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Abstract. Emulations are structure preserving simulations of large
(processori) networks on smaller networks. In this note the notion of
computation cost of an emulation is introduced; It is shown that every
polynomial time approximation algorithm for minimizing the computation
cost of an emulation of a network G on a network H must have a worst
case 1in which the resulting approximation differs at least a factor 2
from the optimal solution (unless P=NP). Relations between approxima:
tion algorithms that minimize the computation cost of emulations and
approximation algorithms for BANDWIDTH; CLIQUE and BALANCED COMPLETE
BIPARTITE SUBGRAPH are given, which indicate that it will be hard (if
not impossible) to find polynomial time approximation algorithms that
give "good" approximations of the minimum computation cost possible

for emulations of a given graph G on a given graph H.

1. Introduction. Parallel algorithms are normally designed for execu-

tion on a suitable network of N processors; with N depending on the
size of the problem to be solved. In practice N will be large and
varying, whereas processor networks will be small and fixed. The
resulting disparity between algorithm design and implementation must
be resolved by simulating a network of some size N on a fixed and

smaller size network of a similar or different kind, in a structure
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Research (ZWO0).
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preserving manner. In 1982, Fishburn and Finkel [3] proposed such a

notion of simulation, termed emulation.

Definition; Let G= (VG,EG) and H= (VH,EH) be networks of processors
(graphs). We say that G can be emulated on H if there exists a func-
tion f: Vg * Vy such that for every edge (g,g') € E; ¢ £(g) = £(g') or
(f(g),f(g')) € E,. The function f is called an emulation function or,

H
in short, an emulation of G on H.

Let f be an emulation of G on H. Any processor h é VH must actively
emulate the processors € £7'(h) in G. When g e £"1(h) communicates
information to a neighbouring processor g'; then h must communicate
the corresponding information "internally"; when it emulates g'
itself, or to a neighbouring processor h'if(g') in H otherwise. If all
processors act synchronously in G, then the emulation will be slowed
by a factor proportional to max |f—1(h)|;

hevH
Definition. Let G,H and f be as above. The computation cost of f is
ce(f) = max |£ 1 (n)].
h evH
Definition. Let G, H, f be as above. The emulation f is said to be
(computationally) uniform iff for all h,h' € Vi |fr1(h)| = |fq1(h')|;

Proposition 1.1. Let G,H and f be as above.
f is uniform iff co(f) = |V,|/]V

ul*

In [1,2] we addressed the problem to determine whether a given con-
nected graph G can be uniformly emulated on another given connected
graph H. The problem was proved to be NPicomplete; even if various
additional, realistic constraints are posed upon G and H. A natural
extension of the UNIFORM EMULATION problem is the following problem:



[MINIMUM COST EMULATION]
Instance: Connected graphs G,H , integer c € N,

Question: Is there an emulation f of G on H, with ce(f) s ¢?

We will abbreviate MINIMUM COST EMULATION as MCE.

MCE is also NP complete: it contains UNIFORM EMULATION as a sub-
problem. However, it seems reasonable to look for approximation algo-
rithms for this problem: an emulation with "relatively low cost™ will
enable us to simulate the given large network G on the given smaller
network H "relatively efficiently".

Unfortunately there is some evidence that it will be hard to find
polynomial time approximation algorithms for MCE that find "good"
approximations for the computation cost of the emulation. By "good"
approximations we mean e;g; approximations that give a computation
cost that differs at most by a constant factor from the optimal solu-
tion.

In section 3 we show that every polynomial time approximation algo;
rithm for MCE will give = in worst case - approximations that differ
at least a factor 2 from the optimal solution (unless P=NP). 1In sec-
tions 4,5 and 6 we show that the existence of a "good" polynomial time
approximation algorithm for MCE will imply the existence of "good"
polynomial time approximation algorithms for BANDWIDTH, CLIQUE and
BALANCED COMPLETE BIPARTITE SUBGRAPH. However, for the latter three
problems no polynomial time approximation algorithms are known to
exist that guarantee approximations that differ for instance by a con-
stant or even a logarithmic (in the size of the problem) factor from
the optimal solution. In 1973 Johnson [6] proved that for all of the
polynomial time approximation aigorithms for CLIQUE that had been sug-
gested at the time, the worst case ratio between the approximation and
the optimal value grows at léast as fast as O(ne); where n is the
problem size and € > o depends on the algorithm. Presently no algo—

rithm that gives better ratios is known.

