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EMULATIONS OF PROCESSOR NETWORKS
WITH BUSES*

H.L. Bodlaender

Department of Computer Science, University of Utrecht
P.0O. Box 80.012, 3508 TA Utrecht, the Netherlands.

Abstract. Parallel algorithms are normally designed for execution on
networks of N processors, with N depending on the size of the problem
to be solved. In order that a parallel algorithm can be executed on a
concrete, fixed size network in practice, one can attempt to map
(simulate) the unrestricted network on the smaller network. For net-
vorks that use direct connections (links) between pairs of processors,
a suitable notion of simulation, termed emulation, was introduced by
Fishburn and Finkel [7]. We extend the concept to the realistic case
of networks that use buses, i.e. connections between arbitrary large
sets of processors, as well. Several emulations of the spanning bus
hypercube and the dual bus hypercube on smaller networks of the same

type are given.

1. Introduction. Parallel algorithms are normally designed for execu-

tion on networks of N processors, with N depending on the size of the
problem to be solved. In practice there will be a varying problem
size, but a fixed network size. The resulting disparity between algo-
rithm design and implementation must be resolved by simulating a net-
work of some size N on a fixed and smaller size network of a similar
or different kind, in a structure preserving manner. For networks that
use links, 1i.e. connections between pairs of processors a notion of

simulation, termed emulation was proposed by Fishburn and Finkel [7].

*This work was supported by the Foundation for Computer Science
(SION) of the Netherlands Organization for the Advancement of Pure
Research (ZWO).
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Independently Berman [1] proposed a similar notion. The interconnec-
tion structure of this kind of networks is generally represented by a

(possibly directed) graph.

Definition. Let G=(V6,EG) and H=(VH,EH) be networks of processors
(graphs). We say that G can be emulated on H if there exists a func-
tion f: VG + VH such that for every edge (v,v') € EG: f(v)=f(v') or
(£(v),f(v')) €& E,. The function f is called an emulation function or,

H
in short, an emulation of G on H.

Let f be an emulation of G on H. Any processor W € VH must
actively emulate the processors € f-1(w) in G. When v € f-1(w) commun-
icates information to a neighbouring processor v', then h must commun-
icate the corresponding information "internally", when it emulates v'
itself, or to a neighbouring processor w'=f(v') in H otherwise. If all
processors act synchronously in G, then the emulation will be slowed
by a factor proportional to max If_1(w)|.

Definition. Let G, H and f be as above. The emulation f is said to be
(computationally) uniform if for all w,w' € Vg: |f_1(w)|=|f-1(w')|.

Every uniform emulation f has associated with it a fixed constant ¢,
called: the computationfactor, such that for all w € VH |f-1(w)|=c. It
means that every processor of H emulates the same number of processors
of G.

In [7] it was observed, that an emulation f of G=(VG,EG) on H=(VH,EH)
induces a mapping f':EG*VH U EH in a natural way: f'((v1,v2))=f(v1)
irf f(v1)=f(v2) and f'((v1,v2))=(f(v1),f(v2)) iff (f(v1),f(v2)) e EH'

An extensive analysis of (uniform) emulations was made by Bodlaender

and van Leeuwen [3-6].

The given concept of emulation can be used for networks that wuse

links for communication (only). However, a realistic processor network
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can also use buses for communication. Theoretically, a bus connects an
arbitrary set of processors. An advantage of the use of buses is that
one can keep the diameter of the network (the maximum number of hops
needed to go from one processor to another processor) low, without
having a large number of connections per processor. In [9] one can
find a comparison between a number of different interconnection
schemes, including three networks with buses: the "global bus" (all
processors are connected to one bus), the "spanning bus hypercube" and
the "dual bus hypercube" (for definitions see section 4). In this
paper we extend the notion of emulation to networks that.use buses for
communication. In section 2 we show how to model the interconnection
structure of a network with buses by means of hypergraphs. Hypergraphs
appear to be a natural way to model networks with buses and allow a
formal reasoning about these networks without much difficulty. In sec-
tion 3 we extend the notion of emulation to hypergraphs, and define
the computation and communication cost of emulations. In section U we
give efficient emulations of the spanning bus hypercube and the dual
bus hypercube, which are the most common architectures of bus-networks

(ef. Wittie [9]). Some final remarks are made in section 5.

