INTERVAL ROUTING

J. van Leeuwen and R.B. Tan

RUU-CS-85-16
May 1985

o % o Rijksuniversiteit Utrecht

| [Wile
g ;f,’ Vakgroep informatica
7) y

77 gz;riapest/aana 3584 CD Utrecht

Telefoon 030-53 14 us80.012 3508 TA Utrecht
Thehknheﬂands

INTERVAL ROUTING

J. van Leeuwen and R.B. Tan

Technical Report RUU-CS-85-16
May 1985

Department of Computer Science
University of Utrecht
P.0. Box 80.012, 3508 TA Utrecht
7 The Netherlands

INTERVAL ROUTING*
J. van Leeuwen and R.B. Tan*¥

Department of Computer Science, University of Utrecht
P.0. Box 80.012, 3508 TA Utrecht, the Netherlands.

ABSTRACT. An interval routing scheme is a general method of routing
messages in a distributive network using compact routing tables. In
this paper; concepts related to optimal interval routing schemes 'are
introduced and explored: Several problems concerning the insertion of
nodes and joining of sepérate networks by a new link to form larger
ones are considered. Various applications to distributed computing are
given: In particular, leader-finding and generation of spanning trees
in arbitrary networks are shown to require at most O(N+E) messages

when a suitable interval routing scheme is available.

1. INTRODUCTION. In a computer network; a routing method is required

in order that the nodes can communicate messages to each other. Nor-
mally this is provided by a routing table of size 0(N) at each ‘node,
where N is the number of nodes in the network. The table shows the
1link(s) to be traversed for each destination node: Santoro & Khatib
[3] have shown that routing can be achieved without the need for any
routing tables at all, provided the nodes of the network are suitably
labeled and the routing is restricted to a spanning tree. The tech-
nique has subsequently been extended by van Leeuwen and Tah [5], to
obtain a method that utilizes every link of the network but requires
tables of size 0(d), where d is the degree of a node.

*This work was carried out while the second author visited the
University of Utreeht; supported by a grant of the Netherlands Organi-
zation for the Advancement of Pure Research (ZWO)

*%*pddress: Dept. of Computer Science, University of Sciences & Arts
of Oklahoma, Chickasha, OK 73018, U.S.A.

-2 <

In this paper we consider the intricate question of generating
optimum or near4optimum routing schemes of this kind; and the impact
of utilizing any such scheme on the message complexity of common dis-
tributed network problems.

Basically the idea presented in [5] is to label the nodes and the
edges of the graph (network) by labels from a linearly ordered set,
say {10;11;:;:;1N;1}; in a suitable manner; The labels 1 through
1N—1 are cyclically ordered.

An interval labeling scheme (ILS) for a connected N-node network G

is a scheme for labeling the nodes and links such that (i) all nodes
get different labels and (ii) at every node each link receives a dis-
tinet 1label. The labels assigned to the links at node i are stored in
a table at ndde i. To send a message m from node i to node j we use a
nprecursive" routine SEND (i,j,m) where at each intermediate node k,
starting with node i, node k will look up its table and find 1link ag
such that the interval [as,as+1) contains j. Node k then sends message
m down the link labeled g and the whole process 1is repeated until
message m does arrive at node j, if ever. The routine can be described

simply as follows:

procedure SEND (i,j,m);
begin
if i = j then process m

else

begin
find label ag in the labeling at node i such
that ag ik Ogyqs
i:= the neighbour of i reached over link ags
SEND (1,j,m)

end

end.

One cannot just pick an arbitrary scheme and hope that it will route a
message correctly; as the message may never reach its destination due

to a cycle in the route. An ILS is valid if all messages sent from any

;3;

source node do arrive at their destinations. Most ILS are in fact not
valid. In [5] it was shown that there is an O(Nz) algorithm to deter-
mine whether an ILS 1is valid or not. The main result of [5] is the
following. |

Theorem 1.1. For every network G there exists a valid interval 1label-

ing scheme.

In this paper we study various techniques for generating valid ILS
that are optimum, or otherwise sufficiently flexible to allow for e.g.
the addition of nodes or the joining of networks in an easy manner;vWé
also study the effect of having a valid ILS available in a network on
the design and the complexity of distributed control problems;

We briefly digress and describe the particular ILS that ﬁas used
in [5] to prove theorem 1.1. The scheme is generated by an algorithm
that traverses G and assigné labels «{u) to the nodes u that are
visited. The algorithm is based on the technique of depth-first search
(Tarjan [4]), and works as follows.

Start at an arbitrary node and number it o; pick an outgoing 1link
and label it 1 (by which we mean that the corresponding exit at node o
is labeled 1), follow the link to the next node and number it 1. Con-
tinue numbering nodes and links consecutively; If a link is éncoun—
tered that reaches back to a node w that has beeh numbered previously
(a 1ink of this type is called a frond), then it is labeled by a(w)
instead and another link is selected. If a node is reached that admits
no forward links anymore (a node of this type is either a leaf or oth-
erwise "fully" explored) and i is the largest node-number assigned
until this moment, then we backtrack and label every link over which
we backtrack by (i+1) mod N until we can proceed forward on another
link again; There is a slight twist to the labeling of links in this
phase in caée one backtracks from a node v that has a frond that
reaches back to 0. The frond will have label o at v; and just when i
happens to be N-1 the same label would be assigned to the link from v
to (say) u over which one backtracks. The conflict is resolved by
assigning the label a(u) to the link 1nstéad; In order to do this

JU T

right, the algorithm marks a node as soon as it finds that it has a
frond to 0. {It should be intuitive now that the ILS so constructed
does its routing over the depth4first search spanning tree; with addi-
tional shortcuts over the fronds.} The following procedure makes the

algorithm precise. Comments contain additional explanation.

