Let ¢ = K(K — 1) + 2n + 4. G’ consists of the following parts:

(a) a clique B with ¢ nodes

(b) for each node z € Vg a clique C; with }c nodes

(¢) a path of length n from a node in B to a node in Cy, for every z € Vg

(d) a path of length n from a node in C, to a node in B, for every z € Ve

(e) for each edge (z,y) € Eg, a path of length K from a node in C; to a node in Cy

(f) Let the total number of nodes used so far in (a) - (e) be m. Add a path from a node
in B to a node in B with ¢(n + 1) — m nodes (i.e. with length ¢(n +1) —m +1).

10

The paths in (c) and (d) make that G’ is strongly connected.

Claim 4.1.1 .
Dir Bandwidth (G) < K, if and only if there is a uniform emulation of G’ on Rn41.

Proof.

Let f be a uniform emulation of G’ on ﬁ,._H. Note that for all v,w € Vg : if (v,w) € Egr,
and (w,v) € Egr, then f(v) = f(w). it follows that all nodes in a clique are mapped to
the same node. Hence, the image of B cannot have other nodes mapped to it. Because
every node in Vy;; has at least one node from the path of (f) mapped to it, there cannot
be two different C,, C,s that are mapped to the same node.

Suppose f(B) = a. Let g : Vg — V;, be given by g(z) = (f(Cz) — a)modn. Now g is a
linear ordering of G, and if (z,y) € Eg, then there is a path with length K from a node in
C. to a node in Cy, that cannot pass over f(B) = a, so g(y) — 9(z) < K and g(y) > g(=),
hence dir bandwidth (G) < K. a

Note that G’ is strongly connected and can be constructed in polynomial time. Hence
theorem 4.1. follows. O

With a small refinement of the techniques we can get a slightly stronger result. We first
need the following lemma.

Lemma 4.2

For each n € N+,n > 2, there exists a directed graph G" = (V*, Em™), with the following
properties:

e G" is strongly connected

Vrl=n

o each node of G™ is involved in at most 3 edges

at least 2 nodes of G" are involved in exactly 2 edges

For every graph G, that contains G™ as a subgraph, every integer m > 5, and every
emulation f of G on R,,, f maps every node of G" on the same node of R, i.e.

lF(v™)l = 1.

Proof.

We use induction to n. For n = 2,3,4 and 5, see figure 4.1. For n > 6,let G4 = G311,
and Gg = G311 be given. Let v4,1,v4,2 be the nodes, involved with 2 edges in G4, and
vB,1,vB,2 these nodes in Gp. Then one easily verifies that the construction of figure 4.2.
satisfies the properties. O

11

n=4

nN=3

n=2

n=1

igure 4.1

F

Figure 4.2

12

Theorem 4.3
The following problem is NP-complete:

Instance: A directed, strongly connected graph G = (Vg, Eg) with each node
of G involved in at most 3 edges, and an n € N*.

Question: Is there a uniform emulation of G on ﬁ,.?

Proof.

Clearly the problem is in NP. To prove NP-completeness we will again use a transformation
from DIRECTED BANDWIDTH. Let G = (Vg, Eg) be a directed graph. We give a

construction of a graph G', such that G’ can be uniformly emulated on fi,,+3, if and only
if Dir Bandwidth (G) < K. Let n = |Vg| and let ¢ = K(K — 1) + 2n + 4. We only stress
the differences with the construction of theorem 4.1.

The clique B is replaced by
(al) a cycle with ¢ nodes, with an edge from this cycle to
(a2) a copy of G¢, with an edge to
(a3) another cycle with ¢ nodes.

Every node of (a2) must be mapped to the same node z in §n+3, w.lo.g. suppose z = 1.
It follows that every node of (al) must be mapped to 0, and every node of (a3) must be
mapped to 2. The cliques C, are replaced by cycles of %c nodes: these cycles must also

be mapped on the same node g (z), because no node of the cycle can be mapped to 0,1
or 2. The paths of (c), (d), (e) and (f) can be added in such a manner, that all relevant
connections are made, but no node becomes involved in more than 3 edges. The remainder
of the proof is similar to 4.1. m|

With a similar proof one can show:

Theorem 4.4
The following problem is NP-complete:

Instance: A directed, connected graph G = (V, E), with each node involved
in at most 3 edges, and a positive integer n € N*.

Question: Is there a uniform emulation of G on f;,.?

5 Polynomial time algorithms for fixed computation fac-
tors.

For the NP-completeness proofs in the preceding sections, we needed that the computa-
tion factor ¢ = |Vg|/n could grow with the size of the problem. If we fix the computation
factor, then the problems become solvable in polynomial time. In 1980 Saxe [9] has shown
that for each constant K there exists an algorithm that uses O(f(K)nX+1) time to de-
termine whether a given graph G = (V, E),|V| = n, has bandwidth K or less. Gurari
and Sudbourough [7] improved the running time of the algorithm to O(f(K mK). We will
further let K and c be constants, and do not mention factors like f(K).

