SOME LOWERBOUND RESULTS
FOR DECENTRALIZED EXTREMA-FINDING
IN RINGS OF PROCESSORS

H.L. Bodlaender

RUU-CS-85-22
August 1985

Ao Rijksuniversiteit Utrecht

A

Vakgroep informatica

~
;YR Budapestisan® 3584 CD Utrecht
Corr. adres: Postbus 80.012 3508 TA Utretnt
Telefoon 030-83 1454
The Netherlands .

S3TRA
Lgal

SOME LOWERBOUND RESULTS
FOR DECENTRALIZED EXTREMA-FINDING
IN RINGS OF PROCESSORS

H.L. Bodlaender

Technical Report RUU-CS-85-22
August 1985

Department of Computer Scieﬁce
University of Utrecht
P.0.Box 80.012, 3508 TA Utrecht
the Netherlands

SOME LOWERBOUND RESULTS

FOR DECENTRALIZED EXTREMA-FINDING
*
IN RINGS OF PROCESSORS

H.L. Bodlaender

Department of Computer Science, University of Utrecht
P.0. Box 80.012, 3508 TA Utrecht, the Netherlands

Abstract. We consider the problem of finding the largest of a set of n

uniquely numbered processors; arranged in a ring, by means of an asyn-
chronous distributed algorithm without a central controller. With a
technique of Frederickson and Lynch [8] the worst-case number of mes-
sages, sent by arbitrary algorithms, that solve this problem is related
to this number for algorithms that do not wuse operations on the
processor-numbers other than mutual comparisons (=, =, <, >, S, 2). This
result 1is used to answer a question; posed by Korach, Rotem and Santoro
in 1981 [10], whether each extrema-finding algorithm that uses time n on
a ring of n processors must use a quadratic number of messages; and to
obtain better lowerbounds for the case that the size of the ring is

known,

1. Introduction. Consider a ring of n processors, distinguished by

unique 1identification numbers. In general it is assumed that the size n
of the ring is not known to the processors; There is no central con-
troller. The problem is to design a distributed algorithm for finding
the processor with the highest number, using a minimum number of mes-—
sages; The elected processor can act as a 'leader' (central controller).
Every processor (possibly several or all processors simultaneously) can
start the "election", and every processor has to use the same algorithm.

We further assume that the processors work fully asynchronously and

This work was supported by the Foundation for Computer Science

(SION) of the Netherlands Organization for the Advancement of Pure
Research (ZWO).

-~

cannot use clocks and/or timeouts. (Frederickson and Lynch [8], and
Vitanyi [17] analysed the case where this strict assumption of asyn-
chronicity does not hold, and shows that in that case a significantly
smaller number of messages is needed, if one is willing to spend consid-
erably more time.) This latter assumption makes that we can assume that
the algorithm 1is message-driven : except for the initialisation of an
election a processor can only perform actions upon receipt of a message.
We also assume that there are no faulty processors and no faults in the

communication subsystem.

The leaderfinding or "election" problem has received considerable
attention, after it was proposed by Le Lann [11] in 1977. It has been
studied for unidirectional rings as well as for general, bidirectional
rings; Figures 1.1 and 1.2 summarize the solutions presently known for
both cases; together with the worst-case or average number of messages
required for each algorithm. (All logarithms are taken to the base 2.)

For bidirectional rings we assume a global sense of orientation, i.e.

Algorithm |Average |[Worst-Case
Le Lann (1977) |n® |n®
Chang & Roberts (1979) In H_ |0.5 n?
, *
Peterson (1982) [0.943 n log n |1.44.. n log n
Dolev, Klawe & Rodeh (1982) |0.967 n log n ¥ |1.356 n log n

Figure 1.1. Election Algorithms for Undirectional Rings

H is the n'th harmonic number, i.e. H = % = 0,69 log n.

n

LI o e]

i

Algorithm |Average |Worst-Case

|
Gallager et al. (1979) | 5 n log n
Hirschberg & Sinclair (1980) | 8 n log n
Burns (1980) | 3 n log n
Franklin (1982)] 2nlogn

1.89 nlogn
(det) 0.25 n?
1.44,.. n log n

Santoro, Korach & Rotem (1982) |
Bodlaender & van Leeuwen (1985)|(det.) 0.70..n H_
Van Leeuwen & Tan (1985) |

|
|
|
|
|
Korach, Rotem, & Santoro (1981)]|(prob.) 0.70..n H | (prob.) 0.5 n?
|
|
|
Moran, Shalom & Zaks (1985) | |

1.44,. n log n

Figure 1.2. Election Algorithms for Bidirectional Rings

each processor knows the left and right direction on the ring. This only
strengthens our lowerbound results. For most of the bidirectional algo-
rithms of figure 1.2 this assumption is unnecessary.

There are some lowerbounds known for the election problem on a ring.
Burns [3] showed a lowerbound of + n log n messages for the worst-case
for bidirectional rings. Pachl, Korach and Rotem [13] proved a lower-
bound of an* Z 0,69 n log n on the average number of messages required
by a unidirectional algorithm (hence the Chang-Roberts algorithm is
optimal with respect to the average number of messages) and a lowerbound
of 4 n log n + O0(n) on the average number of messages for bidirectional
rings; For the case that the size of the ring n is initially known to

the processors, they proved lowerbounds of nlogn+ 0O(n) and n

_6
510g5
log n + 0(n) on the worst-case number of messages, for unidirectional
rihgs and for bidirectional rings, respectively. (No non-trivial lower-

bounds are known on the average number of messages needed for rings with

known ring size.)

For the synchronous case, Frederickson and Lynch [8] prove a lower-
bound of 4n log n + 0(n) on the worst-case number of messages for
(bidirectional) comparison algorithms (a comparison algorithm uses only
mutual comparisons between identification numbers (=,=,<,>, s, 2)), and
for (bidirectional) algorithms, that run in time, bounded by some con-
stant tn on all rings with size n. This lowerbound is also valid for the
asynchronous case: every algorithm that runs on a asynchronous ring can
also run on a synchronous ring, and the time the algorithm uses is

bounded, for instance by the number of messages that is sent,

This paper is organized as follows. In section 2 we give some pre-
liminary definitions and results. In section 3 we relate the worst-case
number of messages for arbitrary (asynchronous) algorithms to this
number for (asynchronous) comparison algorithms. Our results and proof-
techniques we use in this section are very similar to results, proven by
Frederickson and Lynch [8] for the synchronous case. The results of sec-
tion 3 will be used in section 4 to answer a question, posed by Korach,
Rotem and Santoro in 1981 [10], whether algorithms that use time n, have
to send a quadratic number of messages. The answer will be positive or
negative, depending on the precise assumptions made about whether we
want to find the maximum or whether we want to find a leader (which does
not have to be the maximum) and what processors have to "know" the max-
imum or leader after completion of the algorithm. In figure 1.3 the
results of section 4 are summarized. In section 5 we consider the case
where the size of the ring n is initially known to the processors, for
unidirectional rings. We give a Dbetter lowerbound on the worst-case
number of messages and we give a lowerbound on the average number of

messages for comparison algorithms.

