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IN A RING OF PROCESSORS

H.L. Bodlaender¥* and J. van Leeuwen

Department of Computer Science, University of Utrecht
P.0.Box 80.012, 3508 TA Utrecht, the Netherlands

Abstract. We show that decentralized extrema-finding ("election") 1is
more efficient in bidirectional rings than in unidirectional rings of
processors, by exhibiting a (non-probabilistic) algorithm for distri-
buted extrema-finding in bidirectional rings that requires fewer mes-
sages on the average than any such algorithms for unidirectional
rings. Previously only an efficient probabilistic algorithm of the
same éharaoteristic was known. Both algorithms are shown to require an
average (c.q. expected) number of less than %an messages for rings of
n processors; where Hn denotes the nth harmonic number. For both algo-

rithms the bound is improved to about O.7nHn messages.

Keywords and phrases: distributed algorithms, ring topology, election,

extrema-finding, order statistics, message complexity.

1. Introduction. Consider n processors connected in a network, and

distinguished bj unique identification numbers. Every processor only
has local information about the network topology; viz, it only knows
the processors to which it is connected through a direct link. In a
number of distributed algorithms it is required that the active‘ pro-
cessors elect a central coordinator (a "leader"), e.g. as part of an

initialisation or restart procedure. The problem arises to design a

¥ The work of this author was supported by the Foundation for Com-
puter Science (SION) of the Netherlands Organisation for the Advance-
ment of Pure Research (ZWO).
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protocol by means of which any active processor can incite the elec-
tion and every processor will learn the identification number of the
leader in as small a number of message—exchanges as possible. Because
the active processor with the largest identification numbér is nor-
mally designated as the leader, the election problem is also known as
the T"decentralized extrema-finding" problem. We assume no faults in
the communication subsystem, and only consider‘the problem for a ring

of processors,

The decentralized extrema-finding problem for rings of n proces-
sors has received considerable attention, after it was proposed by
LeLann [16] in 1977. The problem has been studied for unidirectional
rings as well as‘for general, bidirectional rings. Figures 1 and 2
summarize the solutions presently known for both casés, together with
the worst case or average number of messages requires for each algo-
rithm. In 1981 Korach, Rotem, and Santoro [15] gave a probabilistic
algorithm for decentralized extrema-finding in bidirectional rings
that uses a smaller (expected) average number of messages than any
deterministic algorithm for +the problem in unidirectional rings
requires. In this paper we consider the key question of whether decen-
tralized extrema-finding can be solved more efficiently in bidirec-
tional rings than in unidirectional rings by a deterministic algo-
rithm. (The question was first posed by Pachl, Korach, and Rotem

[17], who proved a lowerbound of an on the average number of messages

Algorithm Lowerbound Average Worst Case
LeLann (1977) n2 n2

Chang & Roberts (1979) an 0.5n2
Peterson (1982) 1.44, .nlogn
Dolev, Klawe, & Rodeh (1982) 1.356 nlogn

Pachl, Korach, & Rotem (1982) (aver.) an

Fig. 1 Election Algorithms for Unidirectional Rings, and

known General Bounds (Hn = 0.69 log n).



Algorithm Lowerbound Average Worst Case
Gallager et.al. (1979) 5nlogn
Hirschberg & Sinelair (1980) 8nlogn
Burns (1980) 4nlogn 3nlogn
Franklin (1982) 2nlogn
Korach, Rotem, & Santoro (1981) (prob.)%an (prob.) fnz
Pachl, Korach, & Rotem (1982) (aver.) 4nlogn

Santoro, Korach, & Rotem (1982) ‘ 1.89nlogn
this paper (1985) (det.)(—x’,-an (det.)-&-n2

Fig. 2 Election Algorithms for Bidirectional Rings, and known
General Bounds (Hn = 0.69 logn).

required by any reasonable algorithm for leader-finding in unidirec-

tional rings.)

Consider a ring of n processors with identification numbers X1
through an Without loss of generality we may assume each Xi to be an
integer between 1 and n, hence X5X1X2.ffxn is a permutationf We also
assume that f is "random", i.e., we assume that every permutation can
occur with an equal probabiliﬁy‘of é%. One technique of decentralized
extrema-finding in bidirectional rings makes use of the "peaks" in a

circular permutation. Assume that initially all processors are active.