2. The hypergraph model. The interconnection structure of a network

that uses links for communication is usually represented by a (possi-
bly directed) graph. For representing the interconnection structure of
networks with buses the graph model seems to be inadequate. Each pro-
cessor connected to a bus can send messages via the bus, to some sub-
set of the processors that are connected to the bus. There cannot be
more than one message simultaneously on the same bus. Therefore it
does not seem appropriate to replace all the processors connected to
the same bus by a clique, (which would result in a graph with edges
between nodes v1,v2 iff there is a bus to which v1 and A are con-
nected). In this way one loses (possibly) essential information about
the interconnection structure of the network. For instance the global
bus network ("all processors are connected to a single bus") is

replaced by a complete graph. However a network with a 1ink Dbetween

each pair of processors allows much more simultaneous message traffic



than a global bus network does.

A natural model for networks with buses is provided by hyper-
graphs. A hypergraph is a 2-tuple (V,E), with V a set of nodes, and E
a collection of subsets of V (edges), with

(1) e EDe =0
(11) 2o e = V.
For the theory of hypergraphs, see e.g. [2]. The processors of the
network correspond to the nodes of the hypergraph, the (links and)
buses to the edges. We denote edges by a,b,c,d,e, and nodes by
v,w,X,y,z. If processor v is connected to bus b, then v € b, in the
hypergraph. Note that the hypergraph is not necessarily simple: multi-
ple busses can connect the same set of nodes. For an example of a net-

work with buses and its hypergraph, see fig. 2.1. and fig. 2.2.
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fig. 2.1,

A processor network with 9 processors and 6 buses



fig. 2.2. The éorresponding hypergraph with 9 nodes and 6 edges

It is possible that processor networks use a combination of 1inks and
puses. Links can be full-duplex (the two processors can send a message
to each other simultaneously), halfduplex (at most one processor can
send at a time) or simplex (messages can be send only in one direc-
tion). Half-duplex 1inks can be treated as buses with two connected
processors. To incorporate the other two types of links in our model,
we define "directed hypergraphs™. A directed hypergraph is a 2-tuple
(V,E), with V a set of nodes and E a collection of ordered pairs of
subsets of V (edges), with

(1) (d,e)€E=>(d$¢/\e¢d)
(11) U f{e|3d (d,e)EE}=V
(i11) U {d|3e (a,e)€E}=V.

Each node in V represents a processor, each edge (d,e) in E a communi-
cation medium. The nodes in d represent processors that can send mes-
sages via the medium; the nodes in e represent processors that can

receive messages via the medium. For a bus (d,e) one has d=e. Full-
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duplex links are replaced by two simplex links.

3. Emulations of hypergraphs. Unlike in the case of graph emulations,

a mapping of the nodes V, of a hypergraph G=(VG,EG) on the nodes V_ of

H
on

G

a hypergraph H=(VH,EH) does not immediately induce a mapping of EG

VH U EH’ Therefore we include the mapping of EG on VH U EH expli-

citly in the definition of an emulation.

Definition. Let G=(VG,EG), H=(VH,EH) be hypergraphs. A mapping f: VG

v EG > vH u EH is an emulation function (in short: an emulation)

of G on H, if and only if

(1) f(VG) [ VH’ and
(ii) For all veVG, e € EG’ vee:
f(e) € vy Sr(v)=f(e)

and f(e) € EH =>f(v)er(e).