2. Definitions and preliminary results. Pachl, Korach and Rotem £131]

introduced the notion of full-information algorithms (for unidirectional
rings). In full-information algorithms, when a processor sends a mes-
Sage, it sends everything it knows. In this way, algorithms have to
specify only when to send (and no longer what to send). Every algorithm
A corresponds to an ‘'equivalent' full-information algorithm A' : if

Problem |Unidirectional |Bidirectional
—every processor must know the |2 + n (n+1) |2 (n2)
maximum | |

-one or more arbitrary processors |S1.356 nlogn+0(n) |S1.356 nlogn+0(n)
must know the maximum | |
~the maximum must know it is the |2 4 n(n+1) |9(n2)
maximum | |
~one processor must declare itself]S1§356 nlogn+0(n) |S1.356 nlogn+0(n)
as a leader | |
-one processor must declare itself|2 4+ n (n+1) |n(n2)
as a leader, and all processors |
must know the id. of the leader |

|
| I

Figure 1.3. General bounds for problems that have to be solved in time
<n

during execution of algorithm A', a processor p receives a message s
from a neighbouring processor, p can decide from its own knowledge, the
information that is contained in the message s, and the direction from
which it received s, whether or not it would have sent a message on the
corresponding moment during execution of algorithm A. A and A' use the
Same number of messages (although messages sent by A' can be consider-
ably longer than messages sent by A) and the same time. (We assume that
in one time unit each processor can send one message. We ignore the time
used for calculations in processors.) We also assume that identification
numbers are chosen from Z.

We will first consider unidirectional full-information algorithms.

In a wunidirectional full-information algorithm; the 'knowledge' of a

-6-

processor consists of its identification number (abbreviated: its id)
and the id's of a number of processors (initially zero) 'before' it on
the ring; If a processors with identification number id, receives a mes-
1...1dk id,> to the

next processor, or it does nothing; If a processor id, receives a mes-

sage <id1;Q;idk>; then either it sends a message <id

sage <id1;§;idn> and id, = id1; then it knows the id of every processor
on the ring. It depends on what exactly we want the algorithm to do
whether we have to send some more messages., If we want an arbitrary pro-
cessor to know the maximum, then we are done. If we want that the pro-
cessor whose id 1is the maximum to become aware of this fact, or if we
want every processor to know the maximum, then some extra messages may
have to be sent. In both cases, it is not difficult to find the most
efficient way to finish the algorithm, and at most n extra messages in
total have to be used. We therefore only consider messages with length

Sn = number of processors on the ring.

Definitions.
i) Let X ©Z. D(X) is the set of finite, non-empty sequences of dis-
tinct elements of X, i.e.
D(X) = {<s,...8,>|k21, 15isk s, 8 X; s s
ii) D = D(2).
iii) Let s€D. len(s) is the length of s, i.e. len(<s1...sk>) = k.
iv) Let s€D. C(s) is the set of cyclic permutations of s,
v) Let s,t € D, t is a subsequence of s, if there are u, v € D

i ® Sj}'

{e} (e is the empty sequence), with s=utv.

vi) For s€D, E § D let N(s,E) = |{t€E| t is a subsequence of an element
of C(s)}].

Definition. Let E g D. E is exhaustive, iff
i) ¥V t,uéD : tu€E = teE
ii) Vs€&D:C(s)NE = a.

Theorem 2.1. is a minor extension of a result of Pachl, Korach and Rotem

[13].

.-7_

Theorem 2.1. [13] Let A be a (unidirectional) full-information algo-
rithm. Let E = {teD | a message with content t will be transmitted when
A executes on a ring labeled t}. Then
i) E is exhaustive
ii) A requires exactly N(s,E) messages with length < len (s), when exe-
cuted on a ring labeled s (and possibly some extra messages with

greater length).

Conversely every effective computable (i.e. recursive) exhaustive set

E D corresponds to a maximum finding algorithm: use the full informa-
tion algorithm that sends a message if and only if it is an element of
E.

An algorithm is said to be a comparison algorithm iff no other
operations on the id's are used as mutual comparisons (=,¢;<,>,s,z). We

now give the corresponding notion for sets.

Definition. Let s, t € D. s=t (s and t are order equivalent), iff len(s)

= len(t), Vi,j 15i,jslen(s), s <sj<:>ti < tj.

i

Definition. Let E cD. E is comparison-based, iff V s,t€D: sst = (S€E <
tEeE).

Definition. Let Ec D. E is comparison-exhaustive, iff
i) E is exhaustive

ii) E is comparison-based.

Theorem 2.2. Let A be a (unidirectional) full-information algorithm,
corresponding to a comparison algorithm. Then E = {teDI a message with
content t will be transmitted when A executes on a ring labeled t} is

comparison-exhaustive.

Again, conversely, effective computable comparison-exhaustive sets Eg; D

correspond to comparison maximum finding algorithms.

The notion of full information algorithms can be extended to

-8~

bidirectional algorithms, Our notion of a bidirectional full-information
algorithm is very similar to the notion of free algorithms of Frederick-
son and Lynch ([8]. (Free algorithms run on bidirectional synchronous
rings); In bidirectional algorithms the behaviour of a processor does
not necessarily depend fully on the id's of the processors in the neigh-
bourhood it knows, but can also depend on the order in which it received

messages from its neighbours, etc.

Definition. Let Xgéz. Db(x) is the smallest set of strings, such that
i) id & X =<Kid> € Db(x)
ii) id eﬁx,k;Tf‘s1;;.sk € Db(x), d1f;;.,dk € {1,r} = (<id>,<(d1;s1),
(d2,32),..., (dk,sk)}) € Db(X).
We abbreviate Db(Z) as Db.
The information that a certain processor has on a certain moment during
execution of a bidirectional full-information algorithm can be

represented by an element of D For instance, read the string (<id>;

<(1,s1), (r,52)>) as: my own iZentification number is id, the first mes-
sage I received came from my left neighbour and contained information
31; the second and last message I received came from my right neighbour
and contained information Sye

So if a processor sends a message, it sends all its information, that
is: an element of Db; If a processor p WwWith information (<id>,
<(d1,s1),.., (dk,sk)>) receives a message s, its new information becomes
Kid, <(d1,s1),..,(dk,sk), (dk+1,s)>), with d

came from p's left neighbour and d

kel = 1 if the message

kel = r, if the message came from p's
right neighbour.