Definition. A peak in a ring of active and non—-active processors 1is
an active processor Xi that 1is 1larger that the active processors

immediatey to the left and to the right of X assuming a fixed

i’
clock-wise orientation of the ring.

A typical algorithm due to Franklin [10] operates in the following
way. During one stage of the algorithm all active processors Xi send
their identification number to the nearest active processors to the

left and to the right. (Intermediate, inactive processdrs simply
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relay messages onwards.) When an active processor finds out that it
has a larger activeA "neighbour™ to the 1left or to the right, it
becomes non—-active. It is clear that in one stage only 2n messages
need to be exchangéd, and that precisely the peaks of the current per-
mutation pass on to the next stage. As the number of peaks 1is not
larger than half the number of curfently active processors, Franklin's
algorithm requires at most logn stages and (hence) 2nlogn messages¥.
The experimentally observed, smaller number of messages on the averagé

in Franklin's algorithm might be explained as follows.

Theorem (Bienaymé [2], 1874). The average number of peaks and troughs
in a permutation of n elements is 4(2n-1).

It follows that one stage of Franklin's algorithm will leave about <n
processors ("peaks") active on the average. Assuming that the order
type of the resulting configuration is again fandom, repetition shows
that Franklin's algorithm requires only log3n stages and hence 2nlog3n

= 1.26nlogn messages on the average.

In another technique of decentralized extrema-finding, identifi-
cation numbers are send on the ring in some direction and travel until
a processor is encountered that "knows" that the passing identifica-
tion number cannot be the largest. In a typlcal algorithm due to Chang
and Roberts [5] identification numbers are all send in the same direc—
tion and are annihilated by the first larger processor that is encoun-
tered. Thus all identification numbers except the largest are annihi-
1ated' on their way around the ring, and the "leader" is identified as
the only processor that eventually receives its own identification
number as a message again. Knowing it is elected, the leader will send
its identification number'around the ring in another n messages to

inform the processors of the result.

¥A1l logarithms are taken to the base 2, unless stated otherwise.
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Given a random sequence (e.g. a time-series), an "upper record"
is any element that is larger thét all the preceeding ones. The study
of records was pioneered by Chandler [4] in 1952, as part of the gen-
eral theory of "order statistics" (see e.g. Galambos [11], Sect. 6.3).
Let X be a random sequence. Let vo=1, and iet A be the index 6f vthe
first upper record with index larger than Vi (121)f Thus vy is a
random variable for the position of the i upper record in the
sequence. It is well known that the distribution of each vi does not
depend on the distribution function of the elements of the random
sequence (cf. Galambos [11], lemma 6.3.1) and that we may assume in
fact that thelelements are uniformly diétfibuted. Observe that vy is
the distance to the 'first' upper record of the sequence. The follow-

ing result repeatedly occurs in the theory (see e.g. 41, 091, [13D).

Theorem A. The average distance to the first upper record in a random
sequence of length n is Hn—1 = 0.691ogn.
Proof. (sketch).

One can show that P(v1=j) = 3?3%77 (j22). Thus the average dis-

tance to vy is equal to

noo n,
L —(—3_—1) - I =H-170.69logn. O

The theory of record distributions in random sequences was consider-
ably advanced by Renyi [19] in 1962. He also derived the following
useful fact, proved later by David and Barton [6] (p.181) by a com-
binatorial argument. '

Theorem B. For every k21 and 1<j1<...<j
e 1 .

k .
I I (Ji-1)

i=1

K one has that

P(Vi=JqseeeiV=dy) =

Renyi [19] proved that the number of upper records in a random permu-
tation of n elements has the same distribution as the number of cycles

in a random permutation. It follows from results of Feller [8] from
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1945 that this number is normally distributed, with expected value Hn
= 0.69 logn (see also [19]).