{N is the number of nodes, and i a a global variable ranging
over 0..N-1 which denotes the next node-number or edge-label
that s to be assigned. The variable i is initially set to 0.
For convenience we use a boolean array MARK to keep track of
the node(s) that have a frond back to 0. MARK is initially set
to false. The procedure starts out at}an arbitrary node x of
the network, and is called as LABEL (x,X).}

procedure LABEL (u,v);
{u and v are nodes, u is the father of v in the depth-first
search tree being constructed, and v is being visited.}
begin
{assign number 1 to v}
alv):=1;
i:=(i+1) mod N;
for each node w on the adjacency list of v do
begin
if w is not numbered then
begin
{proceed forward and add the 1link v;w to the
depth-first search spanning tree}
label link v,w at v by i;
LABEL (v,w)
end
else
begin
{link v,w is a frond unless w=u. Mark v if the
frond reaches back to 0} -

l{ w = u then

begin
jabel link v,w at v by a(w);
if a(w) = 0 then MARK[v]:= true
end
end
end;
{backtrack over the link v,u unless v=x}
if v = x then
begin
if 1 =0 mod N & MARK[v]=true then
label link v,u at v by a(u)
else

label link v,u at v by 1

end

{end of the procedure}

end;

We shall refer to the ILS obtained by applying the procedure LABEL as
the DFS scheme; because it is generated during a depth4f1rst search.
Recall that depth-first search visits the entire network, that the
1inks over which the algorithm moves nforward" (and backtracks again
at a later stage) together form a rooted tree spanning the network,
and that fronds always point from a node to an ancestor of the node in
this tree (cf. Tarjan [41). In [5] it was proved that the DFS scheme
is indeed a valid scheme for the purposes of routing.

We note that the DFS scheme is in fact valid when the labels are
chosen from any linearly ordered set {10;11;;;;;iN 1}; Any general ILS
will have an equivalent form using labels from {o,...,N 1} by the
natural correspondence between {i ,..., N- 1} and {o,...,N 1}. An ILS
is called normal if the set of 1abels 1s indeed the set {o,...,N 1}.

In this paper we further explore the theory of general .interval
labeling schemes and 1its various implications for network problems,
and apply it to solve some common distributed problems: In section 2
we look at optimum schemes for some common networks sdch as rings and

grids; Various concepts of '"near optimality" are introduced. In

-6 -

section 3, several insertion and jbining techniques are given to form
a larger network that still preserve some desirable properties of a
given ILS. Section 4 contains applications of ILS to solve for e. g.
the 1eader;finding problem and the spanning-tree problem in substan—
tially fewer message4exchanges than are required in general networks
such as rings without the effect of a valid ILS. The results are
intriguing from the point of view of distributed algorithms; as they
show that implicit information can severely affect (lower) the message
complexity of distributed problems: Finally some open problems are

stated in section 5.

2. OPTIMUM SCHEMES AND RELATED CONCEPTS. Ideally we would like an ILS
not only to be valid but also able to deliver messages over the shor-

test possible routes. We call such a scheme optimum. The DFS scheme as
discussed in Section 1 is a valid scheme; but it is far from optimum;
For instance; a DFS scheme will not label a ring with more than ﬁ
nodes optimally.

In the following; we list some common types of network and present
optimum schemes for them. For the sake of simplicity we assume all ILS
to be normal throughout this section.

(1) IggggQ A DFS scheme gives an‘optimum scheme here. Santoro &
Khatib [3] use a similar depth-first search of the trée, but with a
different ordering of labels.

(11) Complete graphs; A DFS scheme again suffices here, since all

links are either direct links or fronds and will deliver messages in
one hop.

(iii) Rings. An optimum scheme is given in Van Leeuwen & Tan [51.
Basically the idea there is to orient the ring in one direction and
1abel the nodes consecutively from 0 to N- 1. Then for each node i,
label the left 1ink by (i+1) mode N and the right 1ink by (]'—'] +1) mod
N.

(iv) Complete bipartite gggphs: Let the set of nodes of the graph

be separated into 2 parts, A and B. Label the nodes consecutively from
0 to N-1 in any order. Label the links by the node numbers they are

connected to. For instance, if there is a link connecting node i and

;7:.

node j then label the link at node i by j and that at node j by 1.
Thus; by construction; there exists a direct hop from each node in one
partition to all the nodes in the other partition. If nodes i and J
are 1in the same partition and need to communicaté then; by the circu-
lar nature of the interval order; there must be a 1link that carries
the message to the opposite partition. From there it only takes one
more hop to reach node J” So only 1 hop is needed to go across the
partitions and 2 hops within the same partition, and this is optimum.
(v) Eﬁl9§° we consider several grid configurations.

(v.a) Grids with no wrap-around. Let G be a rectangular grid of M

rows ahd N columns. Label the nodes consecutively by rows from left to
right, so that the first row will be labeled 0 through N-1, the second
row N through 2N-1, and so forth. Informally each link in the U4
directions (if there is any) will be lébeled as follows. The up link
is 1labeled 0 and the down link is labeled with the node number of the
leftmost element of the next row. The left link is labeled by the node
number of the leftmost element'on the current row and the right link
by the next consecutive element on the right. More precisely, for each
node i, if there exists the appropriate 1links, label the up link by o,
the down link by N+N. LNJ the left link by N. LNJ and the right link by
i+1. Note that the up link for all nodes is o, all the down links for
each row are identical, and so are the left 1inks for each row. Thus
we have the interval structure as shown in figure 2, where o is N. LNJ
and (r+1) = N. LNJ + N.

down (r+1)o r, left

i+1 right
Figure 1.