Now every bidirectional full-information algorithm corresponds to a
pair (L,R), L,R subsets of Db; L corresponds to the messages that are
sent to left neighbours, R corresponds to the messages that are sent to
right neighbours; in a manner similar to the undirected case. Note that
a message that is sent to both neighbours will be a member of L. N R.
We will not give a bidirectional variant of the notion of exhaustive-

ness.

9

Definition. Let s & Db' s is obtained by taking the successive integers
that appear in s, ignoring other characters:

- if s is of the form (id>; with id € Z, then s = id

- if s is of the form <id, <(d,,s,), (d,,8,),..., (d,,,)>), then 5 = id
..bm).

~ ~

os, o8, o°,,.0o8, (where a,...a_ ° b,...b = a...ab
m 1 n

1 2 k’ 1 n 1 1

Definition. Let s,t € Db; s =t (s and t are order equivalent). iff len

(s) = len (t) and éi < §j¢:>Ei < Ej for all i,j, 15i,jS len (s). (s; is
the i'th integer in the string s.)

Definition. Let s,t € Db‘ s ot (s and t are equally typed), iff
a) s and t are both of the form <id>, with id € Z,
or
b) there exists a k € z and d,,...,d, € {1,r}, such that
i) s is of the form <ids,<(d1,s1),...,(dk,sk)>);
ii) t is of the form <idt'<(d1’31)""’(dk’sk)>);
iii) For all i, 1s8isk, si o ti.

We call a set E € D_ comparison based, iff for all s,t with sot and

b
sst:3€E<>tEE. Similar to the undirected case one has:

Theorem 2.3. Let A be a bidirectional full-information comparison algo-

rithm. Let L, R < D_ be the sets of all messages that could possibly be

b
sent by algorithm A to left and right neighbours, respectively. Then L

and R are comparison based sets.

3. Arbitrary versus comparison algorithms. 1In this section we relate

the worst-case number of messages needed in arbitrary and comparison
algorithms. The results and proof-techniques are very similar to
results, proven by Frederikson and Lynch [8] for the synchronous case.
In the proof we will use a well-known Ramsey theorem (theorem 3.1.). We

first consider the unidirectional case.

Definition. For n € N and a set A, let Pn(A) denote the collection of
subsets of A with cardinality n, i.e. P"(A)={X < A| |X]= n}.

..10-.

Theorem 3.1. (Ramsey's theorem, see e.g. [1].) Let A be an infinite
K

set, k,n €N, and C, +-+»C, a partition of PY(A). (y C.=P"(A), 1) >
i=1 .

Ci n CJ=G). Then there exists a homogenous subset B C A, i.e.Ji

PUB) cC,.

Definitions.

i) Let E < D be exhaustive, and let A Z, n € N'. We let E(n,A)
denote the set of all strings in E with elements in A and length at
most n, i.e. E(n,A)= {s € EnD(A) | ten(s) sn}.

ii) Let n € N+. We fix an enumeration of all permutations of the set

{1,..,n}, denoted by w? , ng,..;; w;a;

111) Let X g N, n=[X|, and 1Sisn!. We let = (X) denote the string,
obtained by placing the elements of X, in the order, prescribed by
n - -~ n n _ .n
T, i, wi(X) 6 D(X); wi(X) = .

Theorem 3.2. Let E < D be exhaustive.

There exists a collection of infinite sets A

i) A, =2

- +
ii) vh € N ; A2 A,

iii) vn e N': E(n;An) is comparison based.

A An,..., with

1’ 2!""’

Proof. We use induction to n. First note that E contains every string
<v>, v € Z. (We use that E is exhaustive). So E(1,Z) = E(1;A1) is com-

parison based.

Now let an infinite set An be given, with E(n,An) comparison based.

We will now show that An can be chosen, such that it fulfils the

requirements.
. . R . . o n+1 n+1
With induction we define a row of infinite sets B o ""’B(n+1)' s, Aas
follows:
n+1
B o = An.

~ Let with induction an infinite set Bn+1 be given. Let C.=

, 1
xcP™@™ | w00 e B) and cpix ¢ pg”(s HONECNE)
Ramsey theorem 3.1, with k=2 gives that we can choose B?:} such that:

-11-

n+1 c n+1

i) Bj+1 c B 3

: n+l

ii) Bj+1 is infinite
111) P @™ e ¢, or P @™ Y.

J+1 1 jv1 - 72
n+1 ; . e s

Finally choose An+1_B(n+1)! It is obvious that An+1 is infinite and
Ay 2 Aneqe
Now suppose 84y 8, € D(An+1) and len(s1) = 1en(32) S n+1 and S, = s,. If
len(s1) £ n, then s, € E<--->s2 € E, because Ang An+1 and E(n,An) is ;312,1,,_
parison based. Now suppose len(s1) = n+1. There exists a unique = K
with S, = n;1 = s2; Let S1; 32 be the sets of integers, appearing in
SA1152 respectively. (si= <1d$l{.idn> =8, = ii?i’...’idn}). S1,82 c
B . The construction of B Shows that K (S1)= s, € E<:>S1 € C1¢$

n+1 . .n+1 : — 0+ _ A ;
P (B K) c C1<_>S2 € C2<_>1r K (SZ) = sze E. So again S, € E<=>52 € E.

This shows that E(n+1,An+1) is comparison based. o

Theorem 3.3. Let E < D be exhaustive. Then there exists a comparison-

exhaustive set F < D, such that
vh max{N(s,F) | s € D, len(s)=n} S max{N(s,E) | s € D, len(s)=n}.

Proof. Let an exhaustive set E D be given, and 1let the sets
A1,'A2, A, ..
ep|3teEN D(A)on(s))® t =8}. F is comparison-exhaustive:
i) Let t,u€ D and tu€ F. Then 3 svEEND(A
len(s)=le§(t). =3se Eer(Alen(s)):
ii) Let s € D. One can choose v € D(Alen(s
len(s) different elements from Alen(s) and place them in the right
order.) Now C(v)N E #0. Let w€ C(v)N E. We can find a t €
C(s), with t = w. (Use the same cyclic permutation that is neces-

...,Ai.;.; as implied by theorem 3.2., be given. Now choose F={$

1en(tu))? sv = tu A
s =t =2DteEF,

)), with v = s, (Choose

sary to obtain w from v to obtain t from s.)
Sot= w and w € D(A
C(s) n F=d.