The results from the theory of order statistics apply to decen-
tralized extrema-finding by observing that e.g. in the algorithm of

i
first upper record in the random sequence XiX

Chang and Roberts the message generated by an X is propagated to the

YSRELE (Because the
message can travel all the way around the ring, the sequence is con-
sidered to have length n.) By theorem A a message will travel over Hn
links "on the average", before it is annihilated. It follows that the
algorithm of Chang and Roberts uses an = 0.69‘nlogn messages on the
average. (This fact was proved by Chang and Roberts [5] without refer-
ence to‘the theory of order statistiecs.) By a result of Pachl, Korach,
and Rotem [17] the algorithm is optimai for unidirectional rings. 1In
this paper we will show that the algorithm is not optimal for bidirec-

tional rings, i.e., bidirectional rings are "faster".

The paper is organised as follows. In section 2 we review a pro-
babilistic algorithm for decentralized extrema-finding due to Korach,
Rotem, and Santoro [15] and derive a deterministic algorithm for the
problem that wuses only %an = 0.52 nlogn messages on the average. In

Section 3 we improve the analyses to obtain a bound about 0.7nHﬁ =

0.48 nlogn messages for both algorithms.

2. Decentralized extrema-finding in a bidirectional ring using a small

ndmber of messages on the average. We begin by describing a proba-

bilistic algorithm for extrema-fiﬁding in a bidirectional ring due to
Korach, Rotem, and Santoro [15] that uses an "expected" number of %an
messages. We subsequently derive a deterministic algorithm for the
problem that uses the same number of messages on the average (over all

rings of n processors).

The probabilistic algorithm employs the second technique
described in Section 1 but, instead of all Xi sending their identifi-
cation number in the same direction on the ring 1like in Chang and

Roberts' method, the processors randomly decide to send their
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identification number to the left or to the right. With messages going
clockwise and counterclockwise on the ring, it is expected that many
messages run into "larger" messages and <(hence) are annihilated
sooner, thus resulting in the smaller message complexity of the algo-
rithm. The algorithm in every processor consists of three successive

stages, as described below.

Algorithm-P

Each processor Xi keeps the largest identification number it has
seen in a 1local variable MAXi (1sisn). Each processor X1 goes
through the following stages.

Stage 1 (initialisation) ‘

MAXi := Xi;

choose a direction dé{left, right} with probability 4

send message <Xi> in direction d on the ring;

Stage 2 (election)

repeat the following steps, until the end of the election is sig-
nalled by receipt of a <!> message:

if two messages are received from the left and the right simul-
taneously, then ignore the smaller message and proceed as if only
the larger message is received;

if message <XJ> is received from a neighbour, then

Lf XOMAX, then MAX, := X,;

pass messages <X3> on
elif X, = MAX, then {X, has won the election}
send message <!> on the ring

fi;

Stage 3 (inauguration)

if a message <!> is received, the election is over and MAXi holds
the identification number of the leader;

if this processor was elected in stage 2 then the inauguration is

over, otherwise pass message <!> on and stop.

One easily verifies that a processor Xi Wwins the election if and only
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if its identification number succeeds in making a full round along the
ring in a direction chosen in stage 1. Thus, at the moment that a
unique processor Xi finds out that.it is the leader, all processors
must have set their local MAX-variable to Xi’ It follows that it is
sufficient to send a simple <!> message around the ring for an inau-
guration and as a signal that the election is over and that the algo-
rithm is correct. We assume that all processors start the election
simultaneously, otherwise the first message a processor receives
serves to wake it up and trigger its stage 1, before it actually
processes the message. For the analyses we will assume that the pro-

cessors work synchronously.

