AN IMPROVED UPPERBOUND FOR DISTRIBUTED ELECTION
IN BIDIRECTIONAL RINGS OF PROCESSORS

J. van Leeuwen and R.B. Tan

_RUU—‘CS—85—23
August 1985

- Rijksuniversiteit Utrecht

Vakgroep informatica

Budspestissné 3584 CD Uwecht

Corr. adrex: Postbus 80.012 3508 TA Utrecht
Telefoon Q0-53 1454,

The Netherlands

AN IMPROVED UPPERBOUND FOR DISTRIBUTED ELECTION
IN BIDIRECTIONAL RINGS OF PROCESSORS

J. van Leeuwen and R.B. Tan

Technical Report RUU-CS-85-23
August 1985

Department of Computer Science
University of Utrecht

P.0.Box 80.012, 3508 TA Utrecht
the Netherlands

AN IMPROVED UPPERBOUND FOR DISTRIBUTED ELECTION
IN BIDIRECTIONAL RINGS OF PROCESSORS *

J. van Leeuwen and R.B. Tan

Department of Camputer Science, University of Utrecht
P.0.Box 80.012, 3508 TA Utrecht, the Netherlands

Abstract. We present a distributed algorithm for electing a 1leader
(i.e., breaking symmetry) in bidirectional rings of N processors with no
global sense of orientation, that uses at most 1.44,, .N1ogN+O(N) mes~
sages in the worst case.

Keywords and Phrases distributed algorithms, bidirectional rings,

election, message complexity,

1. Introduction . In a number of distributed problems it is required

that the participating processors elect a central coorinator (a
"leader"), e.g. as part of a reinitialisation or recovery procedure. It
is normally assumed that the processors are distinguished by unique
identification numbers but that they are otherwise "identical" and have
no global knowledge about the network topology. Following LeLann [4]
the election problem has been studied mainly for circular configura~
tions, i.e., rings of processors.

In this paper we consider the case of N processors that act asyn-
chronously and are connected in a bidirectional ring. We assume that the
processors have no global sense of orientation on the ring, i.,e., their

* This work was done while the second author was visiting the Univer-
sity of Utrecht, Supported by a grant of the Netherlands Organization
for the Advancement of Pure Research (ZW0).

¥% Author's address: Department of Computer Science, University of
Sciences and Arts of Oklahoma, Chickasha, 0K 73018, USA.

-2 -~

notions of "left" and "right" need not be consistent initially. On the
other hand, a processor can tell whether a message has arrived via its
"left" port or its "right" port, e.g. by maintaining Separate message
queues. The election problem asks for a distributed algorithm to select
a unique processor (the "leader") on the ring, by having processors
exchange messages with their neighbors. We present a solution that uses
at most 1.44...N1ogN+O(N) messages in the worst case, which improves on
the previous worst case bound of 1.89...NlogN+O(N) messages of an algo~
rithm due to Santoro, Korach, and Rotem [6] for this type of rings.

It is interesting that the election problem for bidirectional rings
appears to be be more complex than for unidirectional rings, which have
a very "strong" form of global orientation., (See e.g. Bodlaender and
van Leeuwen [1] for a Ssurvey of the election problem in rings of proces-
sors.) For unidirectional rings the currently best algorithms for the
election problem use 1.44,, .N1ogN+O(N) messages (Peterson [5]) and
1.356...N1ogN+0(N) messages (Dolev, Klawe, and Rodeh [2]) respectively,
in worst case. Our algorithm for the bidirectional case achieves the
Same worst case bound as Peterson's algorithm, although it is rather
more complicated in its details. An interesting feature of our algorithm
is that different (asynchronous) runs may result in different 1leaders
being elected, although clearly the leadership may be transfered to any
other processor in 0(N) additional messages after the election algorithm

has come to completion.

The paper is organised as follows, In Section 2 we present the
election algorithm under a simplified assumption about the message-
handling capability of the links. In Section 3 we analyse the message
complexity of the algorithm and prove it to be bounded by
1.44,, .N1ogN+O(N) messages in worst case. In section 4 we show the
nécessary modifications in order to eliminate the assumption on the
links and prove that the worst case message complexity of the resulting

algorithm still has the same upperbound*,

* We have recently heard that, independently, another 1.44,,.NlogN

election algorithm was found by S. Moran et.al. (Haifa). See: S. Moran,

-—3.—

2. Distributed election in a simplified model of bidirectional rings.

Consider a bidirectional ring of N processors, We assume that each pro-
cessor has separate queues for the incoming messages from each direction
on the ring, and that the links and queues preserve the order in which
messages are sent., A processor can send messages in one or two direc-
tions simultaneously on the ring. While every processor can distinguish
between the two directions on the ring, there is no global sense of
orientation at the outset., The distributed election algorithm that we
develop is based on a series of message~exchanges between all processors
on the ring, and repeatedly generates new information when messages
"meet", As conceptually messages should meet in a processor and not
bypass each other in a link we make the simplifying assumption that the
links are "Eélffduplex", i.e., the links carry at most one message at a
time regardless of its direction. In Section 4 we Wwill rid ourselves

from this assumption by a suitable modification of the algorithm,

The distributed election algorithm operates in the following
manner. At all times every processor maintains a register ID that con~
tains the name (identifier) of a "large" processor that is still in the
game, and a (Boolean) register DIR that contains a "direction" on the
ring in which there are processors that still have a "smaller" processor
up for election, Typically the "large" candidate Wwill exist on one side
of the processor, and DIR will point towards the other side. Messages
are generated that contain the name of a "large" candidate, and are sent
out (or: passed on) in the direction where a '"smaller" candidate is
known to be still alive. The idea of the chase is to eliminate the
smaller candidate, and force agreement on the larger candidate, Proces~
sors that initiate a chase are termed active, and the remaining proces~
SOrs are termed observant (“"passive"). After the initialization phase
of the algorithm (phase 0), the processors that are local minima are

active and all other processors are observant,

M. Shalom, and s, Zaks, An algorithm for distributed leader finding 1in
bidirectional rings without common sense of direction, draft, August
1985.