1en(t)) n E. This implies t € F and

-12-

iii) Let s,t € D and s = t. Then

sefFe3dv v=snp veD(Alen(S))
s n
<3y Y tN vepb (Alen(t))
&t e F.

This concludes the proof that F is comparison—exhaustive;

Finally we will show that for all n:

max {N(s,F) | s € D, len(s) = n}s max {N(s,E)|s & D, len(s) = n}.
Let n be given. Let s € D, with len(s)=n. There exists a t € D(An)’
with t = s, It follows directly from the exhaustiveness of F that
N(s,F) = N(t,F). Further, for every subsequence to of t: to € E<:>to €
F (use ?hat to € D(An) c D(Alen(to)?)’ hence N(t,F) = N(t,E). So for
all s € D, len(s)=n there exists a t € D, 1len(t)=N, with N(s,F)
N(t,E). So

max {N(s,F) | s 6 D, len(s)=n} S max {N(s,E) | s € D, len(s)=n}. O

An algorithmic variant of theorem 3.2 is the following:

Theorem 3.4. Let A be a (unidirectional) extrema finding algorithm for
rings. There exist algorithms T Bi,;.. with for every i € N :

i) algorithm Bi works correctly on every ring with size £i.

ii) algorithm Bi+1 is an extension of algorithm Bi (i.e. algorithm Bi+1
does the first i steps the same as algorithm Bi')
iii) Bi is a comparison algorithm,
iv) For every j £ i, the worst-case number of messages used by Bi on
rings with size j is lesser or equal than the worst- case number of

messages used by algorithm A on rings with size j.

Proof. Let A' be the full information variant of algorithm A. Let E=
{t e D| a message with content t will be transmitted when A' executes on
a ring labeled t}. E is exhaustive (cf. theorem 2.1.). Let the sets
A1,A2,;;;;Ai,;;L be given, as implied by theorem 3.2. Now let algorithm
Bi be the (full information) algorithm, that sends a message s, if and
only if there is at = s, with t € D(Ai) N E., We first have to show

that Bi indeed is a comparison algorithm; i.e. that it is computable

;13_

using only comparisons whether there exists at = s with t € D(Ai) E.
Note that if a certain message s is sent by B, i then also all messages
t, with t = s are sent, B can use a list of all permutations of i or

fewer elements, and with each permutation “j it is stored whether mes-

. k
sages 8, with s = wi are to be sent or not. For each s, one can find,
using comparisons only, for which nJ s = wJ and then one can 1look up

k kK ?
whether to send s or not.

It is not difficult to check that (i) - (iv) hold. (Compare the proof of
theorem 3.2.) O

Unfortunately, theorem 3.3. does not imply the following conjecture:

Conjecture. Let A be a (unidirectional) extrema finding algorithm for
rings. There exists a (unidirectional) comparison algorithm B (for the
extrema finding problem for rings) such that for every n, the worst-case
number of messages used by algorithm B on rings with size n is at most
the worst-case number of messages used by algorithm A on rings with size

n.

The key difference between this conjecture and theorem 3.3. is the com-
putability of F. To let F "yield an algorithm", it must be effectively
computable (i.e. recursive) whether a given s € D is an element of F or
not. This is not necessarily true. However, the results of this sec-
tion show that some worst-case lowerbound proofs for comparison-
algorithms are also valid for arbitrary algorithms; This is when the
fact that the comparison algorithm is really an algorithm (that 1is:
effectively computable) is not used. For instance, a proof can show a
lowerbound for max {N(s,F) | s €& D, len(s)=n} for all comparison-
exhaustive sets; not only for recursive comparison-exhaustive sets. The
results of this section show that this not only implies the same lower-
bound on the worst-case number of messages; that are sent on rings with

size n by comparison algorithms; but also by arbitrary algorithms.

The results can be generalized to the bidirectional case. A bidirec-

tional variant of theorem 3.2. is:

-1“-

Theorem 3.5. Let A be a bidirectional full-information algorithm, and
let L and R be the sets of all messages that could possibly be sent by
algorithm A to left and right neighbours, respectively. There exists a

collection of infinite sets A1;A2,;;;; with
i) A1§Z
ii) for allneéN: A 5 &

n= Tn+ _ -
1ii) for all n e N' and all strings s,t & Db(An), with s ot, s =t and

len(s) = len () Snone has s 6 LE&SL B L and s € RESt 6 R.

23992; The proof is more or less similar to the proof of theorem 3.2.
We will only stress the differences. As in the proof of theorem 3.2, we
use induction to n. Where we had to use one "Ramsey-step" for each per-
mutation of n elements in the unidirectional case, (i.e. for each
equivalence class of the strings in D, induced by the equivalence rela-
tion =), here we have to use the Ramsey theorem for every combination of
a type of strings s, with len(§)=n; together with an'ordening of n ele-

ments, i.e. for each equivalence class of the strings in D induced by

b!

the equivalence relation ;, where = is defined by:

-

s=t & (sotAs=t).

In every "Ramsey-step" we divide the subsets of the current Bin+1
with the right cardinality in four classes: those that correspond with
messages sent to the left and to the right neighbour, those that
correspond with messages; sent only to the left neighbour,...etc., Now
use theorem 3.1. with k=4, o

Similar to theorem 3.4. one now can prove:

Theorem 3.6. Let A be a (bidirectional) extrema finding algorithm for
rings. There exist algorithms B1,BZ,;;;;Bi,;.. with for every i € N':
i) algorithm Bi works corectly on every ring with size S i
ii) algorithm Bi+1 is an extension of algorithm Bi (on rings with size
i algorithm Bi and Bi+1 behave exactly the same).
iii) Bi is a comparison algorithm.
iv) for every J2i, the worst-case number of messages used by Bi on

rings with size j, is lesser or equal than the worst- case number

..15..
of messages used by algorithm A on rings with size j.

Proof. The proof is similar to that of theorem 3.4. The main differ—
ence 1is that we can no longer use the set Ai to obtain algorithm Bi’
because messages on rings with size i can have a size much larger than
i. Suppose ti is an upperbound on the number of timesteps algorithm A
takes on any ring with size i. Note that the size of the 1largest
knowledge of any processor can at most triple in one timestep., (That
is, when the proce%§or receives equally large messages from both its
neighbours). So 3 s an upperbound on the size of the largest message

ever used by algorithm A on rings with size i, and we can use set B t
to obtain algorithm Ai’ similar to the unidirectional case. o 31

The same remarks we made about lowerbound proofs concerning unidirec-

tional rings are also valid for bidirectional rings.