2. Definitions and notations. The frame work in which we present the

results is taken from [4, chapter 6]. An approximation problem I



consists of the following parts:

(1) a set D_ of instances (0 = é).

(2) for each instance I € D 2 finite set S (I) of candidate solutions
for I ; and

(3) a function m . that assigns to each instance I 8 D and each can-
didate solution g € Sw(I) a positive rational number m (I o),
called the solution value for o.

We call T a minimization (maximization) problem;‘ if we 1look for
(approximations of) the minimal (maximal) value of m_ (I‘o) for a given
instance I € D and all candidate solutions o € S, (I) This minimal
(maximal) value is denoted by OPT (I). (The subscript T is usually
dropped when the problem is clear from the context.)

Let A be an approximation algorithm for a minimization problem I,
(1ike MINIMUM COST EMULATION), and let I € D_, and A(I) be the approx-
imation for OPT"(I), yielded by the algorithm A on input I.

m“(I'A(I))
OPT (I)

R, =inf { rz1 | vIe D R,(I) sr} = sup {R LD et

RA°°=1nf{r-z1 | AN EN .VIeD“opTw(I)zn:m ('S rl.

Definitions. RA(I) =

(H) inf { rz 1 | there exist a polynomial time approximation
algorithm A for T with R, = ri.

RA is called the "absolute performance ratio™; RA°° is called the

"asymptotic performance ratio". These ratios will always satisfy 1 S

3 RA < ». Ratios that are closer to 1 indicate a better perfor~

mance. Rmi (1) is called the "best achievable asymptotic performance

ratio".

For a further discussion of these measures see [4]. For approxima-
OPT_(I)

- .

tion algorithms A for maximization problems define RA(I) = mﬂ(I,A(I))'

(RA(I) denotes the ratio between the optimal value and the approxima:

tion for input I.)
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3. A bound for the best achievable asymptotic performance ratio on
MCE.

Theorem 3.1. If P = NP, then no polynomial time approximation algo-
rithm A for MINIMUM COST EMULATION can satisfy R, < 2.

rithm fo: MINIMUM COST EMULATION with RA°° < 2. Then there exist Y < 2
and N € N , such that for all connected, undirected graphs G,H with
cc(G,H) 2 N , cc(A(G,H)) S Y.ce(G,H) < 2 cc(G,H). Let such an N em’
be given . (Y is not used.)

We will now give a polynomial time algorithm BN that solves HAMIL-
TONIAN CIRCUIT for graphs with nodes of degree 3. (This subproblem of
HAMILTONIAN CIRCUIT is NP=complete [4].)

Let H = (VH;EH) be a connected, undirected graph with nodes of
HO; EHO) is obtained in the following
manner: each edge (vo,v1) 8 EH is replaced by a path with 1length 3:

degree 3. The graph H% (v

10; and edges (vo; vo1);
. B - . O
(v01 R v1o) and (v1o, v1). Furthermore to each node v € VH c VH we

i.e. we introduce additional nodes vo1; v

add two extra branches; consisting of one extra node each. An example

of this transformation is given in fig. 3.1.

fig. 3.1.
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o1 - - 3 , _
So IVH | = 6.|VH|. Let G=(V,,E;) be the graph consisting of a cycle
with 3'|VH| nodes, in which to every third node on the cycle 6N-3
branches are added, each consisting of one node (see fig. 3.2.) So
|vgl= 6N]v,| = N |VH |

G, with N = 1, |V | = 4. fig. 3.2.

Claim 3.1.1. a. If H contains a Hamiltonian circuit, then cc(G,H°) =
N.
b. If H does not contain a Hamiltonian circuit, then cc(G,Ho) 22 N.

g I .