Theorem 2.1 (Korach, Rotem, and Santoro [15]).
(1) Aigorithm-P uses = %nz messages in thé worst case,

(ii) Algorithm-P uses (at most) = %an= 0.52 nlogn messages in the

expected case.
(1) The worst case occurs in a ring X=n n-1...2 1, when all processors
decide to send their identification numbefé to the right (as in the
algorithm of Chang and Roberts [5]). The number of messages adds up to
4n(n-1)+n = %nz. '

(ii) Observe that the message generated by Xi (in stage 1) will be
annihilated by the first upper record in the chosen direction on the
ring. If the first upper record had decided to send its identification
numbér in the opposite direction, i.e., towards Xi’ then the messages
meet "half way" and the <Xi>—message is killed right there. There is
probability 4 that the <Xi>~message needs to travel only half the dis-
tance to the first upper record in either direction on the ring. Using
theorem A, the expected number of <Xi>-messages Wwill be %Hn+%f%Hn =
%Hn. (In case the first upper record decides to send its identifica-
tion number away from Xi’ it is possible that the second upper record
decides to send its identification number towards Xi' If this happens
it will kill the message of the first upper record, and it can con-
ceivably stop the <Xi>-message even before reaching the position of

the first upper record. Thus the expected number of messages Wwill be
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slightly less than %Hn per processor, cf, Section 3.) It follows that
the total number of messages exchanged is less than %an+n = %an =
0.52 nlogn in the expected case. o

Observe that Algorithm-P is probabilistic and, hence, no proof in
itself that decentralized extrema-finding is more efficient for
bidirectional rings than for unidirectional rings. To resolve the
problem we devise a version of Algorithm-P iﬁ which stage 1 is
replaced by a purely deterministic step. The idea is to let a proces-
sor Xi send its <Xi>—message in the direction of its smallest neigh-
bour, instead of letting it decide the initial direction by random
choice. 1If Xi is beaten by a neighbour rightaway in the first

exchange, it is made "inactive" for the remainder of the election.

Algorithm—D

Similar to Algorithm-P, except that for each processor Xi stage 1
is replaced by the following stage.

Stage 1* -

send message <*Xi> to both neighbours on the ring;

wait for the messages <*Xi—1> and <*Xi+1> of both neighbours (with
the indices "i-1" and Mi+1" interpreted in the usual circular
sense as indices of the left énd right neighbour, resp.);

MAXi 1= max(Xi_1,

if MAXi = Xi then

Xpp Xy

if Xjq < X;4q Lhen send messages <X;> to the left

else send message <Xi> to the right
fi

(Stages 2 and 3 are unchanged.)

Algorithm-D is correct by the same argument as used for Algorithm-P.
Note that in Algorithm-D, stage 1% uses only 2n messages and elim-
inates at least 4n processors from active participation in the elec-

tion. The active processors that remain and send an <Xi>-message on
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the ring, will always have an inactive neighbour to the 1left and to
the right.

Theorem 2.2.

(1) Aigérithm—D uses = %nz messages in the worst case,

(ii) Algorithm-D uses (at most) = %an = 0f52 nlogn messages in the
average case.
Proof.

(i) At most 4n processors are still active after stage 1%, and the
active processor are separated by at least one inactive processor.
Suppose the largest processor sends its identification number to thé
right. The worst case occurs if every second processor sends its iden-

tificétion number in the same direction and is not annihilated before
n/2

it reaches the largest. This generates at most n + I (n-2i) = %nz
' i=1

messages. The worst case occurs in a ring of the form X=n 1 n-1 rén]

n-2 [4n]-1... (the shuffle of n n-1 ... [n]+1 and 1 [4n] [4n]-1 ...
). S - o

'(ii) Note that stage 1* only requires 2n messages and leaves at
most 4n processors (peaks) that will send a message on the ring at the
end of the stage. To allow for an analysis bases on random sequences,
we note that this is only an optimized version of the algorithm in
which every processor Xi sends a message on the ring in a direction as
determined in stage 1*. By pairing every permutation with one in which
the neighbours of Xi are interchanged, one easily sees that Xi sends
its messages to the left or to the right with probability 4 (averaged
over all permutations). The message sent by Xi will be annihilated by
the first upper record Xj in the direction determined in stage 1%, or
by the message of the first upper record that is a peak in the same
direction (in case this message was sent towards Xi and collided with
the <Xi>—message between Xi and Xj)f We ignore the case that Xi does
not have an upper record. Without loss of generality we may in fact
assume that Xi and Xj are mdre than two steps apart, otherwise the
<Xi>—message certainly travels only O0(1) steps. As a result we may
assume that Xj sends a message towards Xi with probability 4, where we

