DEADLOCK-FREE PACKET SWITCHING NETWORKS
WITH VARIABLE PACKET SIZE

H.L.Bodlaender

RUU-CS-85-25
September 1985

Rij k@ﬁﬁiversitelt Utrecht

o T e

Vﬂkgr%p Ihl‘orm.tica

in 6 3804 CO Umeen
postbus 80.012 ssos'm Urrecht
s145&

DEADLOCK-FREE PACKET SWITCHING NETWORKS
WITH VARIABLE PACKET SIZE

H.L.Bodlaender

Technical Report RUU-CS-85-25
September 1985

Department of Computer Science
University of Utrecht
P.O. Box 80.012, 3508 TA Utrecht
the Netherlands

DEADLOCK-FREE PACKET SWITCHING NETWORKS
WITH VARIABLE PACKET SIZE

H.L. Bodlaender#*

Department of Computer Science, University of Utrecht
P.0. Box 80.012, 3508 TA Utrecht, the Netherlands.

Abstract. In packet switching networks the occurence of deadlock is
very undesirable. Therefore one needs controllers (algorithms that
control the flow of packets through the network), that prevent the
occurrence of deadlock. We present a class of controllers that prevent
deadlock, use only local information known to the processors and allow
packets to have a variable size. Some controllers in this class are
proven to be optimal with respect to other controllers using the same
local information.

1. Introduction. Consider a packet switching network, represented by

a (possibly directed) graph G=(V,E). V represents the set of proces-
sors, E represents the set of links between processors. Some proces-
sors may want to send messages (packets) to other processors in the
network. Each packet has to follow a path in G from its source node to
its destination node, in accordance to some routing strategy. We make
but one assumption on the routing strategy that is followed by a net-
work: there must be an integer k, known to all processors, such that
each packet needs to traverse at most k links to arrive at its desti-
nation. Note that k is not necessarily at least the diameter of G: it
is possible that we do not want to send messages between nodes that
have a large distance between them.

During the transportation of a packet from source to destination,

*¥This work was supported by the Foundation for Computer Science
(SION) of the Netherlands Organization for the Advancement of Pure
Research (ZWO).

._2._

the packet has to be stored (queued) temporarily in the memory of the
intermediate nodes on the path of this packet. For this purpose each
processor has an (integer) number of buffers in which packets can be
stored. We assume each node has b buffers, where b is a fiied con-
stant. Each packet p has an (integer) size, denoted by s(p), which is
the number of buffers the packet needs when stored at a node. The max-
imum size of a packet is assumed to be q, so for each packet p one has
1$8(p)<q. The sum of the sizes of the packets stored at a certain node
on a certain moment can never exceed b, We also assume it is possible
to store a packet p at node v, if s(p) plus the sum of the sizes of
the packets currently stored at v does not exceed b. (Later we will
forbid the acceptance of packets p at nodes v in some cases, even when
it is theoretically possible to store p at v.) Suppose the buffers of
a node v are numbered t1,...,b. In some cases it is necessary to store
a packet in buffers, that are not consequtively numbered, or to real-
locate one or more packets internally in the memory of the processors.
For an example see fig. 1.1. Let b=6, q22. At a node v packets with
sizes 2, 1 and 2 (in this order) are stored (fig. 1.1.a.). The packet
with size 1 leaves v, the buffer where it was stored is "free" again
(fig. 1.1.b.). To store another packet with size 2, we can either
reallocate the second packet with size 2 (fig. 1.1.c.) or we have to
store the packet at non-consequtive buffers (fig. 1.1.d.). We will
further ignore this problem,

We consider three types of "moves", made in the network:
i) Generation of a packet: a node v generates a packet p and
places it in s(p) of its empty buffers.

ii) Passing of a packet: a packet p is passed from a node v to a
node w ((v,w) € E) in accordance to the followed routing stra-
tegy; the buffers in v where the packet was stored become empty
and the packet is placed in s(p) empty buffers of w.

iii) Consumption of a packet: a packet p that is stored at the
buffers of 1its destination node v is removed from the buffers

of v; the s(p) buffers where p was stored become empty.

l//” a
T2 3 4 5 4
—! 7

E ' ,/// , b

\
/

b = ¢ -
e

>~

fig. 1.1.

For our analysis we assume that moves of the network take one unit of
time each: each moment t is either before a specific move or after
this move, never "during" the move. This is no real limitation of the
model, buf facilitates the analysis,

A (distributed) algorithm that permits some moves of the network
and forbids others is called a controller. An important and very
desirable property of controllers is that they prevent deadlock. A
deadlock occurs if there is a situation when there are packets which
will never arrive at their destination, no matter what sequence of
moves 1is performed by the network. A (classic) example of a network
with deadlock is given in fig. 1.2. Assume the controller permits all
moves that do not let the sum of the sizes of the packets stored at v

exceed b, If in v, b packets are created with size 1 and destination

-y -

v2, in v2 b packets are created with size 1 and destination v, and in

3

v3 b packets are created with size 1 and destination v then‘ghe net-

1’
work cannot make another move, so there is a deadlock.

fig. 1.2. A network with a controller that does not prevent
deadlock.