4. Algorithms that use time S n. In [10] Korach, Rotem and Santoro

posed the question "whether algorithms with running time of n must have

a quadratic number of messages in their worst-case". The answer to this

question depends on what we exactly want the algorithm to do in time n.

There are several possibilities:

(A)- every processor must know the maximum (i.e. the id of the largest
numbered node)

(B)- there are one or more arbitrary processors that know the maximum

(C)~ the processor that has the largest id must know that he is the node
with the largest id

(D)~ exactly one processor must declare itself as a leader

(E)- exactly one processor must declare itself as a leader, all other

processors must know the id of the leader.
These five problems are closely related. In figure 4.1, it is shown
which problems are subproblems of which other problems, Also, without

much difficulty one can show the following relation:

Theorem 4.1, If there exists an algorithm that solves one of the five

16

Figure U4.,1. The partial ordering of the problems A-E.
A line indicates that the lower problem is a
subproblem of the upper problem.

problems A-E, and has a worst-case running time t(n), and uses a worst-
case number of messages m(n); then for each of the other four problems
there exists an algorithm that has a worst-case running time of at most

t(n)+2n and uses a worst-case number of messages of at most m(n)+2n.

In figure 4.2 we summarize the bounds We prove on algorithms that use
time sn.

Theorem 4,2, Every unidirectional algorithm for problem C that uses

time n, must use at least 4n(n+1) messages in the worst-case.

Proof. 1If the processor with the largest id must be aware of the fact
that it has the largest id after time n; then it must have sent a mes-
sage to its successor, and this message must have been propagated around
the whole ring; until it returned to the processor, that has originated

the message. The exhaustive set, induced by the algorithm must

;17;

problem unidirectional fbidirectional
A :z%n(n+1) ;Q(nz)
B | $1.38 nlogn+0(n) 1<1.38 nlogn+0(n)
C i 2dn(n+1) :Q(nz)
D 1'<1.38 nlogn+0(n) }$1.38 nlogn+0(n)
E :2§n(n+1) IQ(nz)

Figure 4.2. Bounds for algorithms that use time sn.

therefore contain all messages s1;.;.,sn, with Vi 25isn 312 si; (This
means essentially that every message, used by the Chang/Roberts algo—
rithm must be used here too.) Now this implies a worst-case lowerbound
of 4n(n+1) messages on rings with size n. (Consider rings labeled with
n, n-1, n-2,...,2,1. Compare this result with the results of Chang and
Roberts [4].) ©o

Theorem 4.3. For every bidirectional algorithm for problem C, that uses
time sn, there is ac¢ e R+, such that the algorithm uses at least cn2

messages in the worst~case.

EEEQEQ Let A be a bidirectional algorithm for problem C, that uses time
Sn, on rings with size n and suppose there does not exist a ¢ e R+, such
that the algorithm uses at least cn2 messages in the worst-case (on
rings with size n). Without loss of generality we can assume that A is
a full-information algorithm; We first assume A is a comparison algo-
rithm,

k,1

Let rings rk'l be defined as follows: the size of a ring r is k-1,

;18-
and the id of the i™" node of r%'! is
((-1-1) mod 1)+k + [3 T. (1sisk1).
3,5 have successive id's:
12 9 6 3 15 11 8 5 2 14 10 7 4 1 13.

Note rk’l consists of k pieces of 1 nodes. Each piece consists of a

So for instance the processors of r

decreasing row of 1-1 id's, the last id is larger than every other id in
the piece. The pieces are ~ in a certain sense -~ mutually placed in a
decreasing order: the i'th processor in the j'th piece has a larger id
than the i'th processor in the (j+1)'th piece.

We now suppose the ring works fully synchronous: all message transmis-
sion times are equal and we ignore time needed for calculations in pro-
cessors. This means, that when a processor sends a message on a
timestep t+1; this message can contain the id's of at most 2t+1 proces-
sors: the id of the processor itself, the id's of t processors immedi-
ately to the left of the processor and the id's of t processors immedi-
ately to the right of the processor. This also means that when for two
processors po,p1 the strings consisting of this 2t+1 id's are equally
ordered, we may assume that Py sends a message on timestep t+1 if and
only if p1 sends a message on timestep t+1. (We use that the ring works
fully synchronous and the algorithm is a comparison algorithm.)

Let ¢(k,1) be the smallest number t, such that on the ring rk’l all

messages that are sent by the full information algorithm A after time t
(under the assumption of synchronicity) contain the value of the maximum

(and, of course, many other data).
Claim 4.3.1. V1 3¢ Vv o(k,1) s ey

Proof. Suppose not. Let 1 be given, such that V ¢ 3 k #(k,1) 2 c. Now
ksl at least the first |dk.1]
timesteps messages are sent with the maximum not in it. This we can see
by taking k' such that ¢(k',1)2|4kl]. On the ring rK"+1 on each of the

first L%klj timesteps there are messages sent that do not contain the

we first claim that on every ring r

value of the maximum (= k'+l). Now use that for each part of the ring
1 .
r¥*1 With length S 2:|4k1] +1 that does not contain the maximum 1id,

;19;

there exists an equally ordered part of the ring rk’l, that also does
not contain the maximum id of this ring (=kel). So on rk’l the first
|#kl] timesteps there are messages sent that do not contain the maximum
id.

Finally we use, that for each part of r<’l with length s2.|#k1]|+1
that does not contain the maximum id, there are at least 4k + 0(1)
equally ordered parts; So on each of the first L& kll timesteps there
are at least 4k + 0(1) messages sent, so in total at least approximately
1 k21 messages. When we take 1 as a constant, and let k grow to infin-
ity; we see that the algorithm costs a quadratic number of messages in

the worst case. Contradiction. o

As the algorithm is 'message-driven' (a processor can only send a mes-
sage ﬁpon reception of a message, except for the first timestep), each
message m, except those sent on the first timestep, has a 'predecessor'’
message; that is, the message that 'triggered' the processor to send
message m. The processor that sent the message on timestep 1, obtained
by taking recursively the predecessor message of m is called the origi-
nator of m, the successive messages between the originator of m and m we

call the chain of messages of m.

