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FINDING GRID EMBEDDINGS
WITH BOUNDED MAXIMUM EDGE LENGTH
IS NP-COMPLETE¥*

H.L. Bodlaender

Department of Computer Science; University of Utrecht
P.0. Box 80.012, 3508 TA Utrecht, the Netherlands.

Abstract. The following problem is proven to be NP-complete for every
fixed k22: Given a graph Gé(V;E); is there an injective mapping f of V
to a two-dimensional grid, such that for every edge (x,y)€E, the dis-
tance between f(x) and f(y) in the grid is at most k. The same problem
is also NP-complete for mappings to d-dimensional grids, with d23, for
all fixed k1.

1. Introduction. An embedding of a graph G=(VG;EG) in a connected
graph H=(VH;EH) is an injective mapping of V., to V.. The dilation cost

G H
(abbreviated dcost) of an embedding £ of G in H is the maximum dis-

tance between the images of any pair of adjacent nodes in G. Problems
concerning graph embeddings arise in a natural way in severai problem
areas; for instance in the theory of VLSI-layouts, or in the organiza-
tion of distributed computations on a network of processors. For an
extensive list of references on embeddings and their applications; see
for instance [4].

In this note we study embeddings in grids. Let 79 - (Vd;Ed) be the

d-dimensional integer grid : v9 = {(x1;;::;xd)|w’i; 151sd: x, € z},
F - PR d o .

Edo(((x, s evanX )y (Yeveeny )| £ | x,-y,|=1}. Note that if one wants
prereXaly Wy IR B L

to find an embedding of a graph into Zd with minimal decost, then one

can restrict oneself to embeddings in a finite subgraph of Zd;

*This work was supported by the Foundation for Computer Science
(SION) of the Netherlands Organisation for the Advancement of Pure
Research (ZwO).
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We consider the problem to determine efficiently, for any speci-
fied integer k; whether a given graph G can be embedded in Zd; with
dilation cost at most k. We assume the reader to be familiar with the
theory of NP4comp1eteﬁess (see Garey and Johnson [2]). For d=1 the
problem is the well-known BANDWIDTH problem. '

[ BANDWIDTH]

Instance : Graph G, integer k

Question : Can G be embedded in a line (i.e. Z' or a subgraph of

Z1); with dcost at most k? -

Papadimitriou showed in 1976 that BANDWIDTH is NP-complete [8,2].
Garey, Grahor, Johnson and Knuth [1,2] showed that BANDWIDTH stays
NP-complete, even if G is rectricted to be a tree with all node of
degree 3 or less. However, if we fix k and let it no longer be a part
of the instance of the problem; then there exist algorithms that solve
the problem in polynomial time (Saxe [9], Gurari and Sudborough [3]).
For d=2, the problem becomes the following: |

[EDGE LENGTH]

Instance : Graph G, integer k

Question : Can G be embedded in 22 with d-cost at most k?
Miller and Orlin [7] proved, with a reduction from BANDWIDTH, that the
EDGE LENGTH problem is NP-complete. However, unlike the BANDWIDTH
problem, we cannot obtain polynomial time algorithms for EDGE LENGTH,
when we fix k (unless P=NP). Consider the following problem:

[k-EDGE LENGTH]

Instance : Graph G

Question : Can G be embedded in 22 with dcost at most k?
In this note we will prove that Kk-EDGE LENGTH is NP-complete, for
every k22. In section 4 we consider a d-dimensional variant of k-EDGE
LENGTH. We argue that d-DIMENSIONAL k-EDGE LENGTH is NP-complete, for
every fixed k21 and d23. All known results on the complexity of d-
DIMENSIONAL (k-)EDGE LENGTH'are summarized in fig. 1.1.



dimension | Problem name k=1 |k fixed,22 k variable
d=1 BANDWIDTH P P NPC
d=2 EDGE LENGTH ? NPC NPC
dz3 d-DIM. EDGE LENGTH NPC NPC NPC
-

fig.1.1. The complexity of d-DIMENSIONAL k-EDGE LENGTH
P
NPC

?

pﬁoblem is solvable in polynomial time

problem is NP-complete

unknown whether problem is in P and whether it is NP-complete
(Results can be found in [1,3,7,8,9] and this note.)

2. Notations and definitions. For a node x = (x1;x2) e V2 we write
kx=k(x1;x2) = (kx1,kx2); For a set of nodes V.C V2 we write kv= {kx|x
€ V}. Notice |V|=|kv]|.

. « _
Let X,,X,,¥,,Y, € Z. We write [x1,y1] [x2,y2] {(zl,zz) e v |,x15z

d 1

’ d .
sy, A x25z23y2}f For d21 we write [x1,y1] = {(z1,f.,zd) ev | vi,

<A, <
18igd: x1-zi$y1}.

For x,y € V2 we denote the distance from x to y in the graph 22 by
d(x,y), i.e. d(x,y) = |x1—y1| + |x2-y2|. For a set of nodes Vg V2 we
let [V]k denote the graph with nodes V and edges between nodes that

have a distance of at most k.