Definition. (Toueg and Ullman [4]). A controller is deadlock-free for
a given network, if it does not permit the network to enter a state in
which one or more packets can never make a move provided that no addi-

tional packets are generated.

Toueg and Ullman [4] noted that the condition that no additional pack-
ets are generated is essential to exclude certain strange controllers,
where a packets can only move if some other packet is generated, and
that packet can only move if a third packet is generated, and so on.

We will only consider local controllers: controllers that use only
information about the local state of a node and the state of a packet,
but do not use global information. Global controllers have an impor-—
tant drawback: 1if the size of the network becomes large it can cost
much additional work and messages to gain global knowledge over the
state of the network.

Several deadlock-free controllers, that use only local information
are known. (See e.g. [1], [2], [3] and [4].) Each of these controllers
assumes that packets have a unit size, i.e. q=1. Toueg and Ullman [4]

proposed 4 controllers, that use only the state of a packet p, and the

- 5 -

state of the packets stored at node v, to decide whether v can accept

P or not, called: forward4count, backward¥count, forward-state and

backward-state, and proved each to be deadlock-free. We generalize

these results in three ways:

- We allow packets to have a variable size,

= we show that "forward-count" and "backward-count" are special cases
of the more general notion of "count-down", and thus obtain a uni-
form theory of deadlock-free controllers of this type, and

-~ we show that every controller that is "in between" a count-
controller and the corresponding state-controller is also deadlock-
free.

(For more precise definitions of the notions used here, see sec-
tion 2.) This paper is organized as follows. In section 2 we give some
basic definitions. In section 3 we present a large class of 1local
deadlock-free controllers. In section 4 we show that some of the con-
trollers in this class are optimal in the class of all deadlock-free
controllers using the same local information. Some final comments are
made in section 5.

2. Definitions.

Definition. A count-down function ¢ is a partial function that maps a
triple, consisting of a packet p, a node v and time t to an integer,
such that:
i) If p is stored at v on moment t, or v is the next node on the
path of p on moment t, then &(p,v,t) is defined.
ii) 1f ¢(p,v,t) is defined then ¢(p,v,t) € {0,1,...,k}.
1i1) I1f #(p,v,t) and &(p,v,t') are defined and t<t', then ¢(p,v,t) 2
o(p,v,t').
iv) I1f @(p,v,t) and &(p,v',t) are defined, and v is before v' on
the path of p from its source to its destination, then &(p,v,t)
> ¢(p,v',t).

For a count-down function ®, it means that every time a packet p 1is
passed to a next node on its path, the ¢-value of p drops by at least

-6 -

one. So, for a packet p stored at v at time t, &(p,v,t) is an upper-
bound on the number of steps p has still to go to arrive at its desti-
nation node. If p is stored at v at time t and ®(p,v,t)=o0, then v is
the destination of p.

Important examples of count-down functions are the following.

i) Assume that a fixed routing strategy is used, 1i.e. for each
source destination pair wo,w1, there is a unique path from wo to
w1 that is followed by all packets that are send from L to Wi
For a packet p and a node v on the path of p, and for all t, we
let F(p,v,t) denote the distance from v to the destination of P,
i.e. the number of message passing steps p has to take to arrive
at its destination. (F stands for "forward".)

ii) For a packet p and a node v on the path of p, let B(p,v) denote
the distance from the source of p to v, i.e. the number of mes-
sage passing steps p has to take from its source to arrive at v.
(Note: B is not a count—-down function.) Now let for all times t

B(p,v,t) = k-B(p,v). (B stands for "backward".)

It is easy to verify that F and B are count—down functions. Note that
we always can choose B as a count-down function. (This basically fol-
lows from the assumption that each packet needs to traverse at most k
links to arrive at its destination.)

Another example of a count-down function is the following. Basi-
cally B 1is used as the count-down function. However, as an addition,
in each node v, after a packet p is stored in the buffers of v, it is
tested whether one of the nodes adjacent to v is the destination of P.
Is this the case, then immediately the value ®(p,v,t) drops to 1.
(Note that the "¢-value" of p can change, even if p is not moved.)

¢(p,v,t) can be seen as an upperbound on the number of message passing
steps p has to take from v to arrive at its destination; the closer
é(p,v,t) is to the exact number of steps p has to take, the less res-
trictive our resulting controllers will be. In this sense F is the

"best" count-down function, and B is the "worst":

..-7..

Lemma 2.1. Let p be a packet stored at v at time t, or let v be the
next node on the path of p. Let ¢ be a count-down function.
1) #(p,v,t) s B(p,v,t).
11) Assume a fixed routing strategy is used. #(p,v,t) 2 F(p,v,t).

i) v is the node of index k-B(p,v,t)+1 on the path of p. Let
k-B(p,v,t) v Dbe the first k-B(p,v,t)+1 nodes on this
path, and let times to<t1<2<'"<tk—B(p,v,t)+1
Q(p,vi,ti) is defined, for all i, 0sisk-B(p,v,t). Then kZQ(p,vo,to) >
¢(p,v1,t1) >...> o(p,v
¢(p,v,t) s B(p,v,t).