Clearly, emulation is transitive. (If f emulates G on H, and g emu-
lates H on K, then g o f emulates G on K.) For (undirected) graphs
(seen as hypergraphs with each edge cardinality 2) the new definition
of emulation coincides with the old definition. Let f be an emulation
of graph Gs(VG,EG) on graph H=(VH,EH) (by the new definition), and
g If £((v,,v,)) € Vy, then f(v,) € £((v,,v,)) and
f(v2) € f((v1,v2)), so f(v1)=f(v2) or (f(v1),f(v2)) € Eg.

suppose (v1,v2) e E

Let f be an emulation of hypergraph G=(VG,EG) on hypergraph

H=(VH,EH). Any processor w € V, must actively emulate the processors

H
in f 1(w) N V.. Wvhen v er 1(w) NV, communicates information via

G G
a bus b to neighbouring processors XqpeeesXp € b, them w must either
communicate the corresponding information internally (iff w=f(b) €
VH), or communicate the information via bus f(b) to the processors

f(x1),.;.,f(xm),(1ff f(b) € EH).

To determine the factor by which the emulation "slows down" a com-
putation on the network we distinguish between the time needed for

computations inside the processors, and the time needed for
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communication between the processors. If all processors act synchro-
nously in G, then the time needed for computations will be increased
by a factor, proportional to max If_1(w) nvy

weVH

¢ |-

Definition. Let f emulate hypergraph G=(VG,EG) on  hypergraph

H=(Vy,E ). The computation cost of f is cc(f)= max [f-1(w) nvy

wevH

¢l

Definition. Let f be as above. f is computationally uniform, iff
ce(f)=|v,|/|vy|.

It means that for a computationally uniform emulation f, for every
processor w € V |f (w) N VG|= ce(f): every processor w in H emu~
lates the same number of processors in G.

The factor by which the communication time is slowed down can be

estimated by max |f_1(e)| (=the maximum number of buses a bus has to
e€E
H

emulate.) This factor can be 0, in the degenerate case that all pro-
cessors that can communicate with each other are mapped on the same
node. In general all processors can communicate with each other using
-one or more communication steps (i.e. the hypergraph is "connected"),
so if for an emulation f of a connected network G on a network H the
maximum is O, then f maps every node of G on the same node of H. In
general, there will be at least one eeEH, with £ (e) # d. The factor

max |f (e)| is obtained if we let each emulated bus b in E, use the
eCE
H

bus e=f(b) once every max |f_1(e)| timesteps. (The estimation is not
e€E
H

necessarily optimal, but in general it is.)

Definition. Let f emulate hypergraph G=(VG,EG) on- hypergraph

H=(VH,EH). The communication cost of f is comc(f) = max If-1(e)|.
eCE
H

Definition. Let f be as above. f is communicationally uniform, iff for
all e € Eg 1t (e)]= come(r).
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Again, computationally uniform, and communicationally uniform emula-
tions are transitive as relations. For directed hypergraphs, the

definition of emulation becomes as follows:

Definition. Let G=(VG,EG) and H=(VH,EH) be directed hypergraphs. f
VG U EG + VH U EH is an emulation function (in short: an emulation)
of G on H, iff

(1) f(VG) S Vy
(ii) For all v,w € VH e=(a,b) € EG, vea,weéb:
f(e) € Vy =>£(v) = £(w) = f(e)
and f(e) € EH =one can write f(e) = (c¢,d), with f(a) € e,
f(b) € d.

The definitions of computation and communication cost, and of computa-
tionally and communicationally uniform are the same for hypergraphs
and directed hypergraphs.

For graphs (seen as hypergraphs with each edge of cardinality 2) and
directed graphs (seen as directed hypergraphs, with each edge consist-
ing of an ordered pair of sets, each with one element) the definitions
of "computationally uniform"™ coincide with the old definition of
"(computationally) uniform" [3,7].

4, Emulations of common networks with buses.

4.1. Emulations of the spanning bus hypercube. The d-dimensional

spanning bus hypercube with width n has nodes, that can be seen as if
they lie in a nxnx...xn integer grid with dimension d. That is, each
node can be specified with d integer coordinates in the range
{0,...,n-1}, Each node is connected to d buses, each bus going in a
different dimension, connecting all the nodes whose coordinates agree
in all other dimensions.

