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1. Introduction

In the theory of computation one uses both the Turing Machine (TM) and the
Random Access Machine (RAM) as standard models of effective computing (see e.g.
[AHU]). Whereas the models are vastly different in detail, it is well-known
that the machines are "equivalent” in computational strength. More precisel y,
one can show that the machines are polynomially related in the sense of
computational complexity theory (see [CR] or [AHU, Section 1.71): a TM can
simulate a RAM in O(T(n)2) time and a RAM can simulate a TM in O(T(n) 1og T(n))
time, where T(n) is the time complexity of the simulated machine and RAMs are
assumed to use the so-called logarithmic cost criterion., In the result, RAMs
are assumed without explicit "single” multiplication or division instructions
in their instruction set. Slot and van Emde Boas [SE] have shown that TMs and

RAMs can simulate one another within only a constant factor of extra space.

Several studies have attemted to refine or lower the simulation costs between
the two models, especially for the case of simulating RAMs by TMs (see €. g.
Wiedermann [®] for some recent results). In this paper we consider the
efficient simulation of TMs by RAMs., Let T(n) denote the time complexity, S{(n)
the space complexity, and U{n) an upperbound on the length of the longest

output on inputs of length n. The following results are known.

Theorea A (Folklore, see e.g., [AHU, Section !.71) A TM can be simulated in
O(T(n) 1og S(n)) time by a RAM (with no multiplication or division instructions)

under the logarithmic cost criterion.

Theorem B {Paul [P, Section 3.31) A TM can be simulated in
O(nlogn+U(n) log T(n) + T(n)) time by a RAM (with no multiplication or division

instructions) under the logarithmic cost criterion.

Theorem B shows that TMs can be simulated by RAMs with no essential time-loss
provided T(n) 2nlogn and U(n)<T(n)/log T(n). (Note that [P, Section 3.3}

assumes RAMs with shift instructions.) In this paper we improve Theorem A to

Theorem C. A TM can be simulated in O(T(n) 1oglog 5(n)) time by a RAM (with no

multiplication or division instructions) under the logarithmic cost criterion.

In fact we can also improve Theorenm B to time bound A
O((n+ U(n)) loglog S(n) + T(n)), again without multiplication and division. We

will prove this result in a future version of this paper. HNone of the results



assume that T(n), S(n), or U{n) are constructible,

As an example of the use of Theorem C we mention the following corollary.

Corollary D. Any linear time TM can be simulated in O(nloglogn) logarithmic

time by a RAM (with no multiplication or division instructions).

It follows that e.g. the reversal of a string of a inputs can be output by a RAM
in O(nloglogn) units of logarithmic time. We can apply the above corollary
also to the string-matching problem, where the task is to find all occurrences
of a given pattern of length m from the text of length n, m<n. The
string-matching can be done in O(n) time on a TM as shown by Fischer and
Paterson [FP] (see also [65]), and therefore in O(nloglogn) units of
logarithmic time on a RAM.

The paper is organized as follows. In Section 2 we recapitulate some basic

definitions. In Section 3 we develop the proof of Theorem C through a number of

stages.

2. Machine models

We define TMs and RAMs such that they appear as instances of the same
abstract model, following the guidelines of [5]. The machines have very similar
input, output, and control structures but differ in the structure and the use

of the memory. The definition of TMs and RAMs is included to fix the particul ar

instruction sets.

2.1, Turing machines

We describe the "parts” of a Turing machine without much formal notation. We
assume that the input, output, and work-tape alphabet is {0,1} and refer to the

individual symbols as bits. A (multitape) TM consists of the following parts

(compare [AHU, Section 1.6]):

(i) a one-way read-only input iage, containing a bit string followed by an

endmarker #.

(ii) a one-way write-only output tape, where a bit string will be written.



(iii) k two-way read-write work-tapes ("memory”), containing bits in
successive memory cells. The tapes are two-way infinite. On each tape there is
a separate read-write head that can be activated for reading, writing, or

moving one tape-cell to the left or to the right.

(iv) a TM program, which is a finite sequence of labelled or unlabelled
instructions from a fixed instruction set (see below). No two instructions

should carry the same label.

We shall identify "similar” parts for a RAM in Section 2.2, The instruction set

of a TM contains eight instruction types:

(1) input ko,kl,K# : causes a "next” input symbol to be read, and the input
head moves one cell to the right (except on #). Depending on whether is 0,1, or
# contral is transferred to the instruction with label Aor Ay Ay

{2) output B : causes a bit g io be output, and the outﬁut head moves one
cell to the right. v

(3) jump X : transfers control to the instruction with label H.