Now look at the last message m; that arrives at the processor with
the maximum id, and look at its originator and chain of messages. Claim

4.3.1. shows that the distance between the originator and the processor
with the maximum id is at most cl on a ring rk’l. As the processor pmax

with the maximum id must know all id's of all processors after timestep
n, there are basically the following possibilities:

- pmax is the originator of m, the chain of messages of m 'goes

around the whole ring': each processor sends one message of this chain;
the successive messages have either travelled around the whole ring in
positive; or in negative direction. (We say 'm has travelled around the
ring in positive/negative direction'). (See figure 4.3.a.).

~ the originator of m is Ppax or a processor with distance = ¢y to

pmax; the chain of messages goes from the originator to a node, approxi-

mately halfway the ring and then returns. So m can inform Phax of the

id's of + 4n + ¢y processors, all on approximately the same half of the

;20;

ring (seen from P). Some other messages(s) must inform Prnax of the

ax
other id's., (See figure 4.3.b.).

Claim 4.3.2. For each 1, there are only finitely many k such that the

k,1

last message m; that is received at the maximum on ring r has

travelled around the ring in negative direction.

Proof. Suppose not. For a ring rk’l there are 4k + 0(1) pieces, that
are equally ordered to the piece, consisting of the maximum and the
[4k.1] 1d's of the processors before the maximum. We again use that A

is comparison based, hence if on rk’l

the last message received at the
maximum has travelled around the ring in negative direction, then on
each of the first |}kl| timesteps at least 4k + 0(1) messages are sent,

so in total at least approximately 4 kzl. Now we can keep 1 fixed, and

Figure 4.3.a. Figure 4.3.b.

;21;

let k grow to infinity: the algorithm uses a quadratic number of mes~

sages in the worst~case. Contradiction. o

Claim 4.3.3. For each 1, there is at least one k such that the last mes-
sage m that is received at the maximum on ring rk’l has travelled around

the ring in positive direction.

Proof. Suppose not. Then there are 1 and k , such that for all k2k.
the chain of messages of m goes from the originator to a node approxi-
mately halfway the ring and then returns. Because the maximum must be
informed of the id's of all nodes on the ring, the turning point has a
distance of 4kl + 0(01). Further notice that if a messagechain goes
halfway the ring and then back to the maximum on a ring rk’l, then a
messagechain, with a similar length and behaviour is sent on rm’l, for
all m2l. So when k ggows to infinity, the number of messages sent grows
at least lineair to %;l : the algorithm uses a quadratic number of mes~
sages in the worst-case. Contradiction. o

Now consider rings r1’l

» i.e. rings labeled 1 1-1 1-2... 2 1. The pro-
cessor labeled 1 must send a message in positive direction, this message
will continue to travel in this direction, for at least the first 17
timesteps. (This follows from claim 4.3.3, the fact that the algorithm
is a comparison algorithm and the fact that during the first [$17
timesteps, processors cannot distinguish between the cases that k=1 and
k>1.) Because the algorithm is a comparison algorithm; this means that
at least 1+1-1 + 1-2 +...+[41] messages = % 1% messages are sent on the

ring r1’1; for every 1. Hence the algorithm sends a quadratic number of

messages.

We now have shown that every comparison algorithm for problem C that
uses time S n must use a quadratic number of messages. Because we have
never used in our proof; that the way in which processors decide to send
or not to send a certain message must be by an algorithm in the proces-
sors, i.e., must be effectively computable by a processor, the results

of the previous section show that the obtained result is also valid for

;22_
arbitrary algorithms. o

The bounds proven in theorem 4.2. and 4.3. are of course also valid for
problem A: it contains problem C as a subproblem, Theorem 4.4. shows

that these bounds are also valid for problem E.

Theorem 4.4, Every algorithm for problem E that uses time S n must use
at least 4n(n+1) messages in the worst-case for unidirectional rings or
2 (n?) messages in the worst-case for bidirectional rings.

Proof. First suppose we have a comparison algorithm for problem E that
uses time sn, but uses a smaller number of messages. We will derive a
contradiction with theorem 4.2. and theorem 4.3. for the unidirectional
and the bidirectional case, respectively. We also assume the algorithm
is a full-information algorithm. We claim that when a processor knows
what id the 1leader has; then it must know the id's of all the proces-~
sors, Suppose this is not the case: a processor p decides that the pro-
cessor with identification number id is the leader (possibly p is self
the leader), and the information of p does not contain all id's of all
processors. Suppose p knows the id's of k successive processors. We
now define a ring r' with 2k nodes. The first k processors have the
id's of the successive processors p knows the id of, the second k pro-
cessors have id's, such that this part of the ring is equally ordered to
the first part of k id's. Now the processor po with the same id as p,
and the processor p1 with distance k to it can behave similar (the algo-
rithm is a comparison algorithm), so it is possible that P, and P, will
both decide on the id of the leader, but then these id's will not be the
same. Contradiction.

Because when a processor knows the id's of all the processors it
also knows that the maximum id the full-information comparison algorithm
can solve problem A in the same time and with the same number of mes-
sages. This contradicts theorem 4.2. or theorem 4.3. The results of

section 3 show that the obtained bounds are also valid for arbitrary
algorithms. o

;23-
We assume that the number of bits, needed to express an id is m.

Theorem 4.5. There exists a unidirectional algorithm for problem B that
uses time n, and S 1.356 n log n+0(n) messages in the worst- case, each
consisting of O(m+log n) bits.

Proof. Basically we use the algorithm of Dolev, Klawe and Rodeh [5].
To each message we add two fields: one contains the id of the origina-
tor, the other the current maximum id known. If a processor id receives
a message {id_ _, id , otherdata }, and id#id , then it uses the field
or max or
'otherdata' to execute the algorithm of [5]. If this algorithm decides
to send a message {newotherdata}, then instead it sends a message {idor’
idmax; newotherdata}. If a processor id receives a message {id

or’

id , otherdata} and id=id__, then id is the maximum id of all the
max _ or max

processors., It is easy to see that the algorithm works correctly, uses

time n, does not use more more messages than the algorithm of [5], and

has a message size of O(m+logn) bits. o

Note that the use of the algorithm of [5] is not essential in the proof.
For instance, when a better upperbound is found for unidirectional
extrema finding, then this upperbound is also valid for problem B and
algorithms that use time n.

Theorem 4.6. There exists a unidirectional algorithm for problem E that

uses time n and 1.356 n log n + O(n) messages in the worst-case.

Proof. Use the full-information variant of the algorithm of Dolev,
Klawe and Rodeh [5], during the first n timesteps. When a processor
receives a message that contains its own id in the first field, then it
knows the successive 1id's of all the processors, hence it can decide
what processors also receive messages that contain their own id in the
first field and whether it has the largest id of this set of processors.
Is this the case; then it declares itself as a leader. In this way in
time n exactly one processor will declare itself as a leader; the algo-

rithm does not use more messages than the algorithm of [5]. o

;21‘;

Note that the size of the messages becomes as large as O(nem) bits. It
is an open question whether there exists an algorithm for problem E that
uses time n, and O(n log n) messages of O(m + log n) bits each in the

worst-case.