Definition. The d-dimensional spanning bus hypercube with width n 1is
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d,n

the hypergraph SBd’n = (v, Ed’n), with v3? - {(x1,x2,...,xd) | wi,

151sd:  0sx,sn-1) and gdn - (e

i X,eesX eseX

1 i-1%141 arl
XysesesXy_goX  qreeesXy 60, ..0,n-1},15150}, with
e = { (XypeeesX, L 0X )X, .,ee0,%,) | 0Sx.3n }.
Xy e oXy 1%y 1 ee Xyl 1 i-1%1%149 d 1

An example with d=3, and n=U4 is given in fig. 4.1.

fi‘g - WJ -
F-dimensionel spammirg bBus Hypercube with width A,

The one-dimensional spanning bus hypercubes are the global bus net-
works. The spanning bus hypercubes with width 2 are very similar to

the cube networks. For an analysis of the emulations of the cube net-

works see [3].

One can emulate the d-dimensional spanning bus hypercube on the d-k-
dimensional spanning bus hypercube with the same width for any 1s<ksd-1
by a straightforward projection.

Theorem 4.1.1. The function f£:v3:0y gd/0 5 yd K0y Ed—k’n, given by
- f((x1,...,xd)) = (X1""’xd—k) and

- f(ex1...xi_1x1+1...xd,i) - ex1...x1_1xi+1...xd_k’1 1ff isd-k and
} f(ex1...xi_1xi+1...xd,i) = (Xpeeaxyy ) IEF D>d-k
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is a computationally and communicationally uniform emulation of SBd'n

on SBd-k’n (d,k,d-k,n€ N+), with cc(f)soomc(f)ank.
Proof.

It is clear that £(V9"™) < V9" consider node x=(x,,...,x,) @
Vd’n and edge e=e e Ed’n. If isd-k then f(e) €

XieeoX, X, .eaeX i

d=-k.n 1 i-17i# d

?
E , and f(x)=(x1,...,xd_k) e X, X ox 1 f(e). 1If

dek.n et B R B3 Il T
i>d-k, then f(e) € Vv 7' and f(x)= (x1,...,xd_k)= f(e). So f is an
emulation,
For all ¥ (¥,seee¥y ) € yd-k.n If_1(y) n Vd’nl -
: k

I{(y1’..n,yd_k’yd_k+1,‘.o’yd) | yd_k+1,0.o,ydi {0,...,n—1}}| = n 3
So f is computationally uniform with ce(f) = n .
For all e = e e ekn e Ve -

i
e{0,..,n-1}}|

Yoo Yi-Yieq o Ya-k .
n. Sof is com-

|{e ) | Y,._ reeesy
y1...y1_1yi+1...yd,i d~-k+1 d

municationally uniform with comc(f) = nk. a
For the next result, let ¢ be any integer with c|n.

d n d’ d’
UE? -V UE , given by

mod%) and

ols
ol

Theorem 4.1.2. The function f£:v3*%

- f((x1,...,xd)) = (x1mod%,x

- f(ex ) =

n
moda,...,x

2 d

S 4 i

100 XXy o Xge
e
n n n n
(x1mod3)...(xi_1mod3)(xi+1moda)...(xdmodsé,i

is a computationally and communicationally uniform emulation of SB’

on SBd’n/c (d,n,c € N+, c|n), with cc(f)=cd; comc(f)=cd—1.
Proof .
n
d,n d»3 d,n
It is clear that fF(V' ') €V ~. Consider x-(x,l,...,xd) e v
n
d,n dve
and e=e X .x. N € E'. f(e)eE and f(x) =
S R U S
(x1mod3,...,xdmod3) €e =

n
(x1mod5)...(x

f(e), hence f is an emulation.

n n n
j-qmoZ) (x, mod) ... (x mod),1
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d,n/c , If‘1 (y) n vd,nl -
l{(x1,.;§,xd)|¥3;1515d ximod% = yi}| =cd. so r s computationally
uniform with cc(f)=c .