We now show that the scheme is optimum, by referring to the Interval

-8 -

structure of figure 2. Suppose node i needs to send a message to node

j. Assume first that i and j are on the same row of the grid, i.e. ro

£ jK« (r+1)of If i<j then j€ [i+1;(r+1)0) 30 the message is passed to
the right and kept on passing to the right until node J 1is reached
because J must belong to one of the successive intervals
[i+2,(r+1)),.ee, [iret) -1, (r+1)). Similarly, if i > j then j
belongs to interval [ro,i+1) and the message is passed to the left
until it arrives at j. If i and j are not on the same row then Jje
[o,ro) or je[(r+1)o,o) 80 the message is passed up or down to the next
row respectively. After the next row is reached and if J is on that
row, then the previous process is applied and j is reached. If J is
not on that row then the message must be passed onto the next. row in
the same direction; i;e., once the message is passed up the link it
cannot at any point be paséed downward again and vice versa. This is
because each ro keeps on decreasing for each row and (r+1)o keeps on
increasing and the intervals [o,ro) and [(r+1)o,o) are disjoint. Thus
eventually the message will arrive on the row that J is located by
vertical travels and from then on by horizontal hops to node j. The
route the message travelled is not the only shortest one possiblé, but
it is one of the shortest, hence optimum.

(v.b) Grids with column-wrap-around.'G is a rectangular grid of M

rows and N columns but each column is extended to also be a ring. The
nodes are labeled consecutively as in case (v.a). The left and fight
links for each node remain identical as in (v.a). Label the first
column using the optimum scheme for a ring; then cdpy.the up and down
links of the first column to the remainder columns. Precisely, the
left link 1is N.L%j; the right 1link is 1i+1, the down 1link is
(N+N;L§J)mod(M;N) and the up link is (N;rg] + N.L%J)mod(M.N); The for-
bidding appearances of the vertical links are harmless. They are Jjust
straightforward translations of the ring with M elements. Recall the
formulae there are (i+1) mod M and (f%]+i) mod M. Now L% plays the
role of i and since there are N columns, multiplying both equations by
N yield the desired links. For a message to reach node J from node i,
assuming they are on the Same row, the message will travel by horizon-

tal hops to its destination as before. If i and J are not on the same

;.'.9;

row then the message must go around the ring until the correct row
containing j is reached. This can be seen by applying the proof for
optimum ring network, where i now stands for the it row, so that the
row containing j is found in the most optimum way; Then the message is
delivered by horizontal hops.

Unfortunately; the same technique does not work for grids with row-
and column4wrap4around; This is because we lose the circular ordered
effect of the ring 1ntefva1 on a row. So the question of an optimum
scheme for row- and column—wrap-around remains open.

One way to salvage the above situation is to introduce multiple
labels on a link.

Definition. A k-labeled ILS is an ILS where (i) each link may receive
up to k distinet 1labels and (ii) at every node all the link-labels
must be distinet.

Thus the usual ILS simply is a l-labelled ILS. We now show how this
concept can be applied.

(v.c) Grids with row- and column-wrap-around. Let G be a grid of M

rows and N columns with each row and column extended to be a ring; The
idea now is to label the nodes as before; then label each column és a
ring as in case (v.b), following the first column, and finally to
label each row also asva ring; However, this naive approach does not
give us even a valid schéme; For instance on a 5 by 5 wrap-around
grid; the optimum ring on the 31»d row is as follows:

Flgure 2.

- 10 -

There is no way that node 13 can send a message to node 10 via the
usual circular route. The message has to go up and come down again;
forming a cycle. This is solved by labeling link (13,14) by both 14
and 10. The 1ébe11ng scheme is then as follows. Label the nodes con-
secutively by rows. Label the up-link by (rM].N+LNJ N) mod (M.N), the
down-link by (N+N. LNJ) mod (M.N), the left link by ([—1+1)mod N +
N. LNJ and the right link by (i+1) mod N + NLNJ Now, for each row r,
r=o,...,M 1, check each element i, i=r. N. If the horizontal links do
not contain r.N as a label then pick the horizontal link with the
highest labei and add 1label rN to it. We thus have a 2-labeled
scheme; Note that the previous two grids of cases (v'a) and (v.b) all
have r.N = LNJ N as their left links, so that we have no such problem.
By construction, for every row r= o,...,M 1, and for every node i on
that row r, node i has a link-label rN and also (r+1)N mod (MN).
Furthermore; all the horizontal link-labels are within this interval.
Thus when a message travels from node i to node j; it first reaches
the correct row r; such that j is on that row. Then it reaches J by

horizontal hops: The scheme is optimum;

We have only given optimum schemes for a few types of common graphs;
In general it is not clear how one would construct an optimum scheme
for an arbitrary graph, if such a scheme is possible. However it can

be quite easy to do this for multiple¥labeled schemes;

Proposition 2.1. For any graph with N nodes, there exists an (N-1)-
labeled ILS that is optimum.

Label the nodes somehow from o to N-1. For each node i, pick a
node jelo,N-1]. Find a path to j that is optimum, say via link (i,p).
Then label 1ink(i,p) by j. Do this for all j,J # i. A maximum of N-1
labels suffices. o

Note that the above (N-1)-labeled ILS is nothing but the tradi-
tional routing table in disguise; with one label for each node. Thus

the mu1t1p1e41abe1ed ILS is just a generalization and simplifiéation

-11 -

of the traditional routing table. We are trying to achieve the same

goal with fewer labels!

In the following we introduce a few concepts that are related to
optimum schemes, though they are strictly weaker than optimality.
Observe that in a DFS scheme; a node may not necessarily send a mes-
sage addressed to its neigbor directly in one hopQ

Definition. An ILS is a neighborly scheme if it is valid and all mes-

sages for a neighbor are delivered directly in one hop}

An optimum scheme of course is a neighborly scheme. The converse 1is
false, as shown by the following example in figure 5. The scheme is
neighborly, but not optimum, since SEND (o,4,m) traverses the path
0+2+3+4 instead of the shorter route o+1-+4.

Figure 3.

Lemma 2.2. The only nodes in a DFS scheme that do not necessarily
deliver messages to neighbors in one hop are those nodes k that have
fronds to nodes i with i=o0, i<k.