For each constant ¢, we will give an algorithm that determines in O(n?°-1) time
whether a connected graph G = (V, E) with |V| = n can be uniformly emulated on Pz,

13

and a similar algorithm, that uses O(n3-1) time, and determines whether a connected G
can be uniformly emulated on Rax. The algorithms are modifications of Saxe’s bandwidth
algorithm.

First note that if there is a node v in G with degree > 3¢, then G cannot possibbly be
emulated on Pg or Rn with computation factor ¢; there are > 3¢ + 1 nodes which must
be mapped upon f(v) — 1, f(v) or f(v)+ 1. So we can assume that every node of G has
degree < 3¢ — 1. We now introduce the notion of a partial uniform emulation.

Definition.
A partlal umform emulation of G = (V, E) on Pz is a function f from some subset V' C V
onto {0,.. — 1}, for some M such that 1 <M < 2, such that:

(i) Vie {0,-.-,M— 1}: |f716)l =,

(i) if)u,v§ V'’ and (u,v) € E then f(u) = f(v)or (f(u), f(v)) € EF (i.e. |f(u)-f(v)| £
1), an

(iii) if w€ V' and f(u) < M — 2 and (u,v) € E then v € V.

We say that f is feasible, if it can be extended to a (total) uniform emulation of G on Pn
For a set § C V, define Adj(S) = {w € V|w is adjacent to anode v € §, and w ¢ §}. The
active region of a partial uniform emulation f is the set f~!(M — 1), together with the
set Adj(f~Y(M —))\f~1(M - 2). Le., the active region of a partial uniform emulation
is the set of nodes that are mapped upon the last-so-far used node, and the set of nodes
that have to be mapped upon the next node.

Theorem 5.1

Let f and g be two partial uniform emulations of G on Pz with identical active regions.
Then

(i) f and g have identical domains, and
(ii) f is feasible, if g is feasible.

Proof.

(i) Let the active region of f and g be (S, A). G is connected, so a node v € V is in the
domain of f, or of g, if and only if it is path-connected to a node in S by a path, that
does not use a node in A. So the domains of f and g are the same.

(ii) Any mapping of the remaining vertices to {M, ..., 2}, which extends either f or g to
a uniform emulation must also extend the other to a uniform emulation. O

Two partial uniform emulations are said to be gujvalent if they have identical active
regions. Note that the number of different active regions is bounded: each node has degree
< 3¢ — 1, s0 |Adj(f~Y(M - 1))] < (3¢ — 1)c, 50 there are at most 2(3-1)c. (") = O(n®)
different active regions, or equivalence classes. The algorithm is essentially a breadth-
first search over the space of all equivalence classes of partial uniform emulations. The
algorithm uses the following datastructures:

14

1. A queue @, whose elements are active regions

2. An array A, which contains one element with two fields for each active region. For
each active region r, A[r].examined is a boolean which is set to true, when r is
examined for the first time, and A[r].unplaced is a list of the nodes, not in the
domain of each partial uniform emulation with active region r.

We now give the algorithm:
Algorithm P
1. Set all A[r].examined FALSE

2. Let @ be the empty queue.

3. (Set all the active regions of partial uniform emulations with M = 1 in the queue).
For each set § C V' with |S| = ¢, perform the following steps:

(a) Let s be the active region s = (S, Adj(S)).
(b) Set A[s].examined to TRUE.

(c) Set A[s).unplaced to V'\S.

(d) Insert s at the end of Q.

4. Extract an active region r from the head of Q.

5. Suppose r = (R, A).
If |[A| > ¢ then go to step 7. (r cannot be extended to a uniform emulation, so does
not have to be considered.)

6. For each set § C A[r].unplaced, with AN S = @, and |A| + |S| = ¢, perform the
following steps.

(a) Compute B = Adj(AU S)\R
Let s be the active region s = (AU S, B).
(b) If A[s].examined = FALSE then perform the following steps:
i. Set A[s].examined to TRUE
ii. Let A[s].unplaced be A[r].unplaced \(S U A)

iii. If A[s].unplaced is the empty set, then halt:
there exists a uniform emulation of G on Rg.

iv. Insert s at the end of Q.