For all y = (y1,...,yd) ev

-1
For all e= e y £ (@)= | (e
y1...yi_1yiﬁ1...yd,i e XpoooXs %509 q*l
Vi, 1s8jsd, Jj=i; x moda = yj}| = ¢ . So f is communicationally uni-

form with comec(f)=c -1. o

eeeX

y, 2, Emulations of the dual bus hypercube. Wittie [9] proposed a

variant of the spanning bus hypercube, which uses significantly fewer
connections per node: the dual bus hypercube. Nodes in the dual bus
hypercube can again be seen as points in a d-dimensional integer grid
of size nxnx...xn, with n+12d22. In the dual bus hypercube each node
1s connected to two buses. In one dimension, say the first, buses con-
nect nodes, as in the spanning bus hypercube. (These are nd_1 buses,
each connected to n nodes.) Look at the d-1 dimensional layers, that
are perpendicular on these buses. In the first layer, buses go in the
second dimension, each connecting n nodes that agree in all but the
second coordinate. In the second layer, buses go in the third dimen-
sion, etc., 80 in the J'th layer, buses go in the 2+(j-1)mod(d-1)'th
dimension. In each layer there are nd--2 buses, each connected to n
nodes. The advantage of a dual-bus hypercube over the spanning bus
hypercube is that each node has only two connections to a bus. The
diameter of the network however is 2d-1, only a factor of about 2

larger than the diameter of the spanning bus hypercube (=d).

Definition. The d-dimensional dual bus hypercube with width n is the

hypergraph DBY’" (v ELM | with vERa 0k, enx ) |V 1, 15150

=d,n
0sx,sn-1} and E ’ = {e | X peeesX, 00X, peeesx, €
i x1...xi_1xi+1 d,i 1 i-1°7i d

{0,...,n-1} and (i=1 or (2s5isd A i=2+(x1-1)mod(d-1)))}, with

e = {(X,eeesX,_ 0X, )X, 2 yee0,%X,)|0Sx, Sn-1}.
x1...xi_1xi+1...xd,i 1 1-1771°714 d i

eoeX

For d=1 and d=2 the d-dimensional dual bus hypercube DBd’n

and the
d~-dimensional spanning bus hypercube are the same. One has to take

n+12d, to let the dual bus hypercube be connected.
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An example of the dual bus hypercube, with d=3 and w=4 is given 1in
fig. 4.2.

A7)

O
q
o
A4
FanY
A4
A4

o
A 74
Fan
A "4
<

,
(0
> 4

fig.4.2.
3 dimensional dual bus hypercube with width 4.

For the projectidns of the dual bus hypercubes on lower dimensional
dual bus hypercubes with the same width we need the following result:
Lemma Y4.2.1. Let d4,d',n € N+, and d>d'22. There is a bijection wd,d',n
from {0,...,n-1} to {0,...,n-1}, such that if (x-1)mod(d-1)+2 s 4!
then (x-1)mod(d-1)+2 = (2'¢' *™(x)-1)mod(d*-1)+2.

For each i in {2,...,d'}, one has that |{x]|0sxsn-1 and
(x-1)mod(d-1)+2 = 1}]| S |{x|0sxsn-1 and (x-1)mod(d'-1)+2 = i}|. So we
can map all x with (x-1)mod(d-1)+2 £ d' in a one-to-one manner, such
that (x-1)mod(d-1)+2 = ($2°%" *®(x)-1)mod(d'-1)+2, and map the x with
(x-1)mod(d'-1)+2 > d' onto the remaining nodes. o
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1
Theorem 4.2.2. Let d,d',n and ¢=wd’d o1
£av d noy Ed LI Vd',n U Ed',n

- f‘((x1,...,xd))= (IP(X1):X2’---sty) and

be as above. The function

s, given by

- f(ex x x4 1) =e, . 1 iff i=1 and
IERES SUPE SURREY oo Xges
- f(e ) = ., 1ff 2s5isgd!
XpeooXy 1%y g Xy , 1 w(x )x e Xy Xy g er Xyl
and
- f(e ) = (w(x )X peeesXy ), Iff i>d',
xl...xi 1 l+1...xd,l 2

is a computationally and communicationally uniform emulation of DB

-t
on DBd ,n’ with ce(f)= come(f) = nd d .