If j and k are neighbors and link(j;k) is a frond in the spanning
tree of DFS, then by construction link(j,k)=k and link(k,j)=j, so mes-
sages are delivered in one hop; So assume j and k are neighbors but
1ink(j,k) 1is not a frond. vaj<k then the label of 1ink(j,k) must be
k, (by the labeling procedure of DFS), so messages get there in one
hop from j to k. Thus we only have to consider SEND (k,j,m). If there

- 12 -

are no fronds coming down from k to i where i<j then 1ink (k,j)=b is a
backtrack edge; Also there must be a link labeled k+1 emanating from k
(by the labeling procedure of DFS). Thus j€[b,k+1), and the message
gets routed to j via link (k;j)=b: If there is a frond coming down
from k to i, but i=o, then by the labeling procedure of DFS, 1link
(k;J) must be labeled by J; 8o that message gets to j in one hop. The
remaining case is when k has a frond coming down to i and no i=o;‘ Let
the backtrack link be (k,j)=b. Then je[b,i) since i<j<b or b=o, so

jelo,1). Thus the message cannot come down from k to j via link(k,j).
It has to be routed via one of the fronds, 1ink (k,i). o |

We use a multiple-label scheme to salvage the above situation.

Theorem 2.3. There exists a 2-labeled neighborly scheme for any arbi-
trary grabh:

We first do a DFS scheme on the graph G. By Lemma 2:2; the only
concern are those nodes k that have fronds going down‘to i with i<k
but no i=o. For each such k and its neighbor j via the backtrack 1link
b, we dodble label 1link (k,j) by b and j. We thus have a 2-labeled
scheme that is neighborly. To show that the resulting scheme is valid,
we only have to be coneeEned with those special k-nodes. Let i be the
maximum frond node in the above situation. Then normally messages to
any node t€[i,k+1) will travel via link i. With the introduction of
the new label Jj, with 1<j<k, those messages to te€[j,k+1) get
transfered to node j first. So we only have to make sure that any
message from k to te€[j,k+1) is'routed correctly. Now jst<k, so it is
not possible for the message to return ﬁo node k again via
1ink(Jj,k)=k. Furthermore, since t2j, the message will be routed to the
subtree of the DFS spanning tree rooted at j; The message will never
encounter the situation of Lemma 2.2 again on the way as it will be an

upward climb. As the DFS scheme is valid, the message will eventually
reach t. o

Another way to salvage the situation in Lemma 2.2 is to restrict

;13;

the way the DFS labeling algorithm proceeds in generating the spanning
tree. We would like the depth-first search to proceed in an orderly
manner; exploring all the subbranches as much as possible before

encountering a "backward" frond.

Definition. A DFS scheme is orderly if; whenever there is a "backward"
frond from node k to node i and x>k; then either x must belong to the
subtree of the DFS tree with k as a root or x does not belong to the

subtree with i as a root in the DFS tree.

This means that if x is explored after k is; then x must be further

"up" the tree from k or further "down" the tree from i.

Lemma 2.4. In an orderly DFS scheme, if there is a backward frond from
node k ﬁo node 1 and the backtrack link at k is labeled b then the
backtrack link at i is also labeled b.

Since b is the label for the backtrack link, b does not belong to
the subtree with k as a root, which implies b does not belong to the
subtree with i as a root also. Thus every backtrack link from i to k
must be labeled b. O

Theorem 2.5. There exists a neighborly interval 1labeling scheme for
every grabh'that has an orderly DFS scheme.

wé first relabel the given orderly DFS scheme. For each node k
that has a backward frond to some sonde i; we relabel two links. First
the label on the backtrack link is changed from b to j, the father of
k in the spanning tree. Second; we find the smallest frond link i and
relabel it from i to b at k.

Claim (1). The scheme is neighborly.

By lemma 2:2; we only have to ekamine nodes k that have a backward
frond. Let 1i,j,k and b be defined as above. SEND (Kk,j,m) now delivers
message m to j in one hop; SEND (k;i;m) used to deliver messages to 1
via the frond link in ohe hop also; but now we have changed the link

-1y -

to b; Suppose there are frond links to i1;12;:;:;is with 1411 < i,
<f’f<is' Now, ie[b,§2] or i€[b,j] depending on how many fronds there
are. In either case, the message to i gets there in one hop. The rest
of the links are unehanged; s0 the scheme remains neighborly;
Claim (ii). The scheme is valid. _ |

Any meésage sent to x will arrive properly if it does not pass
through a node k with a backward frond; since the DFS scheme is valid.
Therefore we only need to consider SEND (k,x,m). Only two 1links have
been relabeled at K. Messages for most nodes k still follow the same
link and lie in the séme interval, with the exception of those in the
intervals [j,k) and [b;i1): Messages for those nodes in [j,k) used to
follow the frond link is (or i, if there is only one frond) down to
node is (11) and then "up" the tree to their destinationsf Now they
only have to take one hop to j and go from there. Thus the new scheme
bypasses the 1ntermed1ary; and cuts down on the actual distance. Mes-
sages for the other nodes in interval [b,i1) used to climb "down" the
tree from node k to node 11 first and then go to their destinationsf
Now they take one hop to 11 and go to their destination from there. So
the actual distance gets smaller once again. Note also that after a
message traverses down the two links it cannot‘go back up the 1link in
the next hop; Thus after reaching node k; the message still follows
the path of thé DFS scheme; and in some cases it even shortens the
path. o

Corollary 2.6. There exists a neighborly scheme for any Hamiltonian
graph.

Apply the DFS labeling algorithm to the Hamiltonian graph G fol-

lowing a "hamiltonian traversal". The resulting DFS scheme is orderly.
The result now follows from theorem 2.5. O

Finally; we introduce another concept that measures the effective-
ness of an ILS. Ideally, if a node blindly sends out a message to
itself it should heceive the message back in minimum time. The number
of hops the message takes is the index of the node. Thé index of an

;15;

ILS is the maximum of indices of all nodes. Clearly, the smallest pos-
sible index is 2. Both optimum schemes and neighborly schemes neces-

sarily satisfy the "Index 2" condition. The converse is not true.