-y -

After the current active processors have initiated a chase, the
observant processors basically relay messages onwards unless they notice
an "unusual" situation on the ring. Active processors immediately go to
the observant state after initiating a chase, and some of the observant
processors will become active again as a result of their conclusion from
the "unusual" situation that was observed, The new active processors
will initiate another chase, and the same procedure repeats. In order to
distinguish new chases from old, the algorithm wiil be organized in
phases and each processor will maintain a register PNUM containing the
phase~number of the most recent phase in which it participated, Ini-
tially all pNUM registers are set to 0. Through the pPhase numbers we
keep track of the logical ordering of the chases (as if they were
scheduled ring-wide and strictly separated in time), Al1 messages are
stamped with the phase number of the generating (active) processor, to
Separate the phases and to synchronize the processors that did not

receive messages for a while and are unaware of the current phase,

There are two "unusual" situations that can arise at the site of an
observant processor as the algorithm proceeds (recall that the links are
assumed to be half-duplex):

(1) the processor receives a message of the current phase, say via
its left link, that contains a value that is less than the current value
in its ID register. (This happens when the message has completed 1its
chase of smaller processors and now bumps into a larger one that should
take over.) The processor turns active, increments its phase number by
1, and initiates a chase with the value in its current ID in the direc-
tion of the message that was received, i,e,, out over its left link.

(ii) the processor receives two messages of the same phase from oppo-
site directions (a "collision"), The processor turns active, increments
its phase number by 1, and initiates a chase with the largest value con~
tained in the two messages in the direction of the smallest,

It will be shown in the next Section that the number of active proces~
Sors that can arise in a phase rapidly decreases as the algorithm
proceeds, and that in the end precisely one processor will be left. This
processor will know that it is elected because either it receives a mes~
sage of the current phase with a value identical to the one it sent out

-5 -~

(and stored in its ID register) or it receives two messages of the same
phase from opposite directions that hold identical values, Thus the pro-
cessor elected by the algorithm is not necessarily the processor with
the largest identification number, The correctness of the algorithm will
be demonstrated in the next Section as well,

In the remainder of this Section we will describe the algorithm
performed by évery participating processor in more detail. We assume
that each processor starts with the initialization phase (phase 0) and
then alternates between the active and the observant state as dictated
by the algorithm, Messages are of the form <v, p> where v is a "value"
(a processor identification number) and P a phase number,

Algorithm E ("Election")
{The algorithm describes the actions of an arbitrary processor on a
bidirectional ring with halféduplex links as required for electing a
leader, }

1. Initialization

{Let u be the executing processor's identification number, It can
either begin the algorithm spontaneously or be induced into it by
one or both of its neighbors, }
Send message <u, o> Eg both neighbors;
PNUM := 0;
EEEE for the corresponding messages <u1, o> and <u2, 0> to come in
from the two neighbors;
ir u1>u & u2>u then
begin
ID := max(u1, u2);
DIR := the direction of min(u1, u2);
goto active
end
else 8oto observant;
{This ends the initialization phase. A processor continues in either
the active or the Observant state, to perform the further steps of
the election algorithm,}

2. Election

{The election proceeds in phases, A processor performs in either the
active or the observant state. }
a., Active
{A processor enters the active state with some value v stored in its
ID-register and a phase number p, The phase number p is either
stored in PNUM or it is an "update" stored in a temporary register.}
PNUM := p+1;
Send message <v, PNUM> Lo the direction DIR;
gg&g observant;
{If a processor has executed this code, it will be called "active"
in phase PNUM even though it now went into the observant state. As
implied by the code, the change to active will always come with an
increase in phase number, }
b. Observant
{In this state a processor receives messages and passes them on,
unless an "unusual" situation is observed that enables it to ini~
tiate a new phase.}
receive message(s) from one or both directions;
discard any message <v, p> received with P<PNUM;
discard any message that does not have the highest p~value among the
messages;
{The logic of the algorithm will guarantee that at most two messages
now remain,}
case #messages left of

0: goto observant;

1: begin

{Let the one message received be <v, p>, where necessarily
P2PNUM, }
Af p=PNUM then
case "test as indicated» of
v=ID: 5239 inaugurate;
v<ID: begin
DIR := the directioﬁ from which the

message was received;

—-7—

8oto active
end;
v>ID: 22512
{stop the message, the assignment ID := v is

optional}
8oto observant
end
end
else
begin

{This branch will be followed when P>PNUM and the message
must be relayed further,}
PNUM := p;
ID := v;
DIR := the direction in which the message was going;
Send message <ID, P> to the direction DIR;
8oto observant
end;
2: begin
{Let the two messages received be <v1, p> and <v2, p>, neces~
sarily fram opposite directions and with P2PNUM, }
case "test as indicatedr of
v,=V.: Qggig PNUM := p; gggg inaugurate end;