Rroof. a). It is clear that cc(G, H) 2 TVE—T = N. Now suppose H con-
. 1°

tains a Hamiltonian circuit. We can map the successive nodes of the

cycle in H with degree 6N-1 on the successive nodes v € VH c VHO,
visited by the Hamiltonian circuit. The other nodes can be mapped in
such a way that the resulting function f is a uniform emulation, i.e.
ce(f) = N.

b) If an emulation f maps two nodes vo; v1 e VG with
o then cec(f) 2
2N (at least 12 N nodes are mapped upon 6 nodes). If f maps a node v €
VG with degree (v)= 6N-1 on a node w € VHo with degree (w) = 2, then
at least 6N nodes must be mapped upon 3 nodes, so cc(f) 2 2N, So if
ce(G,H°) < 2N, then there exists an emulation £ of G on H°, that maps
nodes v € VG with degree (v)= 6N -1 on nodes W€ V c VH on a one-to-
one basis. Now let v°, v1, v2, ..., vI HI be the successive nodes in G
with degree 6N-1. Then f£(v°), e(v), £(v ),...,f(vIV |

Hi) (seen as nodes
in G) form a Hamiltonian circuit. o

degree(vo)é degree (v,)= 6N-1 on the same node w € V

From claim 3.1.1. it immediately follows that cc(A(G,H°)) < 2N if and
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only if H contains a Hamiltonian circuit. This gives a method to test
in polynomial time whether H contains a Hamiltonian circuit. (G and H°
can be constructed in polynomial time.) This contradicts our assump-
tion that P # NP. o

Corollary 3.2. If P = NP, then Ry, (MCE) 2 2.

4, Relation of MCE with BANDWIDTH.

Definition. Let G= (VG,EG) be a connected, undirected graph and let f:
Vo * {0,...,]Vg|-1} be a bijection. The bandwidth of f is max {|£(v)-
£(w)|| (v,w) 6 E}. The bandwidth of G is min ({Bandwidth (£)| £ is a
bijection of V., to {oseus|Vg]-1D.

Define BANDWIDTH to be the following problem: given a graph G =
(V5,E;), find a bijection f : Vi, > {o,.4+,|V5| =1} with a minimum
bandwidth.

There exist a number of heuristics for BANDWIDTH (see e.g. [5,71).
Little 1is known about the performance ratios of these algorithms; For
instance, it is not known whether there exists a polynomial time
approximation algorithm A for BANDWIDTH with an absolute (or asymp;
totiec) performance ratio that is bounded by some finite constant. We
will see that the existence of a "good" approximation algorithm for
MCE implies the existence of an approximation algorithm for BANDWIDTH

that is at most "twice as bad".

Definition. The path with n nodes is the graph Pn= (Vn;En) with Vn=
{o,.., n-1} and E = {(1,3)]1,5 € vV A [i=j]|=1}.

Lemma Y4.1. Let G=(V,E) be an undirected graph. Let K EMN’, and let n 2
[|v]/K]. Then

Bandwidth (G) s K

=>G can be emulated on Pn with computation cost K

=>Bandwidth (G) s 2K-1.
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Corollary 4.2, Suppose there exists a polynomial time approximation
algorithm A for MCE with R, (G,H) s g(|V,|,|Vy|) for a certain function
g. Then there exists a polynomial time approximation algorithm A' for
bandwidth minimization with R,,(G) s 2g(|V,|,|V,|).

_____ lle. [}

o ) < o A
Corollary 4.3. Rmin (vandwidth minimization) £ 2.Rmin (MCE).

5. Relation of MCE with CLIQUE. Define CLIQUE to be the problem,
given a graph; to find the maximum subgraph all of whose points are
mutually adjacent. In 1973 Johnson [6] showed that for every polyno-
mial time approximation algorithm for CLIQUE that had been suggested,
there exists an e>o, such that R, (G) 2 O(|VG|€); (for infinitely many
graphs G=(VG,EG)). Presently no algorithm that gives better ratios is

known.

Similar to the argument in section U4 one can show that a "good"
polynomial time approximation algorithm A for MCE gives a "good" poly;
nomial time approximation algorithm A' for CLIQUE.

Definition. The complete graph on n nodes is the graph Kn; (Vn;En)
with V = {0,..,n-1} and E, = (LD|L,38V AL - jl.

Lemma 5.1. Let G = (V4,E;) be an undirected graph, and n € N'.
Kn can be emulated on G with computation cost S ¢, if and only if G
contains a clique with 2 rg] nodes.