Proof.
First we have to show that f is a correct mapping, i.e. we have to
show that for 2sisd', if e eEd*™,  then
X.eooX, X, .00.X,1
~a, 1 i-171i+1 d
ew(x )x X X X i €E This is because
17727 7 i-171+1 7" " g

e eEd n = i=2+(x.-1)mod(d-1) = (use that isd')
X,oeeX, . o1 1
1 i-1 1+1 d

2+(x -1)mod(d-1) = 2+(¢(x )-mod(d'-1)=1i =

=d!' n
. EE *
w(x )x R FURE SUPRTES SN -
Now we show f is an emulation. It is obvious that f(V )__V .
: _ d,n _ =d,n
Consider x—(x1,...,xd) eV and edge e=e. . i EE .

i-1%1+1° " %g?

1
) € e 1=f(e). If 2sisd’',

dr X, 00X

2
then f£(x) = (P(X,) )X y+0e,X,,) € €
17072 d L1C S STRES JUPE 0 ared

If i>d, then f(x) = (w(x1),x2,...,xd,) = f(e). Hence f 1is an emula-
tion.

If i=1, then f(x) = (w(x1),x2,...,x
ar’

oo oX = f(e).

d 4 d,n|=

|f_1(x) n v

I{(w (y1)9y2""!yd'9yd|+1""’yd) I yd|+1!"°!yd e {0!"ln-1}}| =
|
d d . (We wuse that ¢y is bijective.) Hence f is computationally uni-

For all y= (y1,...,yd,) eV

-At
form and cc(f) = nd d .
=1
For all e=e. iy, 1 £ "(e)] = I{ey oy ’1|yd,+1,...,yd €
azq T 2°¥q

{0,..,n-1}}| = . For all e=e ;» with 2sisd’,
-1 Yoo YioYierooYar
[£7 (e)] = |{e _ T . | Ygroqreeryy €
‘p Y& y?"'yi 1yl+1 "’ydyydy+1 "yd’
{0,...,n-1}}]| = . Hence f 1is communicationally uniform, and
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-t
come(f)= nd d . N

Theorem 4.2.3. Let d,n,c € N', ¢|n, (¢-1)|(D).
dg _dig
+> V UE s given by

- f((x1,....xd))= (x1 mod %,...,x

The function £: vO'™ u g7

mod E) and
c

d
- f(e . ) =
x1...xi_1xi+1...xd,i
e
n n n n
(x, mod =)...(x,_, mod =) (x, , mod E)...(xdmodzc)i,ri1
is a computationally and communicationally uniform emulation of DB’
d’% d d-1
on DB . cc(f)=c; comec(f)=c .
Proof .
a2
d,n e
It is obvious that f(V' ') <V . f 1is correct mapping:
ee . eE®™ = ((i=1) or (25isd A
1.'. 1_1 1+1.I. d’ n
i= (x1-1)mod(d—1))+2) = (i=1 or (25igd A i= (x1mod(3)-1)mod(d—1)+2)
n
d,—

(use that (d-1)|(%)) = f(e) € €E °. The remainder of the proof is
similar to the proof of theorem 4.1.2. o

d,n d,n/c

We next consider emulations of DB on DB , with (d-1) } % . The
next result shows that there exist efficient, non-uniform emulations
of DBY*" on DBd’n/c, if (a-1) | % : we have an extra factor of at most
2 in the formulas for the computation and communication cost, compared

d,n d,n/c

with the costs of the uniform emulations of DB on DB , with

(-3 .