1 72
V.=V, : begin

1 2{If this happens we say that a "collision" ocecurs, }
ID := max(v1, v2);
DIR := the direction of min(v1, v2);
goto active
{Note that the update of PNUM occurs in the active
state, so PNUM always denotes the true phase num~
ber for a processor,}
end
end

end;

3. Inauguration

{A transfer to this final phase occurs when the algorithm terminates,
and the 1ID register contains the identity of the (unique) leader. We
later show that precisely one processor will eventually make the tran-
sition to this state.}

We make a few final comments on the assumption that the 1links are
"hal f-duplex", Clearly the algorithm requires that the meeting ("colli~
sion") of two messages in a processor is recognized as such and is not
treated as "twice the receipt of one message". It follows that a message
should not be sent and any processing be un~done when there is still an
unprocessed incoming message in a queue at the processor, in the direc-
tion in which a message would be sent,. Strictly Speaking, the assumption
that messages do not bypass each other in a link while going in opposite

directions is only required for messages with the same phase number,

3. An analysis of algorithm E . In this Section we will show that algo-

rithm E "terminates" and that it is correct, i.e., upon termination pre-
cisely one processor has been elected as a leader., We will also prove
that algorithm E uses at most 1.44,, ,NlogN+O(N) messages, by showing
that it terminates within 1.44, . 1ogN phases that all require at most N
messages total (except perhaps the first).

Clearly every processor that whishes to begin the election, must
begin with the "initialization phase" (phase 0). The messages <u, 0> of
processor u will awaken its two neighbors to the election process as
well, if they aren't aware of it yet, Eventually every processor on the
ring is woken up and is passing through its "phase 0", and thus every
processor will receive two meéssages with p-value 0 in this phase (one
from each neighbor). It follows that all processors follow suit as soon
as one processor starts the election, and that precisely 2N messages are
exchanged in the initialization phase. The 1initialization ends by
declaring the processors that are "local minima" to be active for the
next phase (phase 1) and all other processors to be observant, Clearly
at least 1 and at most N/2 processors will be local minima and thus are

active in phase 1, Active processors will be separated by observant
ones,

- 9 ~

As the algorithm proceeds messages are generated and relayed around
the ring, and the phase~number (PNUM) of observant processors continues
to be updated (increased) whenever necessary. If an observant processor
turns active, its phase number is incremented again. Messages with lower
phase numbers than current at the receiving processor are ignored and
(hence) are not passed on. It follows that at every processor the mes~
sages that come in from the same direction, in fact come in with
increasing p-value! (Note that all links and queues preserve the order
of the messages.,) It implies that for the analysis we may as well assume
that the algorithm proceeds synchronously, in "increasing" phases. This
gives the worst possible bounds on the message-complexity, because it
automatically means that no messages will be discarded in this regime,
(In the asynchronous case one part of the ring could be "fasterm and
proceed to higher phase numbers, and thus "overtake" the ongoing process
in the other part of the ring in its lower phase. Thus the asynchronous
algorithm may, in fact, use fewer message exchanges to complete the
election) Clearly, for the termination and correctness proofs no such
restriction can be made, although some aspects of the synchronous regime
will be implicit in any version of the algorithm, Let PNUM(u) be the
contents of the DNUM—register of processor u at some moment, and ID(u,
pP) be the contents of the ID-register of processor u at some moment
while PNUM(u)=p. Let p21.

Lemma 3.1. If a processor u receives a message m=<v, p> with p=PNUM(u),
then m must have arrived from a direction (i.e., a 1ink) opposite to the
one over which u has last sent out a message,

Suppose processor u has last sent a message m'=<v', p'> in the
direction from which m is arriving. The action could occur when u was
active or when it relayed m' onward. In either case we have necessarily
pP'=PNUM(u). By the assumption on the links, m and m' should have met at
a processor u' with u'#u. (If m' would have been discarded at some pho—
cessor u" before meeting with m, then certainly m would be discarded at
u" or earlier too. We may assume that m and m' are not discarded at u'

either, because apparently m still makes it to u.) But u' now either

- 10 ~

concludes that it is the leader (5239 inaugurate) or turns active and
increments its phase number to p+1 before stamping it on the next mes~
Sage it sends out. In either casem is stopped at u' and does not reach
u, Contradiction, o

The processors u with PNUM(u)=p are said to be in phase p. Phase p
is reached either in the active state (by incrementing PNUM to p) or in
the observant state (by updating PNUM to p while relaying a message of
the form <v, pP>). In the former case we say that u is "active in phase
p". For every processor u we call the first value of ID(u, p) in phase p
the "color" of wu in phase p. (Observe that ID(u, p) will be constant
during phase p. Only when a message <v, p> is received with v>ID could
an update of u's color to v be made, but this is omitted from the given
version of algorithm E,)

Definition

(i) A_ is the set of processors u that are active in phase p.

(ii) Ap is the set of colors of processors u that are active in phase
p (the "active colors"),

The idea of the colors is that we keep track of the identification
numbers of outstanding candidates for election,

Lemma 3,2, For all p=21, Ap;? Ap+1

Messages of the form <v, @> for any q<p+1 can exist only if they
were generated by a processor that was active in phase q with color
v(hence v ¢ Kq). Suppose a processor u enters phase p+1 with color v.
There are three possibilities,

Case I: u became active because two messages <v1, p> and <v2, P>
collided at wu, with v1¢v2. Notf that v1, v2eAp and that the color of u
is determined to be max{v1, vz}eAp.