note that the complementary case with probability 4 consists of Xj



_11_

sending its message away from X or not sending a message at ali,
(This is seen by the following argument, where we use X and Xj to

denote the left and right neighbours of XJ as seen from Xi in the

direction of Xj' Note that Xj < X,, by the assumption that XJ is the

’
first upper record 1f x5 < X thei pair the current permutation with
the one in which X§ and Xj are sw1tehedf If §j> Xi then pair the
current permutation with the one in which Xj and Xj are switchedf of
every pair precisely one permutation will give a case in which the
first upper record of Xi sends a message towards Xi’ Note that the
pairing of permutations is independent of the choice of a direction by
X..) By theorem A we know that the average distance of a random pro-
cessor to 1its first upper record is Hn' It follows that Algorithm-D
uses (at most) £nH +O(n) messages on the average. (One should observe
that, as in the proof of theorem 2.1. (ii), the analysis ignores the
possible effect of higher order upper records. Thus the average number
of messages used by Algorithm-D will actually be less than the claimed

%Hn+0(1) messages per processor, cff Section 3f) o

Corollary 2.3. Decentralized extrema-finding can be achieved strictly
more efficiently (i. €., with fewer messages on the average) for

bidirectional rings than for unidirectional rings.

Note that Algorithm-P and Algorithm-D use "time" n and n+l, respec-
tively, when executed under ideal assumptions, not counting the time

for the inauguration of an elected leader.

3._An improved analysis of Algorithm—P and Algorithm-D. In the proofs
of theorem 2.1 and 2.2 it was argued that the bound of 3H on the

average (c. q. expected) number of propagatlons of an <X, >-message is
only an upperbound because the possible effect of higher order upper
records was ignored. In this section we will improve the analyses and
derive a bound of about 0. 7H on the average (c. q. expected) number of

propagations of a message in both algorithms.

For an analysis of Algorithm-P, we assume without 1loss of gen-
erality that i=1 and that the <X1>—message is sent to the right. Let
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v1, v2, ... be random variables denoting the position of the first and

higher order upper records (cf. Section 1). If xv to Xv randomly
' 1 el
choose to send their <X>-message to the right as well but Xv sends

J
its message to the left, then the <X1>—message is annihilated by the

<Xv >-message if the messages meet before Xv is reached, i.e., at
3 1 N

-1 provided vj<2v1. (For vJ-1 odd, the messages will
_J ‘
2

not meet but pass over the same link before <X1> is annihilated at the

next processor.) Otherwise the <X1>-message is simply killed at Xv .
_ 1-

processor X v
o

D (4)- MR
efinition. K (j)= T - — .
- n 1<t1<..<tj5n(t1 RIS
t.<2t
J 1

Suppose that we take the effect of up to 1 upper records into account.
(Further upper records could only lower the bound on the expected mes-

sage complexity.)

Theorem 3.1 The expected number of messages used by Algorithm-P is
’ 1
bounded by n(H - % (-é-)j K (j)) + O(n).
n J=1 n

The expected number of <X1>-messages propagated by Algorithm-P is
bounded by the expected value of

1 v,—1
z <%>3[ I+ Dy, -
J=1 ‘
1 1 v,—1
= v 3 @Ivn- 2 @I
J=1 J=1
1 v
= (1= 1 (BIv, L))
J=1

s Where each term in the summation arises with the probability of vj

being 1less than 2v (and thus of the <Xv >-message serving as the

1 3



—13—

annihilator of the <X1>~message). We ignore the effect of rings

without a first upper record. The expected value is given by

1
I P(v,=t ) (t ~1)- I (a})J I P(v1=t1;...;v.;tj)(t1-§t3)+o(1);
1<t, Sn 3=1 1<t <0 u <t 30 o :
ty<2t,
£, =1 Lo
= L e I ($)IK_(§)+0(1)=
1<t1Sn(t1 Dty 4 %
) 1 j
- Hn-j§1(%> K (3)+0(1),

using theorem B. Accumulating this bound for all <X, >-messages yields

i
the result. o

Note that the term —(%)an(j).n denotes the savings in the expected

number of messages used by the algorithm when the effect of the jth

upper record is taken into account.