—— o

seen that f (K ) is a clique with at least r%] nodes.

Suppose G contains a clique with r%] nodes. We can map the nodes of

Proof. Suppose f emulates Kn on G with cc(f)S ¢c. Then it is easily

Kn onto the nodes of this clique; such that every node of the clique
has ¢ or c-1 nodes mapped upon it. In this way an emulation f of kK, on
G with ce(f) = ¢ is obtained. o
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Corollary 5.2. Suppose there exists a polynomial time approximation
algorithm A for MCE with RA(G;H) < g(|VG|;|VH|), for a certain func-

tion g. Then there exists a polynomial time approximation algorithm A'
for CLIQUE with R,,(G) = g(K;IVGl); for all connected graphs G of

which the largest clique contains K nodes.

Proef. Let G = (Vg E ) be given. By assumption one can calculate
] = e————— e

A'(G) = max {[A(K G)] | 1 s1s|Vg|} in polynomial time. (A(K,,G)

denotes the approximated computation cost of an emulation of K1 on G,

produced by algorithm a).

Suppose the largest clique in G contains K nodes. A'(G) 1is the
desired approximation of K: for all i, ce(K,,G)= r%]; So A(Ki;G) 2 r%
and [A(Ki’G)] s [rl ] s K. Furthermore A(K,,G) s 1. 8(K,|vg|), so

K
. :
A'(G) 2 rg(K, A )1. This shows RA,(G) s g(K,[VGI). o

Corollary 5.3. Rmin (CLIQUE) Rmin (MCE) .

6. Relation of MCE with BALANCED COMPLETE BIPARTITE SUBGRAPH. Similar
results can be obtained, relating approximation algorithms for MCE to
approximation algorithms for the BALANCED COMPLETE BIPARTITE SUBGRAPH
problem (BCBS). A (bipartite) graph G;(v E,) is said to contain a
BCBS with 2.K nodes, if there are disjunct V1,V' S Vg [Vyl=]V,|=K
with for all v, € V1, v, 8 V2 (v1,v2) e EG' The BCBS problem asks to
find the largest BCBS in a given bipartite graph G. (BCBS 1is NP-

complete [4]).

Definition. The Balanced Complete Bipartite graph with 2.K nodes 1is
the (undirected) graph BCBZKZ— (VZK’$2K)’ with V2K = {v Jli e {1,2}, 1

$J SK)and B, = (v 5, v J2) | v 5, v s, €Vl

Lemma 6.1. Let G = (v E ) be an undirected, bipartite graph and K,c €
m r—1 2 2. BCB,, can be emulated on G with computation cost S ¢, if

2K
and only if G contains a BCBS with 2. r—1 nodes.
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ggggg Suppose f emulates BCB, on G with cc(f) S c. Take V, =
f({v.|1<J-K})andV —f({v.|1<jSK}) Now|v|2[5'|zz,
|v,| 2 [—] 2, and every node in V1 is connected to every node in V,.

So V and V must be disjunct (G is bipartite) and G has a "BCBS with
2.K nodes. (The remainder of the proof is more or less similar to

lemma 5.1.) O

Corollary 6.2. Suppose there exists a polynomial time approximation
algorithm A for MCE with R,(G,H) S g(|Vgl+|Vyl)s for a certain func-
tion g. Then there exists a polynomial time approximation algorithm A'
for BCBS with R ,(G) s g(2K. |V |) for all connected, bipartite graphs
G of which the 1argest BCBS consists of 2. K nodes.

Corollary 6.3. Roin (BCBS) £ Roin (MCE) .

7. Discussion. The results in this paper leave a number of questions
open. For instance, we do not know whether 25 R nin (MCE) < = or R min
(MCE) = », i.e. whether there is a polynomial time approximation algo-
rithm for MINIMUM COST EMULATION that finds emulations whose computa-
tion costs differ at most a constant factor from the optimal computa-
tion cost. We gave some evidence that it will be hard to find such an
algorithm: the existence of such an algorithm would imply existence of
polynomial time approximation algorithms for BANDWIDTH, CLIQUE and
BALANCED COMPLETE BIPARTITE SUBGRAPH that give approximations to
within a constant factor from the optimal solution. Up to now, it is

not know whether such algorithms éxist.
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