Case II: u became active because one message <v, p> arrived at u
while PNUM(u)=p and v<ID(u, p). Arguing inductively one sees that neces-
sarily ID(u, p)eﬁp. (Note that it either is the color u got when enter~

ing phase p, or it is the color of another active processor from this

- 11 -

phase that it obtained by an update of its previous ID(u, p)-value.) The
color of u in phase p+1 is determined to be ID(u, p)eﬂp.

Case III: u receives a message <v1, p> with p>PNUM(u). Note that u
does not turn active now. Again we have v1eAp and the color of u is

determined to V1.

In all cases (viz. I and II) it follows that veﬂp. Hence
ApgAp+1

For every phase p we will distinguish between c~active processors,

. [m]

which became active because of the collision of two messages of the same
phase, and d-active processors, which became active because of the
receipt of one message of the same phase with smaller value (the "non-
collision" case)., It is easily seen from algorithm E that there can be

no other types of active processors,

Lemma 3.3.
(i) Between every two c-active processors in phase p there are at
least two non~active processors in the same phase.

(ii) A c-active processor in phase p cannot be c-active in the next
phase,

(1ii) A d~active processor in phase p cannot be c~active in the next
phase,

(iv) If two adjacent processors are active in the same phase p, then
they do not send messages to each other directly in this phase (i.e.,
over the joining link and simultaneously),

(1) Consider any two consecutive c-active processors u, u'eAp. If
there 1is no processor in between u and u', then one of them (say u) can
only have become c-active because it received a <V, p~1> message from u'
and a message of the same Phase "from the other side", By lemma 3.1. ut!
cannot now receive a message with phase number p~1 from its "u~side",
and hence it cannot become c-active in phase p, Suppose next that there
is one processor u" in between u and u', and u" is not active in phase
D. Again, for one of the processors (say u) to become c~active in phase
P it is required that it receives <%, p~1> messages from both direc
tions, But, if u" sends a <*, p~1> message to u, it cannot ever send a

- 12 ~

message of the same phase in the other direction (to u'). Thus u' cannot

become c~active in phase p. It follows that u and u' must be separated

by at least two non-active processors, in both directions on the ring.

(ii) and (iii) follow immediately from lemma 3.1.

(iv) Consider the special case of p=1 first. As the active processor

must be "local minima"

» there must be at least one non~active processor

in between every two active processors, Thus the lemma is vacuously true

in this case.

that turned active in phase p.

We consider two further,

For p>1, suppose u and v are two neighboring processors
By (i) u and v cannot both be c-active.

essential subcases., First, suppose u is ¢~

active and v is d-active in phase p. (The case with the roles of u and v

interchanged is handled

completely analoguously.) Let u be c-active

because it received a message <a, p~1> from the v~side (thus, from v)

<B,e:1>’—=->f\ —<a,p=1>- " \ -
\/ N4

u

v

and a message <8, p~1> from the other
side. Note that v can be d-active
only because it received a phase- (p~

1) message from its non~u side with a

smaller value than the current contents of its ID-register(a). Conse-

quently, at least v will send out its phase-p message out away from u

again (in the direction of where the smaller-valued message came fram).

Next, suppose that both u and v are d-active in phase p. Suppose by way

of contradiction that u and v do send their phase-p message to each

other. Thus let u send <a, p> to v, and let v send <8, p> to u. Because

u and v are d-

<a,p>

u

activation

<B,p>ﬁo
v

active, they will have had color o« and B respectively at

the end of phase p-1 as well and they
can only send their phase—p‘message
to each other ifr they sent their
phase-(p~1) message to each other as
well (because it triggered the

to phase p). But the phase-(p~1) messages must have been <q,

p~1> (from u to v) and <8, p~1> (from v to u) respectively, and the

activation of u and v can only be triggered when B<a (at u) and a<B (at

V). Contradiction. Thus, when u and v are both d-active in phase p, at

least one of them must send its phase-p message out away fram the other

as well.

a

--13—

Lemma 3.3. shows that there is always "room" during a given phase for
messages to collide. The activities of the distributed election algo—-
rithm in all phases are triggered by the active processors, Our first
concern is to show that the algorithm does not "die", i.e,, fall silent,

before a leader is found (if ever),

Proposition 3.4 For all pz21, if Ap#O and a leader is not found in phase

p, then Ap+1¢G.

We prove this by way of contradiction. Let p be the largest phase
number for which Ap*q (hence p21) but Ap+1=w, while a leader is not
found in phase p.

Consider any active processor ueAp. When u turned active in phase
P, 1it sent out a message <a, p> in some direction over the ring (with q
the color of u). If u is the only active processor on the ring, algo-
rithm E shows that the message is relayed all the way around the ring
and that eventually u gets its own message back. In this case u declares
itself the 1leader, Contradiction. Thus Ap must contain k processors
u=u1, cese U (in ring order), for same k22. Suppose the processors have
colors o, ceny @ respectively, and (hence) the T active processor
sent out a message <ai, p> when it turned active in phase p. If any two
consecutive active processors sent their phase-p message towards each
other, then the two meéssages must "collide" in some intermediate proces~
sor u' (by the assumption on the links) and u' would turn active in
phase p+1 or inaugurate, Contradiction, Thus, active processors ui in
phase p necessarily send their <ai, D> message in the same direction on

the ring. Define u u, .