Lemma 3.2.
(1) K (1) = #_+ 0(1),
(11) K (2) = (4 - H1n2) H_+ 0(1),
(111) K (3) = (4 - $1n2 - 41n%2) H_+ 0(1),
(1v) K (3+1) <K ().
Proof.
(1) K (D) = 2 i =4 H ¢ o(1).

1<t.sn" 71
(ii) See the appendix.

(1ii) See the appendix.
(iv) The result is obvious by Ehe interpretation of Kn(j+1) and
Kn(j), but can be proved formally as follows.
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t, -+t
. 1 2 J+1 .
K (j+1)= Z =
n (t —1)ooo(t )t.
1<t1<fff<tj+15n 1 J+1 J+1
tj+1<2t1
s t’ —hL +1
T1ct, < ; <t Sn{(t1'”‘1’('°j’ )t <t>: (e j11 fgt +1} :
INEAAS - 3= I
j+ <2t
2t -1
S z e 1 ) ; EJ.(t _itj+1)} <
t L (t,~1)t t -1t
1<t1<.7.<tJSn A | J tj+1’ j j+1 J+1
t.<2t '
J 1
t, ~kt L
< L {(t 1)1 (tj—1)t L (t—g)t} <
1<t1<.7.<tj5n AN J t=tj+1
tJ<2t1
< Kn(J),
2t1—1 tj
where we use that z —— consists of at most t,-2 terms of size
: (t-1)t 1
t-tj+1
less than 1 and thus has a sum <1 (but positive). D

i

Theorem 3.3. The expected number of messages used by Algorithm-P is
equal to 0. 70...nH + 0(n).

. o

By theorem 3.1. the expected number of messages used by
o L

Algorithm-P is equal to n(H - I (*)JKn(J)) + 0(n), for the largest
J=1

L possible. (Note that no ring has a J th upper record with tj<2t1 for

jz dn+1.) Using lemma 3.2. this number is bounded from above by
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(1 ~(3) ~1(3-41n2) ~3(3-41n2~41n%2) )nH + 0(n) =
= (1%+1%1n2+1%1n22)an + 0(n) =
= O.7O75nHn +0(n),

and from below by

8

(++¥1n2+s51n® 2)nH_ - (331n2-41n%2) T (HnH_ + o(n)
su
- (4+}in2+gsln2)ni_ + O(n) =

= 0.7033 nH, + o(n). D

Because of the analogy to Algorithm-P (ecf. theorem 2.2), it is
intuitive that the improved bound of 0.70..ﬁHn + 0(n) méssages also
holds for the average number of messages used by Algorithm~D. We give
a more rigorous proof of this fact. Note that in its fibst stage,
Algorithm-D expends O(n) messages to eliminate every processor that
has a larger neighbour. The active processors that remain are at least
one position apart, but must be at least two positions apart if we
want to claim the independence of their choice of direction at the end
of stage 1* (cf. theorem 2). This motivates the definition of a modi-
fied record conéept. '

Definition. Given a random sequence, and "upper ¥-record" is any ele-
ment that is larger than all the preceeding ones (thus an upper record
in the traditional sense) for which the two immediately preceeding

elements are not upper ¥~records.

We will bound the average number of messages used by Algorithm-D by
taking only the effect of upper ¥-records into account, by an analysis
that is very similar to the analysis of Algorithm-P. (The effect of
upper records that are no upper *-records will onlj lower the result-

ing estimate.)

Definition. Ln(J) = T P*(v =t ,...,vJ J) (t —%t ), where the summa-

tion is taken over all t1,...,tj with 1<t1<...<tj5n and 2<t1,
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t1+2<t2’fff’tj-1+2<tj and tj<2t1f

In the definition, P*(v1=t1;...;vj=tj) denotes the probability that

the ith upper *-record occurs at position ti (1isj). Note that for
%(y =t ..