Proposition 2.7. A DFS scheme is of Index 2.

Sdppose node i wants to send a message to itself. If the link that
it traverses is a frond link to node j, then by the construction of
DFS link (j,1i) is labeled by i, so the message immediately returns to
i. Suppose the 1ink is not a frond. Then it cannot be a forward link
in the spanning tree generated by the depth-first search algorithm,
since all forward links have labels J>i; Thus the link must be a back-
ward link to node k. This means that k has been numbered before i; so
i>k and thus link(k,i1) must be labeled by i, and the message returns
to i again. o

A DFS scheme also has the property that each node i has a 1link
labeled (i+1) mod N. Such an ILS is called sequential. All the optimum
schemes presented eérlier are sequential, with the exception of the
ILS for the complete bipartite graph; Thus an optimum scheme need not
be sequential.

3. INSERTION AND CONNECTION OF SCHEMES. Consider the practical situa-
tion 1in which a network expands and grows by incremental insertion of

nodes or by connection to other networks. In this section we study how
a network with a given ILS can "grow"‘by incremental insertion of a
node or by connection to another network with a given ILS so that the
combined network still has an ILS of some desired form.

Central to the insertion and connection problem isAthe concept of
cyclically shifting a node number until it reaches a desired value. We

again assume all ILS to be normal.

Proposition 3.1. Given a valid ILS for a network G, it remains valid
after cyclically shifting the labels of all nodes and links by a con-
stant.

- 16 -

Sdppose we shift the labels of all nodes and links by a constant
e, i.e., node 1 gets label 1i'=(i+c)mod N. We need to show that
SEND(i,j,m) is valid iff SEND(i',j',m) is valid. Let SEND(i,j,m) fol-
‘ . for s = t, oss,t<k.
Then the sequence io'=i"11"fff’ik'=j' is such that is'tit' alsof
Now, is +> is+1 iff j€[a,B) at node is iff (asj<B)mod N iff (a+csj+e <
B +c) mod N iff j'€[a',B') at node is' irfe is'*is+1'.
Thus the new scheme is valid iff the old one is. O

lows the path io=i;i1;;;;;1k=3; where 1 =1

We first consider the problem of incremental insertion of a node
to an existing network with a valid ILS. We distinguish two possibili-
ties: either a node is inserted in a network by a single 1link (unit-

1ink insertion) or by multiple links (multiple-links insertion).

Proposition 3.2. There exists a simple algorithm for updating a valid

ILS after uhiﬁ—link insertion of a node for every network G with a
valid sequential ILS.
Proof. |

Sﬁppose a new node x is to be inserted ("appended") to node 1 in
G. Cyclically shift every node and link label until node i becomes
node N-1. This is done by adding the constant (N-1-i) mod N. The new
scheme remains valid by Proposition 3.1. Label the new node x by N.
After it is connected to node N-1, label 1link(N-1,N) by N and
link(N,N-1) by O.

Recall that éequentiality means that at each node j there exists a
link labeled (j+1)mod N. We now argue that the new ILS is still valid.
We consider the followihg cases. ‘

(1) First we claim that SEND (i,j,m) delivers a message properly
for 1i,je[o,N-1]. SEND (i,j,m) already functions properly prior to
addition of the hew node. We only need to make sure that when a mes-
sage passes through node N-1, it does not accidentally get routed to
new node N and causes a oycle; Let o be the minimum 1link and B the
maximum 1link for node N-1 before insertion of the new node. Any node
j€[B8,a) will get routed via link B then. With the insertion of the new

L17;

node and link; any j such that BSJSN41 will still get routed via link
B, but those j with oSj<a will be sent via link N to node N, since je
[N,a). This would normally cause a cycle, since node N will pass the
message back to node N-1 again, except for the saving grace of sequen-
tiality. The ILS being sequential implies that (N-1)+1 mod N=0 exists
as a 1link originally at node N-1. Thus a=o0, and j€[N,0) implies that
the only message that will get sént to node N is exactly that intended
for N.

(11) Next, we claim that SEND (i,N,m) routes messages properly for
ie[o,N-1]. N belongs to the interval [8,a) where B is the maximum link
and a the minimum at i. But N-1 also belongs to this interval, since
BSN-1 originally. Thus all messages meant for N will get sent eventu-
ally to N-1 first‘and from there it is just an extra hop to node N.

(iii) Finally, we claim that SEND (N,i,m) routes message correctly
for i€[o,N-1]. All messages are first delivered to node N-1 and by
(i), node N-1 delivers messages to node i properly. o

Note from the proof of proposition 3;2 that the updated ILS 1is again
sequential.

Corollary 3.3. A DFS scheme remains valid after a unit-link insertion
of a node.

The DFS scheme is sequential. Now apply proposition 3.2. O

In the above construction, the presence of the link 0 at node N-1
is crucial for the scheme to be cycle4free; For the above construction
to work for the case of multiple-links insértion of a node; we need to
make sure that at each node to which the new node is to be connected
there is a link 0 also.

Definition. An ILS is zero-biased if every node has a zero link, with
the possible exception of the zero node itself.

Note that the optimum scheme for a grid, discussed in section 2,

- 18 -

satisfies this property: We do not need such a strong condition for
unit-link insertion since sequentiality provides us with the =zero
link, and sequentiality is preserved under cyclic shift. Unfor-

tunately such is not the case for zero-biasedness.

Proposition 3.4. The property of zero-biased of an ILS for some graph

G 1is not pfeéerved under arbitrary cyclic shifts unless G is a com-
plete network.

Suppose each node has a zero link except node 0. After a shift by
1, we still have 0 1links. Therefore each node must have a link
labelled N-1 to begin with, except at node N-1. Continuing the shifts,
we conclude that each node must have ali the link-labels except
itself. Thus G must be complete. o

The above proposition suggests that we cannot just insert a node
anywhere with arbitrary links using the previous construction. Since
we cannot do an arbitrary cyclic shift on a general graph without
fouling the zero-biased condition; we require that one of the nodes to
which the new node is to be connected must be the node N-1.