5. Lowerbounds for algorithms on rings with known ring size. In this

section we consider the extrema¥finding problem on rings "that know the
ring size", i.e. the number of processors n is initially known to the

processors. For this problem a worst-case lowerbound of n log n +

b
. 51o0g5
O0(n) = 0.51 n log n + 0(n) messages was proved by Pachl, Korach and
Rotem [13]. We will improve on this result by looking at comparison
algorithms.

To start our analysis, again we replace an algorithm by its full~
information variant. Notice that if a processor receives a message with
length n~1 then it knows all the id's of the processors, so it also
knows the maximum., So now the notion of exhaustiveness is replaced by

the following definition:

Definition. Let E < D. E is exhaustive for known ring size n, iff
i) Vt,u€D: tue E=>t € E |
ii) Vs €D with len(s)=n 3t € c(s): Ju, v e D: t-uv, len(u) = n-1,
len(v) = 1, u € E.

Definition. Let E =« D. E is comparison-exhaustive for known ring size

n, iff E is exhaustive for known ring size n and E is comparison based.

Again we let N(S,E) denote | {t € E| t is a subsequence of an element of
C(S)}|; We let K(n) (KCb(n)) denote the worst- cast number of messages
sent by the "best" algorithm (comparison algorithm) for rings with known

ring size n.

Definition. K(n)= min { max N(s,E) | E c D is exhaustive for known
s€b
len(s)=n
ring size n}.

KCb(n)= min { max N(s,E)] E <« D is comparison exhaustive for known
sS€D -
len(s)=n

;25;
ring size n}.

Theorem 5.1.
i) K(n), KCD(n) are lowerbounds for the worst-case number of messages
sent by unidirectional algorithms for known ring size n.
1) K(n) = K%P(n).

Proof,
i) This follows from the definitions. Compare with section 2.

ii) Compare with theorem 3.2 and 3.4. o
Lemma 5.2. K(5) = K°°(5) 2 12.

EEQEE; Let E be comparison exhaustive for known ring size 5. 1If <1,2>
and <2,1> € E then N(<1,2,3,4,55,E) 2 12: <1>, <2>, <35>, <4>, <55,
<1,2>, <2,3>, <3,4>, <U,5>, <5,1> € E (use that E is comparison based),
and at least one string with length 3 and one string with length 4, that
are substrings of an element of C(<1,2,3,4,5>), must be an element of E.
Without loss of generality suppose <1;2> € E, <2,1>¢E. If <1;2,3> € E
then N(<1,2,3,4,5>) 2 13. (Use again that E is comparison based.) So
assume <1,2,3> € E. There must be a substring with length 3 of an ele-
ment of C(<1,2,3,4,5>) an element of E, so <4,5,1> € E. Also <1,5,4> €
E. (Use ring <5,4,3,2,1>. <3,2,1> E, because <3,2,1> € E =<3,2> € E
=<2,1> € E. Ete.)

Now consider the ring labeled <3,5,2,4,1>. <3,5,2> € E, <2,4,1> €
E and <5,2,4> € E, <4,1,3> 2 E, <1,3,5> @ E. This means that <3,5,2,4>
€ E or <2,4,1,3> € E. Because <3,5,2,4> = <2,4,1,3>, both are elements
of E. Hence N(<3,5,2,4,1>,E) 2 5+3+2+2=12. So max N(5,E) 2 12.

s€d
len(s)=n

Lemma 5.3. V k,n € N*: K°®(kn) 2 k K°P(n) + n K°®(k) = kn + kén-1.

Proof. Let “n be a permutation of the elements {1,...,n}, and let “k be

k

a permutation of the elements {1,...,k}. Let 7" o 7" be the permutation

~26-

of {1,...,kn}, defined by

(n o a™) (1) = ner (((i-1) mod k)+1) + *"([]) (1sisk-n).
In this way the ring labeled by the successive values of “k ° "n con-
sists of n pieces of k elements. Every piece of k successive elements
is order equivalent to an element of C(wk); the relative ordering we
obtain by dividing the ring in n pieces of k elements each and then com-
paring these pieces is given by wn.
We now claim, that for every (full-information) comparison algorithm A
the worst-case number of messages that is sent by A, taken over all
rings 7¢ o 7 is at least k<k°®(n) + nK®P(k)~kn+k+n-1.
First note that we obtain a correct (full-information) comparison algo-~
rithm for rings with known ring size k, by letting Ak send a message,
iff it has length at most k-1 and is sent by algorithm A. Hence A sends
at least nK®P(k) messages with length S k-1. It is easy to gee that A
sends 2n messages with length K. Now, for each nk, let An’“ be the
full information algorithm for rings with size n, that sends a message
s=<s1,;;;;sm> (msn), iff A sends a message t=<t ...t > mkSrsnek with t
is a subsequence of an element of C(1rk O_wﬁ
<t,t M w

2k't3k";;’tmk>; One can check that A is a correct algorithm;
let the number of messages sent by An’1T be a, then the number of mes-

) for certain wn, and s =

sages sent by A with length between k+1 and (n-1)k (inclusive) is
k-a-ankKCb(n) ~ kn, Finally, for each i, with (n-1)k+1 S iSnk-1, A will
send at least one message with length i.

The total number of messages is also at least
kK®® (n)+nk®® (k) -nk+k+n+1. o

A similar, but weaker result was proved by Pachl, Korach and Rotem [13].
From lemma 65.3. it follows that for any fixed k21; and infinitely many

n:
(K(k)-k+1)n log n
K(n) 2 K log n

So now we have proved:

+ 0(n).

Corollary 5.4. There are infinitely many n, for which the worst-case

number of messages, sent by any unidirectional algorithm on a ring with

known ring size n, is at least nlogn+ O0(n) =0.689n log n +

_8
logh

;27_
0(n).

This result improves the lowerbound of nlogn+ 0(n) = 0.51 n log

_6
51o0g5
n + 0(n) messages, proved by Pachl, Korach and Rotem [13], and is quite
close to the best known lowerbound for the worst-case number of messages
in the case that the ring size is not known (i.e. an = 0.693 n log n
+0(n)).

Formerly no results were known on lowerbounds for the average number
of messages for algorithms that can use a known ring size. We will

prove a result for comparison algorithms.