k+1 ™
If there is any pair of consecutive active processors ug, ui+1
(1sisk) such that ai<ai+1’ then the arrival of the <ai, p> message at
processor ui+1 will turn the processor active on phase p+1. Contradic
tion. It follows that a12a1+1 for all i and hence, because ak+15a1’ that
e . Thus all active processors in phase p must have the same
color, wunder the current assumptions. Now the arrival of the <ai, p>
message at processor ui+1 will lead ui+1 in the inauguration state, and

it will declare processor aEaiEai+1 the leader (1sisk). (Note that g4 is

- 14 -

indeed the current value in ui+1's ID-register.) But we assumed no

leader in phase p would be found, Contradiction.
It follows that necessarily Ap+1¢0, if Ap#G and no leader is found

in phase p. o

. Our next concern is to show that the algorithm is ‘“partially
correct", i.,e., if a processor enters the inauguration state ("declares
itself a leader") then it is the only processor to do this and the algo~
rithm terminates. Let p21.

Lemma 3.5 Suppose two active processors u, u' e Ap have the same color
a. Then:

(i) u and u' must be adjacent, i.e., u and u' are separated only by
non-active processors,

(ii) all processors in between u and u' (in one directlon) have the
same value a in their ID—reglster and

(iii) u and u' send their phase-p messages out in opposite directions,
i.e., "out away from the edges of the a-colored interval",

We prove this by induction on p. For p=1 the only way two active
processors u, u'sAp can have the same color o is when they both received
this color from the same processor during the initialization. Neces-
sarily this processor is directly adjacent to both u and u', and its
color(a) is larger than the color of the other neighbors of u and u'. It

—— follows that u and wu' will indeed
send out their phase-1 messages '"out
away from each other", Note that the
color a does not occur anywhere else

outside of the interval from u to u'.

(Of course the messages sent out by u
and u' will expand the size of the a~colored interval in phase 1 to the
left and to the right.) The induction basis follows.

Next consider two active processors u, u'eAp+1 that have the same
color a. Clearly color o is "inherited" from some processors in phase p.
There are only two ways in which u and u' can have gotten color o in

phase p+1,

-—15—-

Case I: there are two active processors v, v'eAp that have the same

color a and that are responsible for a~coloring u and u' respectively.

By the induction hypothesis v and v' must be adjacent active pro-
cessors in phase p (thus, there are no active processors in between
them), all processors in between v and v' have the same color a, and v
and v' send out their <a, p> messages out away from the a~colored inter-
val. The only way u and u' can be a-colored in the next phase is when
the <a, p> message of v collides at u with a smaller-valued message that
arrived from the opposite direction and, likewise, the <a, p> message
from the other direction., Note that as the {a, p> messages of v and v!
travel out to u and u! respectively, all processors in between u and u'
are colored o as well. When the {a, p> messages arrive at u and u' and
collide with the smaller~valued phase-p messages that arrived "from the
other side", it is clear that u and u' will continue to send their
phase- (p+1) messages out away from each other (in the direction from
which the smaller-valued messages came). In particular no processor in
the a-colored interval between u and u' can be active in phase p+1. The
induction hypothesis follows.

Case II: there is only one active processor veAp that has color g

and that is responsible for aécoloring u and u',

When v turned active in phase p (with color a) it sent out a <a, p>
message in one particular direction on the ring. The only way this mes~
sage can activate a processor (say u) to phase p+1 and a~color it, 1is
when the message collides at u in phase p with a smaller~valued phase~p
message that arrived from the other side. Note that as the <o, p> mes~
sage travels from v to u, all processors in between v and u are colored
a as well, Clearly u will send its phase-(p+1) message out fram v (in
the direction from which the smaller~valued message came). The only way
Vv can be responsible for a~coloring another processor u' in phase p+1,
is when a smaller valued phase~p message comes in at v from the other
side (i.e., over the link different from the one over which v sent its
phase-p message) and in fact activates v to phase p+1. Thus u'sv,
Clearly v will send out its phase- (p+1) message in the direction of the
smaller-valued message as well, i.e., out away fram the o~colored inter-
val. Again the induction hyphothesis follows,

- 16 —~
This completes the proof of the induction step. o

Proposition 3.6, If a processor moves to the inauguration state in phase
p, then:
(i) it is the only one to do so,
(i1) |Kp|=1; and
(iii) all processors on the ring have the same value in their ID-
register.,

Suppose processor u moves to the inauguration state in phase-p.
There are only two ways in which this can happen (see algorithm E). We
assume u is the first to move.

Case I: u has value o in its ID-register and receives a <a, p> mes~

sage from one side (the non-collision case).

As aeip we distinguish two further sub-cases. First, suppose there
is only one a-colored active processor v in phase p. As v is responsible
for any <a, p> message on the ring and (hence) for o~coloring any pro-
cessor in phase p, u cannot have been in phase p or gotten color o in
phase p before the <a, p> message arrived unless u=v. It follows that
the <a, p> message must have made one full tour around the ring, If
there had been any other active processor v' in phase p of same color
a'=#a on the ring, then the <a, p> message would not have made it (either
because it was stopped or because it was "replaced" by a message with
phase~number p+1 as the result of an activation sanewhere), Thus all
processors simply relay the <a, p> message and are colored a, |Kp|=1,
and u is the processor to move to the inauguration state when the <a, p>
message arrives,

Second, suppose there are two a~colored active processors v, v'sAp.
(By lemma 3.5 there can be no more than two such processors.) By lemma
3.5 there are no active processors in one direction between v and v',
all processors in the interval between v and v' have color a, and v and
v' have send their <a, p> messages out away from each other. As u is
already o-colored and we are in the "non-collision" case, u must neces~
sarily belong to the interval between v and v', But this means that the

{a, p> message could not have reached u. Thus this subcase cannot occur.