Proposition 3.5. There exists a simple algorithm for updating a valid

ILS after multiple-links insertion of a node to the specific node N-1
in a zero-biased ILS.

Label the new node N. Connect all the necessary links. Label each
1ink(i,N) by N and 1ink(N,i) by i. '

The presence of a zero link at every node guarantees that the only
message that will get routed to new node N is exactly that intended
for N. Thus SEND(i,j,m) will function correctly for i,j€[0,N-1] as in
Proposition 3.2. SEND(i,N,m) for i€[0,N-1] will either get routed to
node N-1 firstAand then to N or it will take a short cut up the new
frond 1links. SEND(N,i,m) will traverse any one of the frond 1inks
first and then to its final destination. o

;192.

Corollary 3.6. A DFS scheme for a Hamiltonian graph allows multiple4

links inserﬁidn of a node to the end node of the graph:
A DFS scheme for a Hamiltonian graph is zero-biased. Now apply
proposition 3.5. o

In general; it is not clear how one can insert a node in the
unit-1ink or multiple-links case arbitrarily and still "preserve" an
ILS.

We turn now to the problem of connecting different ILS networks

together to form a larger ILS network. Suppose G, and G2 are two net-

1
works with their own valid ILS. They are to be connected by a single
link between two specific nodes. Basically we apply the same idea as
for unit-link insertion of a node, but with a slight modification of

one network since it is no longer a "single" node.

Theorem 3.7. There exists a simple algorithm for constructing a valid
ILS for the unit-link connection of two arbitrary networks with
sequential ILS.

Lét G1 and G2 be graphs with a valid sequential ILS of N nodes and

M nodes respectively. Suppose G, is to be connected to 02 by adding a

1
link from node i in G, to node j in G

1
schemes as follows.
(1) Relabel G1 by cyclically shifting node i to N—1; by adding
(N-1-i)mod N to all node and link labels.
(ii) Relabel G2 by cyclically shifting node j to 0, and then add N

to all node and link labels. This is to ensure that the labels of G1

2; Now "connect" the labeling

and G, are now disjoint.

(iii) Relabel all links with value N to O in G2, except at node N.

(iv) Connect G, and G, via the link between node N-1 in G, and
node N in G,. Label 1link (N-1,N) by N and 1link (N,N-1) by O.

We now argue that the new ILS is valid for the larger graph. Pro-
position 3.2 guarantees that G functions properly under the new

. L ,
scheme and that all messages for j€[N,N+M-1] are routed via node N-1

- 20 -

to node N. We check that G, functions properly also. Basically the

same argumeht as used in Proposition 3.2 applies to G, in the interval

[N,N+M-1]. The only exception is Rule (iii) abovelZWe need to check
the effect of changing link N to O. SEND (i,j,m) Cfunctions properly
for 1,j,6[N,N+M-1]. Everything functions as before with the possible
exception of those hodes that got their links changed from N to 0.
Before this change N is the minimum link. Since there is no longef any
node in G2 numbered 0 through N-1, changing link N to 0 has no effect
in the routing procedure within G2. At node N, let B be the maximum
link. By sequentiality of 62 there is a link labeled N+1, which is the
eriginal minimum 1link before connection. For any je€[N,N+M-1], if j€
[8,N+1) then je[B,0), as all j2B still traverse via 1link B. Any i€
[0,N+1) will traverses the 0 link, as desired. The exception at rule
(iii) concerning not changing link N to 0 at node N, handles the spe-
cial case when there is a link at N labeled N. We cannot change it to

0 since there is already a 0 link to G,. This causes no problem in

validity though. Finally, SEND(j;i;;j routes messages properly when
JE[N,N+M-1] and 1€[0,N-1]. Let B be the maximum link and o the minimum
link (a*N, by Rule (iii)) for each node j in Gz; Either i€[B,a), in
which case, the message for i1 is routed in the direction of node N
since a#N, so a>N and NE€[B,a). Or i€[0,a), in which case NE[0,a) also,
80 the message is again routed via N. This is always the case; because
if the original minimum link is labeled N, Rule (iii) changes it to O,
so that 1e[o;a)l Eventually the message arrives at node N and passes

on to G, via the 0 link. The scheme is thus valid. o

We note that the above unit-connection scheme preserves index,
sequentiality and optimality. Hence it is ideally suited for connect-
ing similar ILS together to form a larger ILS with the same property;

4. APLLICATIONS TO DISTRIBUTED ALGORITHMS. In a distributive network,

processors can only communicate directly with their neighbors and have

only very limited knowledge of the topology of the whole network. Many
algorithms have been designed to solve distributed control and syn-
chronizations problems on specific networks such as rings; trees,

- 21 -

grids, etec.

A netwérk with a valid ILS has some built-in knowledge of the glo-
bal network. For instance, the directions of the maximal 1ink and
minimal link'add a form of global orientation; which may be lacking in
a general distributive network. One would think that this will provide
an extra advantage in solving Some distributive problemsQ

In this section we show that this is indeed the case for distribu-
tive problems such as leader-finding, the generation of spanning
trees, and the counting problem. We do not assume the ILS to be neces-
sarily normal, so that there 1s no a priori knowledge of the existence
of a zero node. The only information available at each node are the
link-labels. As is customary in asynchronous distributive algorithms;
the efficiehcy of the algorithms is measured in terms of the number of
messages exchanged and we assume that there are incoming4message
queues for each node so that messages arrive in the order in which
they were sent over a link. We consider only the ring network and the
general network.

(a) The leader-finding or Election problem. Consider a network in

which each node has a unique identification number. The problem is to
design an algorithm by means of which any active node can 1incite an
election and the node with the maximum identification number will
learn that it is the leader.