2<t1, t1+2<t2,.f.,tj_1+2<tj $ne has P (v1 t1,f....,vj tj) 2

P(v1=t1;...,v =t.) e because the upper records in

IS L R P RPN CI DI
positions t1 through tj will automatically be upper ¥-records. Suppose

we only take the effect of 1 upper *~-records into account. In analogy

to theorem 3.1. one obtains the following fact.

Theorem 3. M The average number of messages used by Algorithm-D is

bounded by (at most) n(H - 2 (*)j L (J)) + O(n)
3=1

-1
extends over all t1,...,tj as in Ln(j).

| .
For simplicity define Ln(j) = I where the summation

-1)tj’

Lemma 3. 5.
(1) L (J) 2 L. (j),
(ii) os K (3 - L (j) = 0(J).
(i) This follows immediately from the definitions.
(ii) Obviously Kn(J) L (j), as L equals the expression for K (J)
over a more restricted range. To show that K (j)-L (j) = O(J) we
define the following auxiliary qﬁantity Mn(j,i) for 0sisj:

~Lt
. 12J .
Mn(j,i) (t _1)°"(tj 1)tj’ where the summation is taken over
all t1’fff’tj with 1<t1<fff<tjsn and ti+2<ti+1’fff’tj—1+2<tj and
tj<2t1f
1
Observe that K (j) = M (j,j) and L (J)=M (j,0), and clearly
n n £, ~kt n n
Mn(j,i+1)2Mn(J,i). Note that T J s 1, and that for "fixed" t1 to
_ , N i
ty one has I IR ~1:}t2t3-1) w0 -0 G T
1 RN i+ T J 1 RS ¢
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where the summation extends over all 1<ti+1<...<tj5n with
ti+2<ti+1’fff’tj-1+2<tj and tj<2t1f Next observe that
t1—§tj
M (3o 140 M3, D=2y (e —1oe
1 0 J
where the summation is taken over all t1,...,tj with 1<t1<...<tJSn and
ti+1+2<ti+2’fff’tj—1+2<tj and tj<2t1, and t1+1 = ti+j or ti+1 = ti+27
It follows that )
M_ (3, 1+1)-M(3, 1)=0( L t.-1) (t1~1)(t =ik
‘ 1<t,<...<t, . Sn 1 Tttt i+
LIRS & o ,
ti+1<2t1A
ti+1=t1+1 or =ti+2
=0( T - — )=
(1<t1<..<ti$n)(t1 .. (& -1t
ti<2t1
1
=0( I —§)=0(1).
1<t.sn ¢ ’
1 1
] . ) J—
Hence K (J)-L (3) = Mn(j,j)—Mn(J,O) = I (M(3,1+1)-M(j§,1)) =
i=0 )

O(j)f o

Theorem 3.6. The average number of messages used by Algorithm-D is
bounded by (at most) 0.7075nHn + 0(n).
Proof.

By theorem 3.U4. and lemma 3.5. the average number of messages used
by Algorithm-D cén'be bounded aé follows (for any fixed 1):

1 . 1 s 1
n(Hn-JE1 ($L (9 >+o<n)5n(ﬂm-j§1 (HL_(3))+0(n)=
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=n(H_- z (l)jx (3))+0(n. z (1) 3)+0(n)=
" 3= 3=

1
=n(H - I (L)Jx (3))+0(n).
J=1
The result now follows by using the upper bound on the latter expres—

sion, derived in the proof of theorem 3.3. o
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Appendix

We give a proof of the estimates for Kn(2) and Kn(3) stated in
lemma 3.2. through the following auxiliary results.

-~ -

Lemma A.1. Kn(2) = (%‘%an)Hn + 0(1).

Proof
We use the following estimate: 1if f(x) 1is non-negative and
b }
decreasing on [a,b], then I £(t) = 2ff(x)dx+sf(a) for some 0Sest.
t=a :

t1~%x
Taking f(x) = D% we obtain

2t t,ix 2ty £, ~4x :
: SR = R

t2=t1+1 t1+1 1

_ //&=2t1-1 :
- - -1)- 4y =
((t1 1)1n(x-1) t1lnx) x=t1+1 +O(t1)