—“7-—

Case II: PNUM(u)sp, and u receives identical <a, p> messages fram

both sides (the "collision" case).

As ast and u receives <a, p> messages from both sides, there must
be two o~colored active processors v, v'eAp (v*v')‘that are responsible
for sending the messages. By lemma 3.5 v and v' must be adjacent active
processors in phase p, all processors in between v and v' in one direc-
tion must have the value a in their ID-register, and v and v' have send
their <a, p> messages out away from each other. (By an argument similar
to lemma 3.3 one can show that v and v' must be separated by at 1least
one non~active processor on either side, and thus there is "roam" for
the messages to collide.) It follows that u is located somewhere on the
complementary interval between v and v', As the <a, p> messages approach
u from both sides, all processors from v to u and from v' to u become
o~colored. By the same argument as before there can be no other active
processors in phase p, and (hence) |Kp|=1. When the messages collide at

u, u is the only processor to move to the inauguration state. 0

By proposition 3.6, any processor that moves to the inauguration
state knows that the election algorithm has terminated. In particular
proposition 3.6 implies that the leader is unique, whenever the algo~
rithm terminates. We now prove that algorithm E indeed terminates, by

showing that |Kp| gradually decreases for p»», Let p22.

Lemma 3.7 There is a 1~1 mapping from the active colors in phase p to

the active colors in phase p-2 that are no longer active in phase p~i.

Let u:a:p denote that processor u has color a in phase p. We con~
sider the special case of p=2 first, Let a be any active color of phase
2, and let u be an active processor in phase 2 with u:a:2. Suppose first

that u is c-active in phase 2,

i <a, 1> /’75 <B,1> n L and is activated because it
4 ?\\,/ , received a message <a, 1> over

v \‘\ . “ _~,/’ Y its left port and a message

GY{} 6&6) <B, 1> over its right port

TTw Tw! (see the illustration). Let v

and v! be the active

- 18 -

processors in phase 1 from which the two messages originate, respec-
tively. We may assume that a=B and, because u gets color a, a>B8. By the
way the initialization phase assigns colors to v and V' and observing
the direction in which the <a, 1> and <8, 1> messages are sent, v must
have a neighbor w on its u-side with W:Y:0 for some Y<a and v' must have
a neighbor w' on its u-side with Ww':8:0 for some 8<B. It is possible
that w=w'(=u) and thus that Y=§. Note that there can be no other active
processors in phase 1 between v and v', in order that the <a, 1> and <8,
1> messages can both reach u. As these messages travel, the colors Y and
s are eradicated and overrun by o and B respectively. Thus we can let o
correspond to e.g. Y, which is an active color from phase 0 that 1is no
longer active in phase 1. Next suppose that u is d-active in phase 2,
and is activated because it received a message <Bg:1> from a processor
ve:A,I while it was in phase 1 with color o and ao>8 (see the illustra-
. B " tion). Arguing as before, v must have

a neighbor w on its u~-side with w:Y:0

3/;1\‘58‘,9 ——lm—-) for some Y<B and u must have a
v s . neighbor w' on the same side with
?;:6\ ‘rg:a, w':8:0 for some §<a (otherwise the
‘~-';‘ “-';' phase-1 message of u would collide

with the <8, 1> messsage). Note that
in particular o>Y and, by the way the initialization phase colors and
activates processors to phase 1, it follows that u=w. As the <8, 1> mes~
sage travels towards u, the color Y is eradicated and overrun. Thus we
can let o corresponds to Y again, because Y is indeed an "active" color
fron phase 0 that 1is not active in phase 1. In all cases the color Y
associated with a cannot be associated with any other active color of
phase 2, Dbecause of the disjointness.of the "intervals of discourse"

around the active processors u.

For p>2 the argument proceeds in a rather similar way. Again let «
be any active color of phase p, and u an active processor of phase p
with u:a:p. Suppose first that u is c-active in phase p, because it
received a message <a, p~1> over its left port and a message <8, p-1>
over its right port (see the illustration). Let v and v' be the active

processor in phase p~1 from which the messages originate, respectively.

—-19—-

Now because v and V' are

active in phase p~1 and both
send their phase-(p~1) mes~-
sages towards u, V must have
(Y:p—ﬁ received a <Y, p-2> messages
LY /

N from the "right" and v' must

Y=

have received a <§, p~2> message from the "left" to trigger the activa~
tion to phase p~1 and a>Y and B>§. (Note that the colors Y and § cannot
exist outside of the current interval of discourse.) Let w and w' be the
active processors in phase p-2 from which the two messages originate,
respectively., It is possible that w=u or u=w', but not both. (Note that
w+w' because an active processor sends its phase message in one direc~
tion only.) Clearly the colors Y and § are overrun by a and 8. (By lemma
3.5 one argues that e.g. Y+8.) Thus we can let a correspond to Y, which

indeed disappears as an active color in phase p-1.

Next suppose that u is d~active in phase p, and was activated
because it received a <8, p~1> message over (say) its left port while it
was in phase p—1»with color o and o>B. Again, let v be the active pro-

cessor in phase p-1 from which the

_ <8, p~1> message originates. As the
<8, p-1> message travels all the way
to u, there can be no phase p~1 pro-

S cessor between v and u. Thus u must

(6:p—% be active in phase p-1 as well.