Let G be a network with'N nodes that has a valid ILS. We shall
find it advantageous to use an ILS with Index 2. This is hot a severe
restriction as an optimum scheme or any DFS scheme easily provides wus
with a scheme of Index 2. As the ILS may not be normal and the zero
node may be non-existent, wé cannot use the naive approach of having
all the nodes send their identities down to the zero node. To do so
may cause a fatal loop. Another approach is needed. The idéa is ¢to
pass the probing message via the maximum 1ink.

We first make a distinction between two kinds of meSsages; One is
the regular message to awaken the neighbors that an election is going
on. The other is the probing message that contains an awake message

with the identification number of the sender. This second probing

;22;
message is the one to be sent via the maximum link.

Lemma 4.1. In a ring network with a valid ILS of Index 2, if every
node sendé a probing message via the maximum link then either the max-
imum node or one of its neighbors must receive eventually 2 probing
messages.
Proof.

Lét the maximum node be k. Then node k must receive at least one
probing message from its neignbors since we have a valid scheme. It is
possible that it receives probing messages from both of its neiéhbors,
in which case we are done. Suppose node k receives only one probing
message: The probing message'must have come from one of its neighbors;
say the left one. As the Index of the scheme is 2; node k must send
its probing message‘to the left neighbor (so that it would get back in
the next hop); This means that the right neighbor receives no probing
message from kland it must have sent its probing message to the node
away from k. As the scheme is valid, the probing message from the
right neighbon must eventually arrive at k if it were to be passed all
the way around the ring: It follows that the node preceding the left
neighbor must send its prdbing message to the left neighbor as well.

The left neighbor thus receives two messages: o

Theorem 4.2. There is an algorithm for locating the maximum node in a
ring netﬁonk of N nodes with a valid ILS of Index 2. This is achieved
in at most 2N+1 exchange of messages; ‘

The algorithm for finding the maximum node is as follows.

(i) Every node, if awake, sends a probing message containing its
identification number via the maximum link to one of its neighbors;
and a regular awake message to the other neighbor.

After a while; a node either awakes spontanéously and realizes
that an election is going on or will eventually be awakened by its
neighbors; so that eventually the whole ring will participate in the
election. Each node will eventually receive two awaken messages; regu-

lar or pnobing: The total number of messages exchanged is 2N.

;23;

(11) The node(s) whose awaken messages are both probing (by Lemma
4.1, there is at least one, either the maximum node or its neighbor or
bdth) will process all three identification numbers (the two incoming
values and its own) and compute the maximum,

If the maximum agrees with its own identification number then the
node knows that it is the leader. If not; then its neighbor must be
the leader and it sends an extra meSsage next door via the maximum
l1ink to notify the neighbor that it is indeed the leader. The upper
bound follows. o ‘

In a general network, we do not have an equivalent result to Lemma
4.1. Nothing much can be said about the exact number of probing mes-
ségés received by a node. However; we do have an equivalent result to
Theorem 4.2.

Theorem 4.3. There is a distributed algorithm for locating the maximum
node in 4a' general network of N nodes given a valid ILS of Index 2.
This is achieved in at most 2E+N exchanges of messages, where E is thé
total number of edges.

The algorithm for locating the maximum node is as follows.

(1) Each node, if awake, sends a probing message with its identif-
ication number over the maximum link to one of its neighbors; and reg4
ular awake messages to all the other neighbors;

As in the ring network; eventually every ndde will be awake and
participate in the election. Each node will also eventually receive a
total number of messages equél to the degree of the node. The total
number of messages exchanged is 2E. '

(ii1) Each node waits till it has received a message from all of
its neighbors; It then processes all the incoming identification
numbers plus iﬁs own identification number to find the maximum. To
prepare for the next step consider the (directed) graph G' obtaihed by
taking at every node the edge of maximum label. G' essentially is a
tree rooted at the maximum node; with a single cycle of length 2 at
this root.

-~ 24 -

(iii) Each node now sends the computed maximum to the neighbor via
the maximum link again; This step takes another N messages total. The
node that receives its 6wn identification number back again as a 'pro¥
cessed maximum declares itself the leader.

The algorithm is correct, as there can be only one cycle, and this
is between the maximum node and one of its neighbors; because the
scheme is valid and the Index is 2. The only node that could have
received its own identification-number back in two passes as a pro-

cessed maximum must be the maximum node. o

The role of the index is crucial in the above algorithms; As a

curiosity, in a ring network we can only have two kinds of indices.

Proposition 4.4. For any ILS that is valid for a ring network of N
nodes, the Index is either 2 or N.

Sﬁppose the index is not 2. Consider a node i of index greater
than 2. Let node i send a méssage to itself, and say it is sent via
one of its neighbors x. Now x must not send the message back to i,
otherwise the Index ié 2. So x must pass the message down the ring to
its other neighbor y; Obsérve that y cannot pass the message back to x
again; otherwise we'have a cycle and the scheme becomes invalid. Con-
tinuing this process; the message must traverse the whole ring before
it ever gets back to 1 again. Thus the index of i and, hence, the
index of the ring must then be N. o

(b) The Counting Problem. In this problem the task is to count the
number of nodes in the network and to let every node know the result.

We first need to make sure that there are some special nodes thét
can initiate the process of counting which will culminate at the max-

imum node.

Proposition 4.5. In a general graph of N nodes (N23) and with a valid
ILS of Index 2; there is at least one node that receives no probing

message if every node sends a probing message via its maximum link.

;25;

If we 1look at the paths generated by the links the probing mes-
sages traversed, there can only be one cycle, as the scheme is valid.
This eycle must be of length 2 and centers around the maximum node and
one of its neighbors. As there are more than two nodes in the graph,

there must be an end-node somewhere. o

Theorem 4.6. There is a distributed algorithm for the counting problem
in a graph Qith a valid ILS of Index 2 that takes at most

(1) UN-1 messages in a ring, and

(ii) 2E+3N-2 messages in a general graph;

Proof . |

The algorithm for the counting problem that applies to both rings
and general graphs is as follows.