Lemma 4.2.4. Let d,n,n' € N+, n'|n, n'2d-1. Let ¢=n/n'. There exists
a mapping ¢: {0,...,n-1} + {0,...,n'-1}, such that

(1) ¥x, 08xsn-1: x mod(d-1)= Y(x)mod(d-1)

(11) ¥y, Osysn'-1: |y (y)|sTn/((a-1) .| 2 ) ]s2e.
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Write n'=k(d-1)+1, with 051<d-1. The mapping y: {0,...,n-1} =
{0y...,n"-1}, given by ¢(x)=x mod(k(d-1)) fulfils property (i) and
(i1): V¥ x, 0sxsn-1: x mod(d-1) = (x mod(k(d-1)))mod(d-1); and Wy,
osysn'-1, |¢ '(y)|=0, 1if yzk(d-1), and v 1(y)]= |ix|osxsn-1, x
mod(k(d-1))=y}|=[n/ (k(d-1))7], 1f y<k(d-1). Note that k=|Zr|, and
[n/(k(d-1))7] = [(ek(d-1)+e1)/(k(a-1))]s2c. o

Theorem 4.2.5. Let d,n,n',y,c be as above. The function f: Vd’n

-~ ~ \
Ed’n »> Vd’n V] Ed’n , given by
- f((x1,.-.,xd))=(W(x1)sX2 3 d

- f(e ) = e . y 1 Iff i=1, and
x .o xi 1 i+1...x o1 x2mod n ...xdmod n',i

U

mod n',x_mod n',...,x mod n') and

- f(ex1...x

)=

i° iff 2sisd

i-1%141° " %q
l
2mod n' ...xi 1mod n' xl+1mod n' ...xdmod n

w(x )x
is an emulatlon of DBY*" on DB, witn ce(f)s[n/ ((a-1). Ld 1J)1
S ch, and come(f) £ [n/((d-1).] ——fj)1 42 ¢ 20977,

We first show that f is a correct mapping. For e=ex 1, it is
2.
clear that f(e) € E9'". Now let 2sisd. e=e g g40

x1...xi 1Xi+1"‘xd’i
= i=(x1-1)mod(d-1)+2 => i= (w(x )-1)mod(d-1)+2 =

f(e)=e eid? . sor

¥v(x,)x_mod n',..x, .mod n'x, .mod n'...x mod n',i
1772 i-

1 i+1 d ,

is a correct mapping. f is an emulation of DBd’n on DBd’n : clearly
|
f(vd’n)s;'vd’n and it 1s easy to check, that for all x € Vd’n, e €
Ed’n, X € e=>f(x) e f(e).
Finally observe that for all y= (y1,...,yd) € Vd |f—1(y)|=
-~ ]
|y ! )|.c , and for all e=e e £41',
X, e0eX . ,
_ 1 i-1%4+1 dd -

1£7 () [=c?"", if i=1 and £ )| = v (y1)|.c , if 2<isd. The

estimations of ce(f) and comec(f) now follow from lemma 4.2.4. O

5. Final remarks. The problem to decide whether there exist computa-

tionally wuniform emulations from a given hypergraph G on a given

hypergraph H is, in general, NP-complete. For instance, this problem
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contains the UNIFORM EMLATION problem for graphs as a special case.
(The UNIFORM EMULATION problem asks whether a given graph G can be
(computationally) uniformly emulated on a given graph H.) UNIFORM EMU-
LATION and many subcases of it are proven to be NP-complete in
[4,5,6]. One also has that the problem whether a given hypergraph can
be emulated with computation cost 1 on a 2 dimensional spanning bus
hypercube, with given width N in one, and M in the other dimension is
NP-complete: it contains as a special case the EDGE EMBEDDING ON A
GRID problem. (This problem is: given a graph G=(V,E), positive
integers M,N, is there an injective function f: V+{1,2,...,M} x
{1,2,...,N}, such that 1if (u,v) € E then Flw=(x,x5), £(V)=(y,,y,)
implies X, =X, Or y,=y,, i.e. f(u) and f(v) are on the same 'line' in
the grid?) EDGE EMBEDDING ON A GRID is NP-complete (see e.g.
(8,p.219]).

Acknowledgement. Prof. L.D. Wittie suggested to look at emulations of
networks with buses, during a short visit to the University of Utrecht
(january 1985).
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