ii) Similar. (If not a fixed routing strategy is used, then F is not
defined.) o

VO,V1,...,V

=t be given such that

k-B(p,v,t)’ tk—B(p,v,t)) = &(p,v,t), hence

Now we define the state of packets and of nodes. Let ¢ be a count-down
function. The state of packet p, stored at node v at time t can be
described by the pair (s(p),®(p,v,t)) € {1,...,9} x {o,...,k}. The
state of a node v at time t is formed by the states of the packets
that are stored at v at time t. We can represent this state by a q by
(k+1) matrix J, with J(s,d) denoting the number of packets stored at v
with state (s,d), (1Sssq, osdsk). J is called the statematrix of v. We
use the following notions, derived from the statematrix J:

Definition. Let J be the statematrix of a processor v at certain time
t.
1) The statevector of J is the vector] = 3(J)=<Jo,...,3kq>,‘ with
Ji = I J(s,d).s, where the sum is taken over all pairs (s,d),
with s.d = 1, 1sssq, osdsk, i.e. Ji is the number of buffers
used by packets with state (s,d) with s.d = i.

kq
1i) The number of used buffers at v is denoted by n = z jr =
r=0
q k
b T (J(rl,rz).r1).
r1=1 r2=o

iii) The number of free buffers at v is denoted by m = b-n.

- 8 -

The controllers we consider in this paper will allways allow consump-
tion moves, but will disallow some generation and message passing
moves. We consider controllers where the decision to accept a packet p
at a node v at time t only depends on the pair (s(p),¢(p,v,t)), the
statematrix of v, and on the global constants q, k and b. A con-
troller, using a count-down function &, and constants q (for maximum
packet size), k (for maximum &¢-values) and b (for buffersize) is
called a uniform (¢,q;k,b)4controller. A network with count-down func-
tion ¢, maximum packet size q, maximum ¢-value on the network k and
buffersize b 1is called a (¢,q,k,b)-network. A uniform (¢,q,k,b)-
controller can be used for every (,q,k,b)-network.

Formally, a uniform (@,q,k,b)¥controller can be described as a
subset S g {(J,(s,d))| 1sssq, osdsk, J is a q by k+1 matrix with

, q k _
non-negative values and T J(r1,r2).r15b—s}. It means that a
r1=1 r2=o

packet p can be accepted at node v at time t, with J is the statema-
trix of v, if and only if (J,(s(p),®(p,v,t))) € S.

If we do not use the statematrix J, but statevectors 3 or numbers
n or m, we will describe the controllers with sets of pairs (3,(s,d)),
(n,(s,d)) or (m,(s,d)). Controllers that do not use J or 3, but only n
or m are called "count"-controllers, the others are called "state"-
controllers. In the case that q=1 we also use pairs (f,d), (n,d) and
(m,d).

3. Uniform local deadlock—free controllers. We first recall some

results of Toueg and Ullman [4]. Consider the following Y4 controll-
ers, In each case we have gq=1 and b2 (k+1)q = k+1, (For i) and 1ii)

assume that a fixed routing strategy is used.)

i) A node v with m free buffers accepts a packet p at time t iff
(m,F(p,v,t)) € FC(b,k) = {(m,j) | (j<m) and (osjsk) and
(1smsb)}. (FC stands for "forward count".)

ii) A node v with statevector 3 (with respect to count-down func-

tion F) accepts a packet p at time t iff (j,F(p,v,t)) e FS(b,k)
k k

= ((3,3) | (¥1, osisj, i<b- £ j_) and (osjsk) and (0 § I J,
r=1i r=0

9

S b-1)}. (FS stands for "forward state".)

iii) A node v with n used buffers accepts a packet p at time t, iff
(n,B(p,v,t)) € BC(b,k) = {(n,i) | (i2n-b+(k+1)) and (osisk) and
(osnsb-1)}. (BC stands for "backward count".)

iv) Let v be a node with statevector 3, with respect to count-down
function B. Write T=<io,...,ik> with i =3, . (osrsk), so i
denotes the number of packets, stored at v, that have made r
steps so far, i.e. the distance from the source of these pack-
ets to v is r. Recall that §(p,v) denotes the distance from the
source of p to v. v accepts a packet p at time t, iff
(f,B(p,v)) & BS(b,k)={({,1)] (vj, 1sjsk, § 2 : 1, =bH(k+1))

K r=o

and (osSisk) and (o £ I ir S b-1)}. (BS stand for "backward
r=0
state".)

Theorem 3.1. [4]
i) For b2k+1, FC(b,k) and FS(b,k) are deadlock-free uniform
(F,1,k,b)-controllers.
ii) For b2k+1, BC(b,k) and BS(b,k) are deadlock-free uniform
(B,1,k,b)-controllers.

A generalization of the controllers FC(b,k) and BC(b,k) is the follow-
ing class of count-controllers:
- Let ¢ be some count-down function. A node v accepts a packet p at
time t, iff (m,(s(p),®(p,v,t))) € &CV(q,k,b) = {(m,(s,d))|((d+1)ssm)
and (1sssq) and (osdsk) and (1sSmsb)}. &CV(q,k,b) is a uniform
(¢,9,k,b)-controller.