Definition. Let V g;V2 , k € N . [V]k = (V,Ev k] is the subgraph of
. . . . R ’
22 with EV K = {(x,y)lx,y e v, x =y, d(x,y)s k}.

For V V2 one denote [V] = [V]1. [V] is called the subgraph of Zz,

induced by V.

Two embeddings f, f' of a graph G in 22 will be called equivalent if
one can be obtained from the other by applying one or more of the fol-
lowing elementary isometries :

(i) translation in Z° (g((x1,x2)) = (x1+a;x2+b), for all (x1;x2) e
V2, and some given a,b € Z).
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(ii) reflexion along the x1—axis (g((x1,x )) = (x1, X ), for all
(x,,%,) € V2,

(iii) reflexion along the x,-axis (g((x1,x )) = (- x1,x ), for all
(x1,x ) e v ).

(iv) reflexion along the line X=X, (g((x1,x ))= (xz,x ), for all
(x1,x ) € v2 ).
So f and f' are equivalent, if one can write f' = g o £, with g a com-
position of the functions, given in (i) - (iv). We say there is a

unique embedding of G in Z2 with dcost s k; iff thehe exists an embed-

ding of G in 22 with dcost $ k, and any two embeddings of G in 22 with

dcost sk are equivalent. (These definitions are taken from [7].)
We will make use of following problem:

[HAMILTONIAN CIRCUIT IN A GRID GRAPH]
Instance : Set of nodes V & V2

Question : Does [V] contain a Hamiltonian ecircuit?

HAMILTONIAN CIRCUIT IN A GRID GRAPH was proven to be NP-complete by
Itai, Papadimitriou and Szwarzfiter [5].

3. NP-completeness of k-EDGE LENGTH.

Theorem 1. For every k22: k-EDGE LENGTH is NP-complete.

Let k22 be given. It is obvious that k-EDGE LENGTH is in NP. We
can limit ourself to embeddings of graphs G=(V,E) on the subgréph of
22; induced by the set of nodes [o;|v|-1322 One can guess such an
embedding and then check in polynomial time whether the dcost of this
embedding is at most k. To prove NP4comp1eteness of k-EDGE LENGTH we
will reduce the HAMILTONIAN CIRCUIT IN A GRID GRAPH problem to it.

Let a set of node V < V2 be given; We assume, without loss of gen—
erality that min {x1|3x (x1,x ) € V} = min {x2|3 X, (x1,x ) € V} = 0.
Let m = max {x,|3 X, (x ,x ) € V} and n= max {x2l3 X (x1,x2) e vl.
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Define W = [-Uk,mk+4k] * [-Uk,nk+4k] \ kV. Note that every node of kV
is a member of [0,mk] * [O,nk].

Lemma 1.1. [W], has a unique embedding with dilation cost sk.

The "trivial" embedding g of [W] in Z° with g((x1;x2)) = (x1;x2)
has dilation cost k. Now suppose another embedding f of [W]k in 22
with dcost sk is given.

2

Every node x € V2 has exactly 2k2+2k nodes with distance at most k to
it in z°. For an example see fig. 3.1.

—4

™ 4
D
~§

<
<
-
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<

Figure 3.1. A node (X) and the nodes (0) with
distance at most 3 to it.

This means that every node x € W has’at most 2k2 + 2k adjacent nodes
in [W]k; We call x € W a diamond centre (as in [7]), iff x has exactly
2k% + 2k adjacent nodes in [w1k; i.e. for all nodes y € v2 . d(x,y) =

k =>y € W. Let X, y € W be diamond centres, x * y. The number of nodes

that haveAdistanee S ktoxand toy in ZZ; is eqﬁal to the number of
nodes that are adjacent to x and to y in [W]k; This number is 2k>-2,
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if x and y are adjacent, or if x and y are one diagonal step away;

(1.e. the euclidian distance between x and y is v2) in 22, see fig.
~ 3.2.a and 3.2.b.

fig. 3.2.a
O = node with distance s3 to x

0 = node with distance $3 to y

(9 = node with distance $3 to x and y.
x and y are neighbours; and there are
2.3%2-2=16 nodes that have distance

<3 to x and y.

D
J

oD
A%
Par W e fig. 3.2.b
N7 g 3.2.
A N O = node with distance =3 to x
L7 AR
A A N o = node with distance <3 to y
'\ X 4 R ’
4 11 (© = node with distance $3 to x and y.
q A x and y are one diagonal step away
4 Y and there are 2.3°-2=16 nodes that
N A : .
vy Y have distance $3 to x and y.
o )

We say a node % 18 near to y, if x and y are neighbours or x and y are
ohe diagonal step away in Z°. See fig. 3.3.

DM N

VYV VU

2\ LD .Y . . :

Q— 9% T fig. 3.3. A node(x) and the 8 nodes that are near
DN O to it.

VbV Y
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If x and y are not near; then the number of nodes with distance sk to

x and to y in 72 is less than ok%-1. This means for diamond centres X,
y, that if x is near to y, then f(x) must be near to f(y) Now observe
that, if a node is a diamond centre, and the 8 nodes that are near to
it are also diamond centres, then, when we apply f to the subgraph of
72, induced by these 9 nodes (see fig. 3.4.) we must obtain a subgraph

of 72 isomorphic to it. This eubgraph‘we‘céll'ﬁg.