(4) halt : halts the progranm.

(5) head i : activates the read-write head on the i'th work-tape (1<i<k),
Only one read-write head will be active at a tinme.

(6) write B : causes a bit @ to be written in the tape-cell designated by
the active read-write head.

(7) branch AO’AI : causes the bit B to be read from the tape-cell designated
by the active head, Depending on whether 8 is 0 or | control is transfered to
the instruction with label A, or A ‘

(8) move & (with &¢{L,Rl) : moves the active read-write head one cell to the

left of to the right depending on whether & is L or R.

We assume that initially all work-tapes contain O in every cell, and that
head 1 is active. The computation starts from the first instruction and
thereafter the instructions of a program are executed in their successive order

unless a jump instruction orders otherwise.

The time complexity T(n) of a TM is the largest number of instructions

executed in halting computations on inputs of length n. The space complexity
5(n) is the largest number of cells occcupied on any work-tape in halting

computations on inputs of length n. The output complexity U{(n) is the length of

the longest output produced in halting computations on inputs of lenght n.

Because a TM with a two-way infinite tape can be sinulated by a TM with a

one-way infinite tape in real time (see e.g. [HU, Section 7.51), wa‘shall



assume that the work-tapes of a TM are one-way infinite, say infinite to the
right. Initially all read-write heads are positioned on the leftmost cell of
their work-tape. By the standard construction used in the above simulation [ HU,
Section 7.5], we can further assume that a read-write head is never moved off
the left end of the work-tape. (Thus the computation is stopped by a halt
instruction, not by the fall of a read-write head.}) Although in the
construction the tape alphabet is enlarged, it is straightforward to return

into the binary alphabet (see also [HU, Section 7.8]).

2.2. Random access machines

I'n describing the "parts” of a random access machine, we only emphasize the
parts that are different from a TM in their implementation., Parts (i) and (ii)
are very similar for a RAM but instead of (iii) one has the following set-up

(compare [ AHU, Section 1.21):

(iii') a special register called the accumul ator (AC) and a countabie
sequence of ordinary registers (”"memory”) indexed by the nonnegative integers
(used as addresses). Each register can hold an arbitrary nonnegative integer in

binary notation. Only data stored in the AC can be operated upon.

The contents of register j is denoted by ¢j». Clearly part (iv) is a RAM
program, but the instruction set of a RAM differs from the instruction set of a

TM. The instruction set of a RAM contains twelve instruction types:

(1’)-(4) : similar to the instructions (1)-(4) of a TM.
(5') jzero A : transfers control to the instruction with label A if (AC)=0,
and continues to next instruction otherwise.

(6') load =j : load the integer j into the AC.

(7') load j : load (j) into the AC.

(8') load *j : load (¢j)) into the AC (”indirect addressing”).

(9’) store j : stores (AC) into register j.
(10') store *j : stores (AC) into register (j>.
(11') add j : adds (j) to the current value in the AC,

(12’) sub j : subtracts (j> from the current value in the AC.

We assume that all registers, including the AC, initially contain 0. Memory neead

not be used contiguously,
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¥e do not simply count the number of instructions executed in a RAM program

but use the so-cailed logarithmic cost criterion: the "time” charged for an

instruction is equal to the sum of the sizes (in bits) of the integers
(addresses and data) involved in its execution., Note that the size of a
positive integer m is [Tlog(m+1)7] ~logm, and the size of zero is 1. The time
complexity T(n) of a RAM is the largest amount of time, measured according to
the logarithmic cost criterion, used in halting computations on inputs of

length n. See Slot and van Emde Boas [SE] for notions of space complexity for

RAMs.

It will be convenient to use various extensions to the basic RAM instruction
set, provided that the execution time is adequately measured by the logarithmic
cost criterion. (This is the case for e.g. comparison instructions [S, pp.
495-496], but not for multiplication or division.) Also in some algorithms it
is convenient to have a RAM with k separate memories (or arrays as called by
Cook and Reckhow [CR1), k)1, each consisting of a countable sequence of

registers indexed 0,1,2,... . We call this a "multimemory” RAM.

Lemma 2.2.1. Every T(n) time-bounded multimemory RAM can be simulated in Q(T(n))
time by an ordinary RAM.