A generalization of the controllers FS(b,k) and BS(b,k) is the
following class of state—-controllers:
- Again ¢ is some count-down function. A node v, with state vector 3
(with respect to ¢) accepts a packet p at time t, iff
(3. (s(p),8(p,v,t))) & #sV(q,k,b)={(J,(s,d))|(Vi, osisds, 1i+ss

kq kq
b- I Jr) and (1sssq) and (osdsk) and (oS ¢ i, s b-s)}. @Sv(q,k,b)
r=i r=0

is a uniform (%,q,k,b)-controller.

_.10...

uniform (¢,q,k,b)—-controller.

If &=F, then we write &CV(q,k,b)=FCV(q,k,b) and &SV(q,k,b) =
FSv(q,k,b). Likewise for &=B, etc. If q,k and b are clear from the
context, then we write oCV, and #SV.

For uniform (9,q,k,b) controllers S and T we write S & T, iff every
move that 1is allowed by S, is also allowed by B. If S€ETand TS S
then we write S=T. If S & T and not S=T, then we write S C T.

Lemma 3.2. Let q=1, and b > k+1,
i) FC(b,k) = FCV(1,k,b).
ii) BC(b,k) = BCV(1,k,b).
iii) Fs(b,k) = FSvV(1,k,b).
iv) BS(b,k) = BSV(1,k,b).

e e e

We only give a proof of iv), the other results follow directly
from the definitions. Let p be a packet that wants to be accepted by
node v at time t. Let 3 be the statevector of p (with respect to
count-down function B), and let f = <1o,...,ik> be given by 1r = bk—r
(osrsk). Further write s = s(p), i=B(p,v) = k-B(p,v,,t). Now we have:

BS(b,k) lets v accept p

J Kk
> (Vj, 1838k, j2 ¢ %‘ - b+(k+1)) and (osisgk) and (os I ir s b-1)
I‘=E l"=0k
< (Vj, isjisk, j2 z jr - b+(k+1)) and (osisk) and (os I Jr S b-1)
r=k—jk r=o0 |
< (V5, OSJSk4i, k-j2 I jr - b+(k+1)) and (osk-=isk) and (oS T Jr <
, r=j r=0
b-1)
k k
= (Vj, 08jsB(p,v,t), j+1s b- L jr) and (osB(p,v,t)sk) and (oS Jr
r=j r=0

S b-1)
<>BSV (1,k,b) lets v accept p. o
Lemma 3.3. Let q;k,b be given and let ¢1,¢2 be count—down functions,
such that WVp,v,t, Iif ¢1(p,v,t) is defined and ¢2(p,v,t) is defined

_11.—

then 01(p,v,t) 2 @2(p,v,t). Then
i) e,cv(q,k,b) = ¢,CV(q,k,b).
ii) ¢1SV(q,k,b) C_'-'QZSV(q,k,b).
i) This follows directly from the definition of &CV.
ii) Let v be a node. Let the statevector of v at time t with
be j = <j ’31""’jkq> and let the statevector of v at

> be 32 = <j2,J$,...,Jk >. Because we have for

respect to 01

time t with respect to ¢

each packet p , stored in v at time t, that o, (p ,Vot) 2 0 (p ,Vot),
kq 1 kq >

it follows that I j 2 L j , for every i, osiskq. Now suppose ¢1CV

r=1i r=1i
lets v accept packet p at time t. Then Vi, oSiSQ (p,v,t).s(p), i+s(p)sb
kq kq kq 2
- I j , 80 Vi,08is¢ (p,v t).s(p), i+s(p) s b~ L J s b - I J
r=i r= i r=i
hence ¢ZCV lets v-accept p at time t. o

Lemma 3.4. For all q21, k21, b2(k+1)q, and count-down functions ¢,
#Cv(q,k,b) < #SV(q,k,b).

e

We first show that #CV < #SV. Suppose ¢CV lets a node v with sta-
tevector 3 at time t accept a packet p. Write s=s(p), and d=&(p,v,t).

kq kq
Now (d+1)ssb— I J . Hence, for all i, osisds, i+ssds+ssb - L j L)
Kq j=o j=o
- I J , 80 $SV lets v accept p, at time t.
j=1

Next we show there are moves allowed by ¢SV, that are not allowed
by ¢®CV. Consider a node v with an empty buffer. Let v accept succes-
sively b(v)-1 packets with #(p,v,t)=0 and s(p)=1 (this 1is possible
with @®CV and with @SV). Now try to let v accept a packet p¥ with
o(p*,v,t)=1 and s(p*)=1. It easily follows that ¢SV allows this move,

but #CV does not allow this move. (There are many other examples.) O

We now give our main theorem. The proof of this theorem is similar to
the proof in [4], that FS is deadlock-free. The introduction of the
notion of count-down functions allows us to treat the "forward" and

"backward" controllers as special cases of a more general notion.

...12...