7. If Q is empty, then halt: there does not exist a uniform emulation of G on R%.
Otherwise go to step 4.

In step 3 every active region of a partial uniform emulation with M = 1 (i.e. with the
first ¢ nodes mapped) is put on the queue. In step 6 the partial uniform emulation(s),
whose active region is (are) considered, is (are) extended by mapping ¢ nodes on the first
node in Pa that still has no nodes mapped upon. Note that for such extension f of a

partial uniform emulation with active region (f~1(M —1), Adj(f~1(M — 1))\ f~1(M -2)),

15

it must hold that f(Adj(f~'(M — 1))\f~Y(M —2)) = {M}. The space required by
this algorithm is O(n°*1). Now estimate the (worst-case) running time of the algorithm.
Note that we first have to test whether there exists a node with degree at least 3c. This
can be done in time O(n). Step 1 costs O(n°) time, step 2 O(1), step 3 costs O(nc+1)
time. For each active region r, step 4-7 are performed at most once. So the cost for step
4,5 and 7 are at most O(n°). To calculate the costs of step 6, note that A must contain
at least one node (G is connected), so step 6a and the test of step 6b are performed at
most O(n?~1) times. For every active region, steps 6b(i) - 6b(iv) are performed at most
once. The amount of computation needed for one execution of steps 6b(i) - 6b(iv) is O(n)

so the total cost of steps 6b(i) - 6b(iv) becomes O(n*1). So the total time the algorithm
costs is O(n?e-1) (if ¢ > 2).

Theorem 5.2
Let ¢ € N* be a constant. There exists an O(n?°-1) time and O(n<+1) space algorithm,

which determines whether a connected graph G = (V, E) with |V| = n and ¢|n can be
uniformly emulated on P%.

Proof.

If ¢ = 1 then test in linear time whether G is isomorphic to Pa. If ¢ > 2 then test whether

there exists a node with degree > 3c. If such a node does not exist, then use Algorithm
P. O

Let ¢ again be a constant. We can modify algorithm P to an algorithm that tests
whether a connected graph G = (V, E), with |V| = n and c|n can be uniformly emulated
on R%. The class of partial uniform emulations is defined similarly as before, but condition
(iii) is replaced by: if u € V' and 1 < f(u) < M —2, and (u,v) € E, then v € V'. Again a
partial uniform emulation is feasible if it can be extended to a (total) uniform emulation
of G on Ra. We will not consider partial uniform emulations with M < 2. For M > 2, the
active region of partial uniform emulation now is the 4-tupple (f~1(M —1), Adj(f~1(M -
\fY(M-2), f~1(0), Adj(f~1(0))\ f~1(1)), i.e. weinclude now the set of nodes, mapped
to 0, and the set of nodes that have to be mapped to £ — 1. Again, if f and g are partial
uniform emulations of G on Rz with identical active region, then f and g have identical
domains, and f is feasible, iff gc is feasible. (Let (S, A, T, B) be the active region of f and
g. A node v is in the domain of f (or of g), if it is path connected to a node in S, or a
node in T, not using any nodes in A and B. So f and g have identical domains.)

First we can test whether G has a node of degree > 3c. So, again, we may suppose
such a node does not exist. Choose an arbitrary node v* € V. For symmetry reasons we
may suppose that f(v*) = 0. So we only have to consider active regions (S, A, T, B) with
v* € T. The number of such active regions is O(n2-1).

The algorithm is further more or less similar to Algorithm P. We sketch the main
differences. In step 3 we compute all active sets of partial uniform emulations V/ —
{0,1} : for each pair of sets S, S’ with |S| = [S| = ¢ and v € &, take the 4-tupple
(S, Adj(S)\S', 5!, Adj(5)\S). In step 6 we cannot immediately conclude that an active
region = (S, A, T, B) with A[S].unplaced = @ corresponds with a uniform emulation of G
on Ran, but we have to check that “the ends of the ring fit together”, i.e. that B C S.
The r:ema.ining details are easily provided, and left to the reader.

To estimate time and space, note that v* € T, and no longer necessarily A # @, for
active regions (S5, A, T, B). It follows that the algorithm uses O(n?¢) space and O(n3-1)

16

time.

Theorem 5.3
Let ¢ € N* be a constant. There exists an O(n3°-1) time and O(n?°) space algorithm that

determines whether a connected graph G = (V, E) with |V| = n and ¢|n can be uniformly
emulated on R;c-_.

6 The case of disconnected graphs.

Interestingly, if the requirement that G is connected is dropped, then the problems to
determine whether G = (V, E) can be uniformly emulated on Py or R2,(|V] = n,c|n)
become NP-complete, even for fixed computation factors c.

Theorem 6.1
For every ¢ € Nt, ¢ < 4, the following problem is NP-complete:

Instance: An undirected graph G = (V, E), with n = |V|,¢|n.
Question: Is there a uniform emulation G on Pa?

Proof.

Clearly the problem is in NP. To prove NP-completeness we transform 3-PARTITION to
it. 3-PARTITION is the following problem:

[3-PARTITION]

Instance: A set A of 3m elements, a bound B € N*, and a size
s(a) € Nt for each a € A, such that B/4 < s(a) < B/2 and
2acA s(a) = mB.

Question: Can A be partitioned into m disjoint sets
Ay,...,Ap such that for each 4,1 < i <mY ey, 8(a) = B?