Lemma 5.5. Let E be a comparison exhaustive set for known ring size n.
Then:

k|n, k#n =(V s € D: len(s)=k =C(s) N E = ¢).

Proof. Let k|n, k # n, s € D, len(s) = k. Because E is comparison
based, we may assume without loss of generality, that s € D({1,...,k}),
i.e. s can be written as a permutation of the elements {1,...,k}. Now
label a ring r as follows:

) .2+ T2 1. Gsisn).

r. = (s. - %

i i mod k
The size of r is n, and for all t € D, with t is a subsequence of an
element of C(r) and 1len(t)=k, there is a u € C(s) with t = S, There
must be at least one t € E, with t a subsequence of an element of C(r),
and len(t) = k. Now there is a u & C(s), with t = s, t € E, hence u €
E, s0oC(s) n E=@ .)no

1

Theorem 5.6. Let n= 1 P; » p1,...p1 prime numbers. For every uni-
i=1

directional comparison algorithm A for known ring size n the average

numer of messages sent is at least:

1
n. £ (1- —) -1
i=1 Py

Proof. Let E be the comparison exhaustive set for known ring size n,

28

corresponding to A. We can now use a technique similar to a technique
used in [13].

We are going to estimate the total number of messages sent in all
rings, labeled with permutations of {1,...,n}. The total number of con-
tiquious label sequences of length k in all these rings is n(n-1)!=n!
These can be gathered together in groups of size k, where every group
consists of all the cyclic permutations of one sequence; If k|n, k=n,

then E intersects each of these groups (lemma 5.5.) So k|n, k=n implies

n{n-1)!
K

Furthermore, notice that on any ring, for k15k2 the number of mes-

that there are at least messages with length k sent.

sages with 1length k1 that are sent is at least the number of messages

with length k. that are sent. There must also be at least one message

2
with length n-1 sent.

Let M(k) denote the total number of messages sent with length k, over

all rings, labeled with a permutation of {1,...,n}.

J
n-1 1 LI 21
I M(k) 2 I i=1 M(k)
k=1 j=1)
J-1
k=1 + TPy
i=1
1 J Jj=1)
e (z (wp- wpy) -—5—) -n
J=1 i=1 i=1
™ P
i=1
! 1
=(Z(1—p—-)n')—n'
J=1 J
This means that the average number of messages sent by algorithm A is at
1
least ne I (1 - 3L Y- 1. o
J=1 J

Corollary 5.7. For every unidirectional comparison algorithm A for

known ring size n=2l (1 € N) the average number of messages that is sent

is at least 4n log n -1.

Theorem 5.8. Let A be a unidirectional algorithm for known ring size

;29;

1
n= 7

P (p1,..;,pl prime numbers.) There exists an infinite set of

1=1 T

labels X ¢ Z, such that the number of messages sent, averaged over all

rings with size n, labeled with elements of X is at least

(1 - -1.
1 Py

=
[o B

i
If n=2l (1 € N), then this average number is at least 4 n log n-1.

Proof. It is easy to prove a variant of theorem 3.2. for known ring
size. Now let E be the exhaustive set for known ring size n,
corresponding to A, apply the theorem and choose X=An. Then use theorem

5.6. and corollary 5.7. O
References

(1] Barwise, J., (ed.), Handbook of mathematical logic, North Holland,
New York, 1977.

[2] Bodlaender, H.L., and J. van Leeuwen, New upperbounds for decen-
tralized extrema-finding in a ring of processors, Techn. Rep.
RUU-CS-85-15, Dept. of Computer Science, University of Utrecht,
Utrecht, 1985,

[3] Burns, J.E., A formal model for message passing systems, Techn.
Rep. 91, Computer Science Dept., Indiana University, Blooming-
ton, In., 1980.

[u4] Chang, E., and R. Roberts, An improved algorithm for decentralized
extrema-finding in circular configurations of processes; C. ACM
22 (1979) 281-283.

[5] Dolev, D., M. Klawe, and M. Rodeh, An O(nlogn) unidirectional dis-
tributed algorithm for extrema-finding in a circle, J. Algo-
rithms 3 (1982) 245-260.

[6] Everhardt, P., Average case behaviour of distributed extrema-
finding algorithms, Report ACT-49/T~-147, Coordinated Science
Lab., University of Illinois at U.C., 1984,

[7] Franklin, W.R;, On an improved algorithm for decentralized

£8l

9]

£10]

[11]

[12]

[13]

f14]

(151

[16]

[17]

—30._

extrema-finding in circular configurations of processors, C.ACM
25 (1982) 336-337.

Frederickson, G.N., and N.A. Lynch, The impact of synchronous com-
munication on the problem of electing a leader in a ring, Proc.
16 ACM Symp. Theory of Computing, 1984, pp. 493-503.

Hirschberg, D.S., and J.B. Sinclair, Decentralized extrema-finding
in circular configurations of processors, C.ACM 23 (1980) 627~
628.

Korach, E., D. Rotem, and N. Santoro, A probabilistic algorithm
for decentralized extrema-finding in a circular configuration of
processors, Res. Rep. CS-81-19, Dept. of Computer Science,
University of Waterloo, Waterloo, 1981.

Le Lann, G;; Distributed systems - towards a formal approach, in:
B. Gilehrist (ed.), Information Processing 77 (IFIP), North-
Holland Publ. Comp., Amsterdam, 1977, pp. 155-160.

Moran, S., M. Schalom, and S. Zaks, An algorithm for distributed
leader finding in bidirectional rings without common sense of
direction (draft), 1985.

Pachl, J., E. Korach, and D. Rotem, A technique for proving lower-
bounds for distributed maximum-finding algorithms, Proc. 14 ACM
Symp. Theory of Computing, 1982, pp. 378-382. Revised version
appeared as ‘'Lowerbounds for distributed maximum-finding algo-
rithms' in J.ACM 31 (1984) 905-918.

Peterson, G.L., An O(nlogn) unidirectional algorithm for the cir-
cular extrema problem, ACM Trans. Prog. Lang. and Syst. 4 (1982)
758-762.

Santoro, N;, E. Korach, and D. Rotem, Decentralized extrema-
finding in circular configurations of processor: and improved
algorithm, Congr. Numer. 34 (1982) L401-412.

van Leeuwen, J., and R.B. Tan, An improved upperbound for decen-
tralized extrema-finding in bidirectional rings of processors,
manuscript, 1985.

Vitanyi, P.M.B., Distributed elections in an archimedian ring of
processors, Proc. 16 ACM Symp. Theory of Computing, 1984, pp.
542-547.