Theorem 3.5. Let q21, k21, b2(k+i)q, and ¢ a count—down function. Let
S be a uniform (&,q,k,b)-controller with #CcV(q,k,b) € S < #SV(q,k,b).
Then S is deadlock-free.

o e

Suppose S is not deadlock-free. Then consider a (¢,q,k,b)-network
G and suppose the network reaches a state where one or more packets
are deadlocked. By making every move that is possible, we can reach a
state, where every packet is deadlocked. So no packet in the network
can move at a certain time t, and there is at least one packet p in
the network. Let p1 be such a packet; let v1 be the node where p1 is

stored, and let d, = ¢(p1,v1,t), 8, = s(p1). It is clear that v, is

1
not the destination of p1, else v1 can consume p1. Let v, be the next

2
node on the path of P, to its destination, after Vs and let 3 =
kq
{jo,...,jkp} be the statevector of Ve Now note that I jrao, else
r=0

p1 is accepted in Ve So there is at least one other packet 1in Voo
this packet can also not move. Let P, be a packet in Voo such that
Q(pz,sz,t)s(pz) is minimal over all packets in A’
o(pz,vz,t).s(p2)= min {r | 3> ol}.
Let d2= Q(pz,vz,t), s, = s(p2). The statevector of v, can be written
as 3 = €0y400y0,J yeeesd,. >. We have that d,=o, else p, can consume
d232 kq 2 2

v Now we claim that d232<d1s1.

2.
Suppose ps is the last packet that is accepted by Vo let ts be
the moment on which ps was accepted by Ve (Note that at time ts Py
is not yet stored at v2.) Let 33 be the statevector of v, at time ts.
We write ds = Q(ps,vz,ts), s, = s(ps). We have that dsss 2
<I>(ps,v2,t)ss 2 dzsz. Note that packets stored at A\ at tS can have
been moved out of v, (either by a consumption move or a passing move).
Also for some packets, stored at AP at time ts and time t, it can be
that ¢(ps,v2,ts) > Q(ps,vz,t). For all these packets ¢(ps,v2,ts) 2
¢(ps,v2,t). The only packet that is newly stored in the buffers of A
is P,y Therefore one has:
kq kq

s
Vi, oSiSdSsS , L Jr 2 L jp s

r=i r=1i 8

...13..

kq s Kq
Vi, dsss<iSkq, T Jr 2 L jp.
r=1i r=1i

S lets a node with statevector 33 accept a packet with state (ss,ds),
and S g ¢SV(q,k,b), hence this move is also allowed by #sv(q,k,b) and
therefore one has:

kg
Vi, osisd s , i+s. Sb- I j°.
s"s s rei r
Take i=d.s, and one gets:
272
kq s kq
d232+ss Ssb- pgg . Jr Sb- P_g . Jr + ss ’
22 e he)
hence
kq
d232 £b- ng . jr'
272

We have also that S does not let v2 accept p1 at time ¢t. Because

#CV(q,k,b) < S, this move is also not allowed by &CV(q,k,b). So we
have that

| kq
d1s1 2 (@(p1,v2,t) +1) S >b~- I jr (= the number of free
r=0
buffers in v, at time t.)
kq kq
Now suppose dzss 2 d1s1. Then b - L Jp = b~- L jr < d1s1 s d252
r=d,s r=0
272
. ka
Sb- T Jpe Contradiction. Hence d232 < d1s1.
r=d232

The argument now can be repeated with p2 instead of p1, and so on. In
this way we obtain packets p1,p2,p3,..., stored at nodes v1,v2,v3,...
(these nodes are not necessarily all different), with ¢(p1,v1,t)s(p1)
> ¢(p2,v2,t)s(p2) > Q(p3,v3,t)s(p3) > ...etc. This contradicts the
fact that all values o(pi,si,t) and s(pi) are non-negative. Hence S

must be deadlock-free. o

Corollary 3.6. Let q21, k21, b2(k+1)q, and let ¢ be a count-down func-
tion. oCV(q,k,b) and &SV(q,k,b) are 1local, uniform (¢,q,k,b)-

controllers, that are deadlock-free.

- 14 -

4. Optimality of &SV.

Definition. Let q,k,b and a count—down function ¢ be given.

i) ¢ is striet, if it is possible to use ¢ as a count-down func—
tion in all networks G, for which we do not have to send messages
between nodes that have a distance of more than k.

ii) ¢ is stable, if for all packets p, nodes v and times t,t', if
#(p,v,t) and o(p,v,t') are defined, then ¢(p,v,t) = o(p,v,t').

If ¢ is a strict count—down function, then we can use it in all net-
works where we want to send messages between each pair of nodes with a
distance k between each other. An example of a count~down function,
that 1is not strict is the function ¢, with, if F(p,v,t) is defined,
then ¢(p,v,t) = 2F(p,v,t). Note that, for a strict count—-down function
%, a packet p, with the distance between the source of p and the des-
tination of p is k, and a node v on the path of p, one has ¥(p,v,t) =
B(p,v,t), and if F exists (i.e. a fixed routing strategy is used),
then ¢(p,v,t) = F(p,v,t).

In this section we will consider strict and stable count-down
functions only. Important examples of striet and stable count-down
functions are F and B. The results in this section are mainly rather
straightforward generalizations of the work of Toueg and Ullman [4,
p.598-607]. We generalize these results in two ways:

- we allow packets to have a variable size

- the results are valid for every strict and stable count-down func-
tion. (Toueg and Ullman only considered controllers, depending on F
or B.)