Proof. The technique was essentially given in [CR]., The idea is simply to
interleave the RAM memories into one, using addresses i+kj-1 for register j of
the i'th memory (12%ifk, j20)., Translating addresses costs an overhead of a

factor in the order of k, which is a constant.

8

Instead of writing RAM programs with the original instruction set, we shall
freely use Pascal-like control structures and notations for greater

readibility.

3. The simulation of a TM by a RANM

Consider a T(n) time-bounded, S(n) space-bounded TM. The simple idea
underl yi ng Theorem A is to represent the cells of the work-tapes in consecutive
registers of a RAM, with additional fegisters containing current read-write
head positions. Every step of the TM is easily simulated in O(log 8(n)) time on

a RAM, assuming the Iogirithnic cost criterion. In the simulation underlying



same registers. The neighbouring blocks are taken along in order to guarantee
that in all cases b simulation steps can be taken staying in the unpacked zone.

This unpacked 3b bit zone is kept in a memory, called the window.

The simulation of the single TM instructions is quite obvious, it is done
like in the proof of Theorem A. However, we need a mechanisnm by which it is
possible to simulate oane instruction of the TM at a time. If we first number
the instructions of the TM program, it is easy to construct a program
P(X,head), which simulates the X’th instruction in the window, and which also
updates the head position and the label X ready for the further processing. Now

we can represent the simulation in the form of a RAM program as fol!lows:

(x) procedure simulate
{Suppose that the block size b is given.}
A=l
activeblock: =1 {the left neighbour of the first block is kept empt y}
head: = the first address of the middle block of the window
loop {until a halt instruction in the simulation}
l oadwindow(activebl ock, b)
for b times do P( A, head)

storewindow(activebl ock, b)

if head moved to neighbour then update head and activebl ock addresses

The procedure loadwindow fetches the contents of the active block and its
neighbours into low-indexed registers, and unpacks the b-bit integers. The
procedure storewindow packs the window blocks, and stores them by overwriting

their older copies.

We will now attack the problem of packing and unpacking the blocks
efficiently. As our RAM model does not include division or shift instructions,
we have to invent another method for finding the bit representation of a number

and vice versa. We will see that unpacking and packing can be done efficiently

with precomputed tables.

4

As a first attempt one could decode numbers to bit-strings by building a
table that gives the decoding directly. For example the table could contain the
b bits of a number n (¢ 2°) in the registers nb, nb+l,...,nb+b-1. A disadvantage
of this method is that, while bits a;e obtained directly, the access of them
may cost O(logn). For this reason loading a window takes 0(b%) ti me. By a

similar analysis as what follows, one can see that this would give O(T Jlog 8)

simulation algorithm. However, we can do unpacking and packing in O(blogh)

time.



The efficient decoding of a number to jts bit representation and vise versa
is based on a divide-and-conquer strategy with precomputed shift tables. We

will first build the necessary tables and then give the unpacking and packing

algorithnms.

We assume that each table is stored in its own memory. We will need tables

Ishift, rshift, origin, and power. By Ishift(i), rshift(i),... we denote the

contents of the register i reserved for Ishift, rshift,

The tables Ishift and rshift in Figure 1 contain as subtables shift tables
for I-bit numbers, 2-bit numbers, 4-bit numbers etc. The divide-and-conquer
strategy implies that b-bit numbers are shifted b/2 bits to the right or b bits
to the left. The entries of the tables are numbers rather than bit strings.

Thus for example the number 75"010010112 has the right shift 4= 01002, and
4 = 01002 has the left shift 64 - 010000002. The origin table expresses where
subtables begin: The shift tables for 2! -bjt numbers begin at origin(i),

origin:.
register 0 1 2 3 4 o i
20, gi-1
contents 0 2 6 22 278 227422 4, 42
rshift:
register 0 1t2 3 4 516 7 8 ... 211 cee origin{i)+j
block size ! 2 bits 4 bits ! ' 2l bits
block value T0 1 2 3t0 1 2 15 ¢ ' i
contents 0 0! o0 0 1t 1to0 0 0 3 1 ! i div 22
Ishift:
register 0 1! 2 3 4 5¢t6 7T 8 ... 211 v origin(i)+j
block size 1 bit! 2 bits 4 bits ! ! 2l bits
block value 0 1t 0 1 2 31 0 1 2 15 1 ! i
contents 0 2! 0 4 B812! 016 32 240 ! ! j.22

Figure 1. The origin, rshift, and Ishift tables.

We have to first analyze how much the building of the tables costs.