Mo -w' Oopserving the direction in which u

and v send their phase (p-1) messages, it is necessary that there are

processors w, w' €A

p-2
phase (p-2) messages are responsible for activating v and u to phase p—1

to the "right" of v and u respectively, whose

(together with messages "from the other side"). Let w:Y:p~2 ans w':8:p~
2, where necessarily g>Y and o>§ (this follows because there is no col-
1ision of phase-(p-1) messages here and thus u must have decided to send
its phase-(p~1) message back in the direction of w'). In particular we
conclude that ao>Y. Also observe that w=w' and, by arguing from lemma
3.5, Y=5. One easily sees that the color Y is again eradicated and over-
run, and (hence) is not active in phase p~1 anymore. Let o correspond to

Y. By disjointness of the intervals of discourse, the correspondence SO

—-20—
defined is 1-1. o

Proposition 3.8 Algorithm E always terminates in finitely many phases
and (hence) is a correct distributed election algorithm,

By lemma 3.2 and lemma 3.7 it follows that for p22 | |§|Kp’2|—|K
1|. (Note that IA |=N and |A IS—) As long as a leader is not found in
phase p~1 (thus |A |>0) we have |A |<|A | and it follows that
necessarily |A |+0 for pe. In finitely many phases we must have reached
the situation that there is only one active color left and, using lemma
3.5, the election 1is completed in that very phase. The correctness of

algorithm E now follows fram propositions 3.4 and 3.6. o

As an interesting aside we note the following property of algorithm
E. As algorithm E will "terminate" in precisely one processor u (cf.
proposition 3.6), this processor now has the choice to either declare
itself as the leader or the processor whose identification number is now
stored in its ID-register. In the former case u must send a message car-
rying its id around the ring to signal that the election is over and to
inform every processor of the new leader. In the latter case it is suf-
ficient for u to merely send a 1~bit flag around, as all processors will
have the same value in their ID-register already (cf. proposition 3.6).
The one processor that finds its own id to be identical to the value in
its ID-register upon receipt of the 1-bit flag, will know that it has
peen elected to be the new leader. We leave it to the reader to choose

his favorite among the two possible inauguration procedures.,

Finally, we analyse the message complexity of algorithm E for arbi~

trary bidirectional rings of N processors.

pProposition 3.9 Algorithm E terminates within 1.44,,10gN phases and uses
at most 1.u44,,10gN+0O(N) messages.

Suppose algorithm E terminates in T phases. By proposition 3.6 we
have |KT_1‘=1; By lemma 3.2 and lemma 3.7 it follows that for p22,
|Kp|$|§ IA _,|and (nence). |A |-|A 1[|A |. Let F, denote the i

p2l” g
th Fibonaceci number We claim that for all OSiST F. SlAT il’ The claim

- 21 ~

is true for i=0 and i=1. Proceeding inductively, suppose the claim 1is
true up to i and i+1sT. Then |AT,(1+1)|3|AT_1|+

IAT (i- 1)|..F +Fy_1=Fy 0 and the induction step is complete., It follows
that FT$|A |-N and by known estimates for F, we conclude that
7<%8N, (1), where y=4(1+5)=1.61803... (cf. Knuth [3]). Thus algorithm E

logv 1 ogN
terminates within about Togy

Finally observe that in each phase p, the phase-p messages either

= 1,44 ,, log N phases.

collide or are intercepted (stopped) at some processor that is active in
the current phase and necessarily sent its phase-p message out away in
the other direction. Thus at most one phase*p message will travel over
each link in the ring and, consequently, each phase requires at most N
messages. The initialization phase is special and requires 2N messages.

It follows that algorithm E uses at most 1.44, ,NlogN+O(N) messages. o

4, Modification of algorithm E for general bidirectional rings . The

correctness of algorithm E and its analysis as a distributed election
very much depend on the assumption that the 1links are "hal f-duplex",
i,e., that no two messages bypass each other in a link. (Strictly speak~
ing we only need that no two messages with the same phase-number do not
bypass each other in a link.) In reality the processors are completely
asynchronous, and two adjacent processors could easily send messages to
each other simultaneously, thus violating the assumption on the links,
We will demonstrate in this Section that algorithm E can be modified so
as to cope with this situation, without any essential increase of the
message complexity of the algorithm, We assume the version of algorithm
E in which at the time of inauguration, the processor whose id appears
in all ID~registers (cf. proposition 3.6) is elected as the unique
leader.

In order to describe the necessary modifications, consider a situa-
tion in which two phase~-p messages npypass" in a link (see illustra-

tion). Thus, suppose a processor u

<0,p> — 2 sends a message <a, p> to its neigh-
o34) : -——-
—f:::>6— <B,p> P bor v, while v sends a message <B, P>