Let integers q2t, k21, b21 and strict, stable count-down function ¢ be

given. Suppose S is a local, uniform (¢,q,k,b)-controller. For sta-

tematrices J, and J, we write Io F Ji» Iff and only if there is
S

exactly one pair (s,d) € {1,...,q}x{0,...,k} with Jo(s,d) # J1(s,d),
and

i) for this pair (s,d) one has Jo(s,d)-1 = J1(s,d) 2 0 ("a packet
with state (s,d) has left the node") or

-.15—.

ii) for this pair (s,d) one has Jo(s,d)+1 = J1(s,d) and Wt
(3,0 (s,d,t)) € S, i.e. S allows a node with state matrix J, to
accept a packet with state (s,d).

The transitive closure of the relation |- is denoted by |-* : S R
o . 1 2 1 S o 1 1,52 8

if there are J'=J ,J ,J%,...,d"=J with J" |J', J FJ%..., 9 |

S S S

Ji. Let Q be the statematrix consisting of only zero's: Q(s,d) = o for

all s,d, 1sssq, osdsk. If Q }* J, then we write }* J (J is "syntacti-
S S
cal reachable"). Conversely, we write E* J (J is "network reachable"),
S
iff there exists a network G, such that, starting from the state where

all buffers of all nodes are empty, we can make a series of moves,
allowed by S, such that after these moves there is a node with state
JO

Lemma 4.1. Let ¢ be a strict and stable count-down function, let q21,
k21, b21. Let S be a local, uniform (¢,q,k,b)~controller. Then for

each statematrix J:

gk g,
S S
Proof.
Suppose |* J, so there are statematrices J1, J2,..., J, with Q F
1 1 Sy g i S
J, J F J%...,07 | J°. With induction to j we will show that in
S S

the unidirectional ring with k+1 nodes R (see rig. 4.1.) there is a

series of moves, allowed by S, staﬁglng from the state where all
buffers are empty, such that after the moves v0 has statematrix JJ,
and all other nodes have statematrix Q. Write Jo = Q. It is clear,
that the induction hypothesis holds for j=o. Now suppose the induction
hypothesis holds for certain j. Then we can make a series of moves,
starting from the state where all buffers of all nodes are empty,
resulting in the state where v_ has statematrix JJ, and all buffers of

all other nodes empty. We have that Ji F JJ+1. If there 1is a pair

S
(s,d) with JJ(s,d) -1 = JJ+1(s,d) 2 o, then we can move a packet with

state (s,d) to its destination and consume it there. If there is a

- 16 -

pair (s,d) with Ji(s,d) + 1 Jj+1(s,d), and Vt,(Jj,(s,d,t)) e's, then

create a packet p with size s in Vaar? with destination Vyr This

packet can be moved to Vo and, because (Jj,(s,d)) € S, it can be

accepted in v_. (Note that Wt @(vo,p,t) = B(vo,p,t) = d.) Hence the

induction hypothesis holds also for j+1. We conclude that Fﬁ J.
S
Now suppose that k* J. From the stableness of ¢ it follows that
S
the state of a node v can only change if a packet is accepted in v (by

a passing move or a generation move), or if a packet leaves v (by a

passing move or a consumption move). Both types of changes correspond

to a statetransition J° | J'. With induction one can conclude F* J. o
S S

States J with not(HJ) (<<>not(= J)) are called unreachable states.
S S
Without 1loss of generality, we can assume that considered controllers

do not allow moves from unreachable states. We are now ready to give
the main result in this section.

fig. 4.1. The unidirectional ring R, ..

Theorem 4.2. Let q21, k21, b21, let ¢ be a strict and stable count-
down function. Let S be a local, uniform (®,q,k,b)-controller, that
does not allow moves from unreachable states.,

i) If v<(k+1)q, then S is not deadlock-free.

...-17..

ii) If b2(k+1)q and S is deadlock-free, then S & #SV(q,k,b).

= e o e

Let q, k, b, & and S be given. Suppose that S is deadlock-free and
b<(k+1)q or not(S < #Sv(q,k,b)). We first claim there is a pair (s,d)
e {1,...,9} x {0,...,k} and a statematrix J, such that (J,(s,d)) € 8
and for 3 = 3 (J):

kq
3 1), 0Si Ssd, i +s > b= I J..
r=io
If b<(k+1)q, then we can choose 3 = <0,...,0>, d=k, s=q and io = Kkq.

If not(S < &SV(q,k,b)), then the result follows directly from the
definition of &SV(q,k,b). When v acceps a packet with size s, v must

kg kq
have at 1least s free buffers, so i°+s > b= 1 jr 2 b I Jr 2 s,
r=i r=0
0

hence io 2 1.

Consider all pairs (s,d), such that there exists a statematrix J, with
(J,(s,d)) € S, and for J = J(J) one has that

. _ kq
3 i, 01 $sd, i +s > b- I §..
r=io
Let (so,do) be such a pair, such that sodo is minimal over all these
kq
pairs. Let io be given, such that oSioSsodo, io+s > b- rEi Jr’ and

let Jo be the corresponding statematrix. As noted before, 1021, 80
sodoz1, hence doa1. Consider the graph G, given in fig. 4.2.

In the network G we will only send messages between nodes that have a

distance Kk, i.e. we send messages from nodes vi to nodes Vi;1

vi to nodes w142’ etc. We now give a series of moves, permitted by S,

, hodes

starting from the state where all buffers are empty, such that a

deadlock will occur in G. We only describe the moves made by the nodes

i (osisgk).