Lemma 3.1.1. The tables origin, rshift, and Ishift up to block size b (= 2%) can
be built in logarithmic time O(b 2P).

Proof. Assuming that the val ues origin(i-2) and origin(i-1) are already

computed, the following program will‘éompute the i'th origin value, i22.



procedure buildorigin(i) i -2
i -

tr=origin(i-1) - origin(i-2) {t:=22 °}

origin(i):=origin(i-1)

for t times do origin(i):=origin(i) +t
. . . . 2172 ;.
Clearly, the time complexity of this program is 0O(2 -2 Y.

When constructing the i’th rshift and Ishift subtables we can use the origin

values for i-1, i, and i+1.

procedure buildrshift(i)
jrzorigin(id; x:i-0; t:=origin(i) -origin(i-1) ft:e 22 '
for t times do

for t times do rshift(j):=x; ji= j+1

X: = x+1

procedure buildishift(i)

"
N
[\N

ji=origin(i); x:=0; t:=origin(i+1) - origin(i) {t:

for t times do Ishift(j):=x; j:=j+1; x:= x+t

. P

The execution of the both procedures requires 0022 .2') time. Thus the tables
k i k

up to k can be constructed in time O( & 22 -2'), which is Q(2FK.22 ), or in
i=1

terms of b, O(b2P).

We also need powers of 2 for unpacking numbers to bit strings, and for
packing bit strings to numbers. It is useful to precompute also them in the

table power,

Lemma 3.1.2. The table power(i) = 21 up to K'th power can be build in O(k?)
P .

logarithmic time.

Froof. A new power can be computed by doubling the previous one by addition.

This method gives the time bound O(k?).
i

Now we are ready to present the unpacking and packing algorithns.

Lemma 3.1.3. Assuming that the tables'lshift, rshift, origin, and power up to
the block size b are aﬁailable, it is possible to compute the b-bit

representation of an integer n < 2b, and the numerip value of a b-bit string,

both in O(blog b) time.



i i
Proof. The procedure unpack(n, j,a) unpacks a number n( 22 o its 2)-bit
representation beginning at the a’th register of the window. The procedure is

as follows:

procedure unpack{n, j, a)
if j=0 then window(a):-=
else ni:=rshift(origin(j)+n); npi=n - lshirt(origin(j-l)+n1)

unpack(nl,j-l,a); unpack(n,, j~1,a+tpower(j-1))

For clarity, we have written the algorithm in recursive form. The recursion can
be eliminated by using one memory as a stack where the second recursive call is
stored while the first is executed. While unpacking a number n ¢ Zj there are
never more than logj calls in the stack. In order to balance access cost it is
economical to initiate the stack at the address logb and let it grow
downwards. If we denote by t(x) the logarithmic time of unpacking an x-bit
number, by analyzing the program we get

t(1) = kjlogh

tix) = 2t(xs2) t kpx + kglogb
which gives t(b) = O(blogh).

The procedure pack(a, j,n) computes the numeric value of the bit string

window(a),window(a+l),...,window(a+2j-l). Also it is written recursively:

procedure pack(a, j,n)

if j=0 then n:= window(a)

else pack(a,j-l,n’); pack(a+power(j-l),j-l,nz)
= lshitt(origin(j-l)*nl) tn,

The recursion is controlled as in unpacking. Also the time analysxs is

anal ogous.

We can now obtain a preliminary version of Theorem C:

Theorem 3.1.4. Assuming that n and S5(n) are known, a T(n) time-bounded, S5(n)

space-bounded TM can be simulated in O(T(n) loglog S{n)) logarithmic tinme by a
RAM.

Proof. The total time of the sinnlati'on (%) is bounded by
TRAu~b2b+'l'/b(logS+blogb+blogb+blogb+log8) -

where b 2P is needed for the construct!on of the tables, T/b s the number ofr_;vf



growth of the series {Si] implies that all reblockings can be done in time

0(s).

For the final analysis of the sinmulation, assume that T, steps of the TM are

simulated using block size b; . Hence the total time of the simulation is

bounded by

loglog$§ loglog 8 loglog§
i§o T;/b;(log5; + b;logb;) = i;zo Tiloghb; Slogh i=zo T, =Tlogb~- Tloglogs.

Hence, the time bound O(T1loglog5) holds also for the dynamic simulation. We

have proved

Theorem 3.2.1. A T{(n) time-bounded and S{n) space-bounded TM can be simulated in
O(T(n) loglog S{n)) time on a RAM without mul tiplication and division

instructions,.
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