v
to u at approximately the same

moment. Clearly we have u:a:p and v:B:D. (The notation is fram the proof

- 22 -

of lemma 3.7.) Assume that a>B. Clearly the <a, p> message will do no
harm at processor v, as it will be effectively discarded ("stopped")
under algorithm E. And processor u will become d~active in phase(p+1)
and send a message <a, p+1> to v (where it will overrun 8 and be passed
on or otherwise collide). As the messages would have collided at uor v
under the earlier assumption, the pattern of communication would have
been different but the effect rather the same. However, we will make
sure (below) that the same activations occur as could have occured under
algorithm E with the link assumption in effect. To achieve this, we
analyse the possible situations for u and v (which they can detect). By
lemma 3.3(ii) u and v cannot both have been active in phase p. Thus sup~
pose u was active when it sent the <a, p> message and v was not when it
sent the <8, p> message. In the old situation the <a, p> and <8, p> mes—
sages would have collided at v, turning v active in phase p+1 with color
o and triggering v to send a message <a, p+1> out away from u. (u
remains in phase p with color a.) The following modification of algo~
rithm E will enable u and v to detect the situation and act so as to
make the same steps. Introduce a special extra 1-bit field q in the
message format, and let every active processor set the g-field to 1 when
it sends out its phase message. The receiving processor will strip of f
the g-bit and immediately set the field to 0, when its task is merely to
relay the message further. (Thus the g-field only remains "active" 1in
the first hop, and serves to inform the receiver that its neighbor is
active in the current phase.) Now u and v can spot that their messages
bypass and act as follows:

(i) u knows that it is active in phase p and, upon receiving a mes~
sage <8, p, 0> from the 1ink over its phase message was sent out, it
will simply discard the incoming message.

(1i) v knows that it is nonractive in phase p and, upon receiving a
message <a, p, 1> from the 1ink over which it relayed the <8, p, 0> mes~
sage, it knows that u was active and that it must act as if the two mes~
sages had collided at v. Thus v turns active in phase p+1 and sends out
its phase-(p+1) in the appropriate direction with the g-field to 1 again
for one hop. The modification maintains the consistency with algorithm

E, and works also when o<B and when u is non-active in phase p but v is

,23,

(i.e., with the corresponding message exchanges).

The same modification works, in fact, also in the remaining case
that u and v are both non-active in phase p. Then the <a, p> and <B, p>
messages would merely have been relayed, and in the original algorithm
the messages would have collided either at u or at v. (In fact, either
situation can occur.) As it stands, the "collision" will take place in
the form of a type-d activation in the processor with the larger value
in its ID-register (u when a>8, and v when a<B) and at the other proces-
sor there will be "no effect". Thus consistency is maintained, and no
special modification is required. (u and Vv detect the situation by
observing the links over which phase~p messages were send and received,
with the gq-fields all 0.)

Finally, assume that o=8. In this case u and v will both move into
the "inauguration state" according to algorithm E, although only one of
them would have done so in the case where the 1link assumption was in
effect. Instead of resolving this case, we note that both u and v will
necessarily have the same value in their ID-register and (thus) elect
the same processor as a leader. As u and v thus inform the same proces-~
sor of its leadership, no special further modification is required to

avoid conflicts.

Proposition 4.1 The modified version of algorithm E is a correct distri-

pbuted election algorithm for fully asynchronous, bidirectional rings.

As the modified algorithm is fully consistent with algorithm E with
the 1link assumption in effect, the number of phases of the modified
algorithm is still bounded by 1.44,.10gN.

proposition 4.2 The modified version of algorithm E (still) terminates
within 1.44..10ogN phases and uses at most 1.4, .NlogN+O(N) messages.

We only need to show the bound on the message complexity. For any
given phase p, consider the messages exchanged with number p. Normally
a link will carry at most one phase-p message (in either the left or the

right direction) but in the fully asynchronous case it can happen that

- 24 ~

two phase-p messages bypass in the same link. In the modified algorithm
this is not prevented, but it clear

:::__’ <::j£5;§::} <1(::>__ from algorithm E that the two mes-
sages will not travel further after
bypassing each other. Also, an active
processor in phase p+1 is created. Now consider the ring of processors
subdivided into intervals bounded by active processors from phase p that
were responsible for sending the phaser messages. (The intervals
travelled by phaseép messages that "ran into" a processor of lower color
in the same phase are simply glued on at the end.) If there are k
intervals with bypassing messages "in the middle", then there must be at
least k+1 separating 1links in between the intervals over which no
phase~-p message travelled. Thus the "extra" count of 1 message over the
1ink in the middle of every interval can be charged to one of the
separating links, and the total message count in a phase still remains
bounded by N. It folows that the message complexity of the modified ver-
sion of algorithm E is again bounded by 1.44..NlogN+O(N). o

5. References.

[1] Bodlaender, H.L., and J. van Leeuwen, New upperbounds for decentral-
ized extrema-finding in a ring of processors, Techn, Rep. RUU~
(S-85-15, Dept of Computer Science, University of Utrecht,
Utrecht, 1985.

[2] Dolev, D., M. Klawe, and M, Rodeh, An O(nlogn) unidirectional dis-
tributed algorithm for extrema finding in a circle, J. Algo-
rithms 3(1982) 2u45-260.

(3] Knuth, D.E., The art of computer programming, Vol. I: fundamental
algorithms, Addison Wesley Publ. Comp., Reading, Mass., 1968,

[4] LeLann, G., Distributed systems-towards a formal approach, in: B.
Gilchrist(ed.), Information Processing 77 (IFIP), North-Holland
Publ. Comp., Amsterdam, 1977, pp. 155-160.

[5] peterson, G.L., An O(nlogn) unidirectional algorithm for the circu-
lar extrema problem, ACM ToPlaS u4(1982) 758-762.

[6] santoro, N., E. Korach, and D. Rotem, Decentralized extrema—~finding
in circular configurations of processors: an improved algorithm,
Congr. Numer. 34(1982) 401-U412,