1. As in the proof of lemma 4.1. we can reach state JO in vo, with
messages with source and destination in {vi|0515k}. Let 3 = j(Jo).

with

vi (0sisgk); the same moves are made by the nodes w

2. Generate a packet p with size so, in node v(do+1)mod(k+1)

—18.—

fig. 4.2,

destination w(do;1). Note that Wwt, ¢(p,vo,t) = B(P.Vo,t) = d . Pass

p along the successive nodes on the ring {viloSiSk}, and accept it
in Vo (this is possible, because (J ,(s d)) € 8). Let J be the
statematrix of vo, Just after p is placed in the buffers of Vor and

write J J(J). We have that
o

II’ l"

Js d Js d * so'

, if r =s od,» and

Let all packets p, in Vgr With ¢(p,vo,t).s(p) 3 1o be passed to
their destination, and consumed there. Let the resulting statema-
trix of vy be J2, and write 32 = 3(J2). Now we have

32 = 0, if osrsi 41 , and

§=jr JY , if i S r s kq and r*sodo, and

js d Js d = Js a t 3

oo

The destination of the packets that still are in vo is changed,
such ‘that the next node on their path is wo. (So a packet p with
¢(p,vo,t) = d, now has destination wd_1.) Note that for each packet
p in v, one has Wt B(p,vo,t) = F(p,vo,t) = ¢(p,vo,t) 2 io 2 1.
As long as it is possible to acept in vo packets p with
s(p).d(p,vo,t) 2 sodO (with regard to S), such packets p are gen-

erated in v with destination w

(¢(p,vo,t)+1)mod(k+1) ¢(p,v ,t)-1°
The packets are passed along the successive nodes on the ring
{v1|0515k}, and are accepted by vo. We stop iff this is no longer

- 19 =

possible, i.e. vO reaches a state(matrix) J3, wigh Eor all s,d;
osdsk, 1sssq, sd2 sodo , (J3,(s,d)) € S. Write j~ = J(J3). We have
that
J
J
J

=0, iff oSrSid—1 , and
2
er=j , Iff ioSrSkq and r$sodo, and
23 = J + 8.,
odo odo sodo °

W W3 Wl w

w N3 O

Now G is deadlocked. There is at least one packet in v (jg d Zso),
. oo
and every packet in Vo is directed towards W The state matrix of w,
3° We now claim V¥V s,d, 1s$ssq, os£dsk, stsodo : (J3,(s,d—1))]
S. Suppose there are s,d, 1Sssq, osdsk, stsodo and (J3,(s,d—1)) € s.

First note that (d4-1)s<sodo {because of the construction of J3).
kq :

is also J

: 3 0 0 o]
Further note that b+ ¢ jp S b (Ji Toaot (js d +so)+...+qu) =
r={ -s o o0
o
kq 0. - 3 ,
(b—-ri:i Jr) -8, < (io+so) -8, - io' So 11, o$i1s(d-1)s, i1+s >
o
kq 3 v -
b- £ Jj” (Choose i, =i - s, so i,$s d ~ssS(d~1)s). From the defini-
pei T 1 o 17700
M

tion of do and 849 and from (d-1)s < sodo, we now have that
(J3,(s,d~1)) ¢ S. Contradiction.

This means that none of the packets that is stored at v, can be
accepted in wo. Similarly none of the packets that is stored at wo can
be accepted in vo. So G is deadlocked. This shows that our initial
assumption that S is deadlock-free and b<(k+1)q or not(S < #SV(q,k,b))

is false. O

For g=1 we have that for every deadlock-free, local, uniform (¢,q,k,b)
count-controller S (with g=1, k21, b21, ¢ a strict and stable count-
down function) S&eCV(1,k,b). (The proof is similar to the proof in
[4], for the case that ¢=F.) For q>1 this result does not hold:

Proposition 4.3.
i) Let @1, k21, b2(q+1)k, and let & be a count—down function.

S ={ (m,(s,d))]| (((d+1)ssm) or ((b-m)ksm-s)) and (1sssq) and (osdsk)
and (ssmsb)} is a deadlock-free, local, uniform (¢,q,k,b)-controller.

ii) If bs(k+1)gq+q-2, then
iii) If b>(k+1)q+q~2, then

i) Let q,k,b,d be given.
S € #Sv(b,k,q), then we have by
Suppose that not(S < oSV).

_20...

eCv(q,k,b)
oCvV(q,k,b)

It is clear that oCV(q,k,b) & S. If
theorem 4.2. that S is deadlock-free,.

Then there are s,d and a statematrix

J, (1sssq, osdsk), with (J,(s,d)) € S, and for J = 3(J), 3 i,

q kq kq
jr and k.-z jr <b~- I Jp = 8- Let s,d,d

i =0 r=0
o J

i Mmx

0si 8sd, i +s > b-
o) o]
r
kq
r J

i
o

2 b

and io be given. We have that (d+1)s 2 iO + 8> b~ P

r
kq kq kq
- I Jr 2 k. I Jr + 8, hence sd > k. Jr'
r=o0o r=0 r=0
kq
L Jpe
r=0

From dsk, it follows

Now we consider two cases.

kq
1o>k(q—1). From I Jr
r=0
statematrix J, there are no packets stored with size q, hence for all
kq
So I J =

r
r=
iO

that q2s >

CASE I : < q, it follows that at a node with

r 2 k(q-1) +1 one has jr=°' o. Now qustiOZb-sz

(k+1)q-s2kq. Contradiction.
kq

jp 2b-1I Jp > b—qz2kq.
r=o0

kq
ioSk(q~1). Now kq210+q21o+s> b~ I

r=1
o)

CASE II :

Contradiction.
We conclude that S £ ¢SV(q,k,b), and hence that S is deadlock-free,

ii) Let bs(k+1)q+q-2. It is clear that #CV(q,k,b) ¢ S.
show that not(ecCv(q,k,b) 28).