3-PARTITION is NP-complete in the strong sense [6]. (Note that necessarily |A;| = 3 for
each 1,1 < i< m.)

Let an instance of 3-PARTITION be given, i.e. a set 4,|A] = 3m,B € N¥, and a size
s(a) € N* for each a € A, with £ < s(a) < £, and 3 ,¢4 3(a) = mB.

Let W C N be the set {0,1,B+2,2B+3,3B+4,...,mB+ B+1,mB+ B +2}. We will
construct a graph G°, that, when emulated on P,,p4+pB+3 such that each node in Pp4+B43
has at most ¢ nodes mapped upon it, forces that each node in W has ¢ nodes mapped
upon it, and each node in {0,...,mB + B + 2}\W has ¢ — 1 nodes mapped upon it. To
this graph G° we add for each a € A a copy of P,(,) (a path with length s(a)). The
resulting graph G can be uniformly emulated on Pp,p4B43, if there is a solution to the
3-PARTITION problem; the paths must be mapped upon the remaining free places after
G° is mapped, and there are m parts of exactly B consequtive nodes with one free place
each. The construction of G° and G takes polynomial time.

Definition.
G°® = (V°,E°) is defined as follows: V° = {v;;j0 < i <mB+B+2,1<j<cand

17

(4 # cori € W)k, E° = {(viy,511Vi2,5)|%iy iy # Viz,ia € VO and iy — 45| < 1 and (41 # 43 or
J1# j2)}-

Lemma 6.1.1
For every emulation f of G° on P,p4B43, such that |f~1(i)| < ¢ for every i € ViupiBys:

(i) Either f(v;;) =i for all v;; € V, or f(vi;)=mB+ B +2—iforall v ; €V, and

(ii) If i € W then |f~1(¢)| = c.
If i € VimpyB4s\W then |f-1()| = c — 1.

Proof.

(i) Suppose for some i € Viup4B4+3 — {0,mB + B + 2} there are jy, j2 with f(v;;,) #
f(vi,j)- It follows that |f(v; ;) — f(vij,)| = 1. Now f({vi,; € VOiy € {i — 1,4,i+
1}}) = {f(vi,3,), f(vi5)}, hence iy : |f~1(41)] > e. Contradiction. It fo]lows that
there is a bijection ¢ : Viup4B+3 = VinB4+B+3, such that f(vi ;) = ¢(3). By observing
that |p(¢) — ¢(i + 1)| < 1, the result now easily follows.

(i) This follows directly from (i).

O

Now let G = (V,E) be defined by V = V°U {(a)ila € AA0 < i < s(a) — 1} and
E = EoU{((a)s, (a);)I(a)i, (a); € VAV® Ali— j| = 1}. Note that [V] = [Vo|+ Tue s 5(4) =
c.(mB + B + 3).

Lemma 6.1.2

G can be uniformly emulated on P4 543 if and only if A can be partitioned in m disjoint
sets Aj,..., A, such that for each 1,1 < i < M3 4ca, 8(a) =B

Proof.

Suppose an emulation f of G on P,p+B4+3 exists. For each i,1 < i < m, look at
R = f1({(i-1)(B+1)+2,...,i(B +1)}). Necessarily this set exists of (c — 1).B
nodes € V°, and B nodes € V\V" There must be 3 elements (a!),(a2),(a3) € A with
(a'); € Rfor 0 < j < s(a®) — 1,1 < i < 3. Now let A; consist of (a?),(a2),(a?). In this
way a correct partition is obtamed

Now suppose a partition of A in Ay ... A, with ¥ ,¢4, 8(a) = B (1 < i < m) is given. Let
f(vi,;) = i. For each i,1 < i < m we can map the nodes in {(a);la € 4;,1 < j < s(a)}
on the nodes (i — 1)(B +1)+2,...,4(B +1). (Each of these nodes has exactly one free
place left after mapping of G°). In this way a uniform emulation of G on P,,p+B+3 can
be obtained. a

The constraint ¢ > 4 is essential for the proof. If ¢ < 3 then nodes, that we want to have
mapped on consequtive nodes can be mapped on the same node. (See figure 6.1.).

18

Figure 6.1

In fact, we conjecture that there exist polynomial time algorithms for the considered
problem for ¢ = 2 and ¢ = 3. (For ¢ = 1 it is trivial that a polynomial algorithm exists.)
With a similar technique one can prove:

Theorem 6.2
For every ¢ € Nt, ¢ > 2, the following problem is NP-complete:

Instance: An undirected graph G = (V, E) with [V| = n and c|n.
guestion: Is there a uniform emulation of G on R.zcg?

The same results hold for the directed versions of the problems.

Acknowledgement.

I would like to thank Jan van Leeuwen for his excellent guidance during this research.

19