(i) Find the maximum node by the previous algorithms, cf. Theorem
4.2 and Theorem 4.3. This takes at most 2N+1 and 2E+N messages for the
ring and the general graph respectively. Furthermore, each node must
keep track of the number of probing meésages it received in the first
pass.

(ii) By Proposition M:s; there is at least one node that receives
no probing message; Use all these nodes as initiators for the count-
ing, by letting them pass the value 1 down their maximum 1ink.

(i1i) Each node except the maximum node waits for all the incoming
messages (which number it knows from part (1)), finds the sum,
increases the sum by 1 and passes the sum down its maximum link.

(iv) Finally; the maximum node processes all the finaln sums;
increases it by 1 and declares the size of the grath

If every nodé needs to know the result; the maximum node will then
pass the result down the "reverse" maximum links to each node.

The algorithm for the ring uses (2N+1)+(N-1)+(N-1)= UN-1 messages
and for the general graph (2E+N)+(2N-2)= 2E+3N-2 messages. O

(¢) The Distributed Spanning Tree Problem. In the distributed spanning

tree problem we need to construct a spénning tree and let each node
know which adjoining links belong to the spanning tree.

- 26 -

Let G be a network with a valid ILS of Index 2. Then by Proposi-
tion 4.5, the maximum links form edges in a spanning tree, as there is
no cycie (except at the maximum node but this is of no consequence; as
it is of length 2). This step requires no message exchange whatsoever.
To locate the root'of the tree is to locate the maximum node; and the
results are provided by Theorem 4.2 and Theorem 4.3. We thus have the

following result.

Theorem 4.7. There is a distributed algorithm for generating a span-
ning treé Aand locating the root of the tree for a graph of N nodes
with a valid ILS of Index 2 that requires

(1) at most 2N+1 exchange of messages in a ring, and

(ii) at most 2E+N exchange of messages in a general graph;

The above results demonstrate that a graph with a valid ILS of
Index 2 does have an extra edge on solving some distributive problems;
' In particular for leader finding, the bounds of O(N) messages for a
ring and O(E)+O(N) messages for a general network with a valid ILS of
Index 2 compare very favorably with the bounds of 0(NlogN) messages
for leader-finding in a ring with no ILS (see [1] for an overview) and
of O(E)+0(NlogN) messages for a general graph with no ILS (see [2]).

5. Conclusions and open problems; We have shown that valid interval

1ébeling schemes (ILS) can be méde optimum for such common graphs as
trees; rings, complete graphs; complete bipartite graphs and most
grids; Furthermore, these schemes can be joined together in a certain
way té form schemes of larger networks that remain optimum; Thus one
can keep on building networks using this scheme. We alsé introduced
some "nearly optimum" schemes such as neighbdrly schemes and
multiple-labeled schemes, and showed that for any graph there exists a
2-labeled neighborly scheme. Finally; we show that ‘networks with an
ILS have advantages over'networks with no ILS from the viewpoint of
designing distributed algorithms; Not only is an ILS much more com-
pact than the ordinary routihg table schemes, but problems such as

leader-finding, counting and distributed spanning-tree construction

;27;

can be resolved very fast in O(N) exchanges of messages; instead of
the traditional O(NlogN) bounds, in rings and O(E+N) instead of
O(E+NlogN) in general graphs.

There are quite a number of unresolved problems left. We give a

partial 1list.

1.

10.
1.

12.

13.

Is there an optimum, valid interval labeling scheme for any arbi-
trary graph? If not; what is the smallest k such that there exists
a k-labeled optimum scheme?

Is there an optimum, valid interval labeling scheme for row~-column
wrap—around grids?

Is there a neighborly scheme for any arbitrary graph?

Define a k-neighborly scheme as a scheme that delivers messages to
a node. of distance k in k-hops. Thus a neighborly scheme is just
1-neighborly. ‘

Is there a k-neighborly scheme for any graph with k21?2

If not; i3 there a k-labeled scheme that is k-neighborly?

Can every scheme be made sequential, i.e., given a valid ILS is
there an equivalent sequential ILS? o

Can we gracefully insert a node in the unit-link case without
assuming sequentiallity?

Is there a way of inserting a node in the multiple;links case
without the stringent condition of zero-biasedness?

Can networks with ILS be gracefully connected in an arbitrary way
with multiple links?

Study the problem of maintaining a valid ILS under the deletion of
1inks and nodes.

Can the availability of a valid ILS be used to detect such graph
properties as cut-points , bridges, etc., fast?

What are the properties that are preser#ed under cyclic shifts? We
already have optimality, sequentiallity, and neighborliness, but
not zero-biasedness.

What other distributed problems can be solved fast by assuming the
availability of an ILS?

:28;
VI. References.

[1] Bodlaender, H.L. and J. van Leeuwen, New upperbounds for decen-—
tralized extrema—finding in a ring of processors, Techn. Rep.
RUU-CS-85- 15, Dept of Computer Science University of Utrecht
Utrecht, 1985.

[2] Gallager, R. G., P.A. Humblet and P.M. Spira, A distributed algo-
rithm for minimum—weight spanning trees, ACM TopLAS 5 (1983)
66-77.

[3] Santoro, N. and R. Khatib, Routing without routing tables,
Tech. Rep. SCS-TR-6, School of Computer Science, Carleton
University, Ottawa, 1982. Revised version: Labelling and Impli-
cit routing in networks, Comp.J. 28(1985) 5- -8.

[4] Tarjan, R.E., Depth-first search and linear graph algorithms, SIAM
J.Comput. 1 (1972), 146-160.

[5] Van Leeuwen, J. and R.B. Tan, Routing with compact routing tables,
Tech. Rep;-RUU—CS¥83¥16; Dept. of Computer Science, University
of Utrecht, Utrecht, 1983. Revised version: Computer Networks
with compact routing tablés (to appear);