Write W = {(x1,x ) € WI —3ka $-k-1 or ;3ka $-k-1 or mk+k+1$x Smk+3k
or nk+k+1$x snk+3k}. Every node in W is a diamond centre. (Recall
that w=[-4k, mk+uk] * [ -4k, nk+4k] \ kv, and kv cfo,mk] * [o, nk] .) When
we apply f to a subgraph of [W ] isomorphic to G9 then we obtain a
subgraph of 22, again isomorphic to Gg. This means that [f(w )] is
isomorphic to w . One can apply one or more of the 4 elementary opera-
tioni, given in section 2, such that one obtains an £', with \Kx1,x2)
€ W £ ((x1,x )) = (x1,x ). With induction one now can prove that
f! ((x1,x )) = (x1,x ) for all (x1,x ) € W. Hence f'=g. O

Now choose an arbitrary node z=(z1;zz) € V. Let the graph G consist
of:

- the graph [W] »

- a cycle with |V| nodes v°, v1, cees v|v|—1; (so there are edges
vi, y(1#1)mod |V|), for osis|V|-1.)

~ one edge between (kz -1,kz ) and v . The resulting graph G is con-
nected and fulfils the following property.

Lemma 1.2. G can be embedded in Z> with dcost § k, if and only if [V]
has a Hamiltonian circuit.



Proof.

Suppose [V] has a Hamiltonian circuit. We can obtain an embedding
f with dcost S k as follows: Number the successive nodes on the Hamil-
tonian circuit yo;y1;y2;:;;;ylvl_1; with yo=z. Now let
£Q(x,%,))=(x,,x,)  and e(vi)-kyl., It 1is easy to check that f is an
embedding of G with dcost k.

Now suppose f is an embedding of G with dcost $ k. f restricted to
W is an embedding of [W]k with dcost $ k. Lemma 1;1; shows that we
can assume, without loss of generality, that f((x1,x2))=(x1,x2) for
all (x1;x ) € W. We now prove, with induction that for every vl in the
cycle £(v') € kV. £(v°) must have distance s k to (kz1-1;kz2); hence
£(v0) € [-k-1,mk+k] * [-k,nk+k] =£(v°) € kV. For all i < lv]-1, £vh
6 Vi [o.mk] * [o,nk] D£(vi ') @ [-k,mk+k] * [-k,nk+k] >e(vith) e
kV, which completes the inductive argument; Number the nodes in V y
oyl suen that £(v!) = ky'. one has
acevy, f(v(i+1)m°d |V|)) < k, 80 yi and y(i+1)mod|V| are adjacent.

1 |v|_1; in this order, form a Hamiltonian

0
’

Hence the nodes y°,¥
circuit in [V]. o

, eeesY

From lemma 1.2., the NP-completeness of HAMILTONIAN CIRCUIT IN A GRID
GRAPH and the fact that G can be constructed in time; polynomial in
the size of V, it follows that k-EDGE LENGTH is NP-complete. o

4. Final remarks. The result of section 3 can be generalized to
higher dimensions. One can obtain without much difficulty the follow-

ing result, similar to theorem 1:

Theorem 2. Let k 2 1, d2 3. The following problem is NP-complete:
[ d-DIMENSIONAL k-EDGE LENGTH]
Instance: Graph G
Question: Can G be embedded in Zd with dcost at most k?

Proof.

We will only give a very brief sketch of the proof: Let VS;V2 be
an instance of HAMILTONIAN CIRCUIT IN A GRID GRAPH, and suppose
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v s;[omm] . Choose W=[-lk, mk+ik19 \ {(kx1,kx2,o,...,o) e v |(x1,x ) €
V}. Similar to the proof of theorem 1, one can show that every embed-
ding of [w] in Zd is isomorphic to the embedding with f(x)=x. Again
add a cycle with |V| nodes to [w] , with one node of the cycle adja-
cent to (kx -1 kxz,o,...o) for a certain (x1,x ) € V. The graph G so
obtained again can be embedded in Zd with dilation cost S k if and
only if [V] contains a Hamiltonian circuit. o

Note that we can also take k=1, if the dimension is 3 or higher. For
the 2-dimensional case, the complexity of 1 -EDGE LENGTH is an
interesting open problem; If we restrict the grid to some given size
n,m the problem is NP-complete.

Dgfinltion. Let the nxm grid GRnxm = (anm nxm) be the subgraph of

Z°, induced by the set of nodes V___ = {(x1,x )|on $n-1, osx Sm—1}

Theorem 3.1. The following problem is NP-complete:
Instance: Graph G, n,m € N'
Question: Can G be embedded in GR . with dcost at most 1, i{e% is
G isomorphic to a subgraph of GRnxmq

The proof is similar to the proof of theorem 3 in [6] and uses a
reduction from 3- PARTITION It is essential in this proof that G does
not need to be connected. The problem stays NP-complete if one

requires that n=m; or if m is fixed to some constant 2 3.
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