: 1
= $-41n2+0() -
o

Now observe from the definition of Kn(2) that

£, -3t n-y min(n,26,-1) t, -4t
K (2)= I © —1;(t E1)t = I L © -1;(t E1)t
1<t.<t_sn “¢1 e o g et 41 1 AT
AL 1 2"
t,<2t,
and (thus)

i 257 t,dt, n-1 2% £, bt

5 5 K (2)S T %

b=2 byt +l (=D, N, o g st +1 (=1 (t,-1t,

1 1 2 1
By substituting the previous estimate we obtain

n n oty n-t
(3-41n2) T JsK_(2)s(34n2) T g (:
£,=2 1 t,=2

t1=2 1 t1=2

_adml -
Nt
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, hence K (2) = (4-¥1n2) H_ + 0(1). o

To derive an estimate for Kn(3) we follow a similar approach,

although the analysis becomes slightly more involved.

2t. -1

1 t, o3t £y
- SR I -1 —_
Lemma Afzt For t1Su<2t1 1, I Dt - } - 4n2 -4 In — +
1 t=u+1
O(E_)'
1
Proof.
26971 b 2t~ £, ~4x ,
X = T dx + 0(—)=
by EDE T 4y X £

=2t, =1
1 1
-1 -1)- : — )=
((t1 4)1n(x~1) t11nx] /ﬁ§u+1 + 0(t1)

(t1—-£-)1n(2t1—-2)-t11n(2t1—1)+t11n(u+1)-(t1-£-)1nu+0(€1—) -
1

i

u

CLJ+

+ 0,
1

-4 - 41n2 - 4In
where we use that log(1+z) = z + 0(z2) for z 4. O

It follows that

2t,-2 2t -1 b -3t
L L I T —1)(t1—1)%t e "
€23 Bymb #1 o=ttt M 2 3 °°73
£ & 1
ot, =2 ——i~41n2-4ln— 2t, -2 o(—)
1 t2 t n 1 t
L L (€.~ (E,-1) e I T 1)(1 "
ty=3 ty=t,+1 1 2 £y=2 ty=t, #1001 2 '
2t -2
Note that I ‘L consists of t,~2 term of size S-J— and thus 1is
g =t,+1 S27 ! &

e . » R
o(1). Consequently the second summand in the expression above is
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o = -15 )= 0(1). Rewrite the first summand as B-C, with
t,22 t
1 1
2t,-2 b 3t
B= I L T 1;(t 21)t '
£y=3 b=t +1 T 2 2
¢
- 'y 11 ne—
n 2t1 2 z1n2+zlnt2
cC= I )
- - (t, - t,-1)°
ty=3 t,=t 1 1 2
2t, -2
1 -1
1 i a—zint - 11n2o-
Lemma A.3. For a 2%ln2 + 4+ 1nt., L = aln2 +1ln 2
- P e e 7D -
31n21nt, + O(3). 1
1 t]
Proof.
2t,-2 2¢,-2 2t =2
_ﬁ :&: -k
L ?t-}?t ro 2 tlnt ¥ §<tf?§ =
t=t, +1 t=t+1 t=t, +1
2t,-2
= a~finx dx + 0(<=)=
X
t, +1 1

2 //&;2t1'2 a
(alnx—+1n"x) x=t1+1 + O(E_) =

aln2-tin®2-4n2int, + 0(F). o

! 1

Lemma A.M. K (3) = (4 - 4 1n2 - % 1n%2)H_ + o(1).

By the analysis in the proof of lemma A.1 it easily follows that

we have
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§~%1n2+0(éL)
1

B= I
t,=3

Gy = (341n2)H_ + 0(1).

Applying lemma A.3. with a=4ln2 + -;-lnt1 we obtain

1nt
11n%2 + of T L)

LI N P H_ o+ 0(1),

(t1—1)

1 1' t, 4t
and thus 2 P Tf -1)(t —1)(t -1)t

=3 t =t +1 t3=t2+1

= B-C+0(1) =

= (4 - 41n2 —lln 2)H + 0(1). As in the proof of lemma A.1 one can now
estimate K (3) by this expression from above, and also from below
using 4n instead of n. Thus K (3) = (4 - 41n2 - 41n 2) H +O(1) a
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