We now
Controllers &CV(q,k,b) and S allow a
node v with all buffers empty to accept a packet with q-1.
try to accept a packet with state (q,k). Notice that (k+1)g>b-(g-1) =
m, hence (m,(q,k)) & #SV(q,k,b) and (b-m)k = (g-1)ksb-3q+2sm-q,
(m,(q,k)) € S. S allows a node with b—-(q—1) free buffers to accept a
packet with state (q,k), ¢CV(q,k,b) does not.

iii) Let b> (k+1)q+q-2. Again it is clear that #CV(q,k,b) = S. We
now show that @&CV(q,k,b) 2 S. (m,(®,8)) & oCV(q,k,b) and
(m,(®,s)) € S, for some m,d,s, osmsb, oS0sk, 13s3q. Then (k+1)s

size Now

hence

Suppose

> m

21
and (b~m)k+s S m. It follows that (k+1)s > (b=m)k+s, hence s>b~m and

@>b-m. Now (k+1)q 2 (k+1)s > m > b-q, hence bs(k+1)q+q-2, contradic-
tion. o

It is presently open to find an "optimal® deadlock-free, local, uni-

form (®,q,k,b)-count=controller for q>1.

5. Final comments.

i) It is possible to vary the number of buffers at each node. The
results of this paper can easily be generalized for the case that the
condition b2(k+1)q is replaced by the condition: for each node v, the
number of buffers of v b(v) is at least max{(¢(p,v,t)+1)s(p) | p is a
packet, and v is possibly on the path of p}.

ii) The controllers &CV and ¢SV we presented in this paper have an
important drawback: they do not prevent lifelock. Lifelock occurs
when there are packets that will never reach their destination. An
example of a network with lifelock is given in fig. 5.1. Assume k22,
q23, b2(k+1)q to be given, and suppose the controller FSV(b,k,q) 1is
used.

wO
V
O—-0O—0
Vo 1 2
N/
O
2

rig. 5.1.

...22..

In vo b~1 packets with destination v2 and size 1 are created, and

accepted in v1. Now a packet P, with size 3 is created in W with
destination Woe L cannot be accepted in Vor Now one packet 1in vy

passes to v, and is consumed there; still wo cannot be accepted in vo.

2
Now a new packet with size 1 and destination v, is created in v and

is accepted in Voo Again a packet in \£ passes to Voo ete. So chre is
an infinite sequence of moves, that prevents P, to move from L to Vie
Hence packet p1 is lifelocked.

Toueg [5] showed that FS(b,k) and BS(b,k) can be modified, such
that the resulting controllers are lifelock free too. We will give a
short informal description of the modification. The state of a packet
now consists of the value F(p) (or B(p)) and the time that it was
created, that is: the first moment that a processor tried to 1let the
packet enter the buffers of a node v. (The size of the packet is 1.) A
processor v accepts a packet p, if and only if the move is allowed
according to controller FS(b,k) (or BS(b,k)), and there is no other
packet p' waiting to be accepted by v, with an earlier creating time,
for which the acceptance of p' by v is also allowed by FS(b,k) (or
BS(b,k)). These controllers are called FSET(b,k) and BSET(b,k),
respectively. The same modification can also be applied if we use
other count-down functions than F or B. However, the same modifica~
tions to controllers &CV(q,k,b) or #SV(q,k,b) with g>1 do not yield
lifelock=free controllers. A straightforward, but not very interesting
way to find 1lifelock- and deadlock-free controllers that allow the
packet size to vary, is to treat each packet as if its size is q and
then use basically FSET(L%J,k) or BSET(L%J,R). (Packets are treated
as if they all have the same size.) It remains an interesting and
challenging open problem to find lifelock and deadlock-free controll-

ers, that make an (essential) use of the differences in packet sizes.
References.
[1] Gelernter, D., A DAG-based algorithm for prevention of store—and-

forward deadlock in packet networks, IEEE Trans. Comput. 10 (1981)
709-715.

23

[2] Merlin, P.M. and P.J. Schweitzer, Deadlock avoidance in store and
forward networks - I : Store-~and-forward deadlock, IEEE Trans. Comm.
28 (1980) 345-354,

[3] Shyamasunder, R.K., A simple lifelock-free algorithm for packet
switching, Science of Comp. Programming 4 (1984) 249-256.

(4] Toueg, S., and J.D. Ullman, Deadlock-free packet switching net-
works, SIAM J. Comput. 10 (1981) 594=611.

[5] Toueg, S., Deadlock and lifelock-free packet switching networks,
12th Symp. on Theory of Computing, (STOC), 1980, 94-99.

i
}
i
i

