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Abstract. We consider the following problem: Given positive integers

k and D, what is the maximum diameter of the graph obtained by delet-
ing k edges from a graph G with diameter D, assuming that the result-
ing graph 1is still connected. For undirected graphs G we prove an
upper bound of (k+1)D and a lower bound of (k+1)D-k for even D and of
(k+1)D-2k+2 for odd Dz23. For the special cases of k=2 and k=3, we
derive the exact bounds of 3D-1 and 4D-2, respectively. For the spe-
cial case of D=1 we prove an exact bound on the resulting maximum
diameter of order ©(vk). For directed graphs G, the bounds depend
strongly on D: for D=1 and D=2 we derive exact bounds of ©(vk) and of
2k+2, respectively, while for D23 the resulting diameter is in general
unbounded in terms of k and D. Finally, we prove several related

problems NP-complete.

1. Introduction. Consider a communication network with a certain

diameter D (the maximum number of links over which a message between
two nodes must travel). 1In this paper we consider the question what
maximum diameter can result if a certain number of links go down,
assuming the network remains connected. The answer to this question
is important if we want to kill broadcast messages in an unreliable
network after they have traveled over a specific number of 1links.
Clearly this number can be D when the network is completely reliable
because every node in the network can be reached within D steps. By

modeling the interconnection structure of the network by a graph, the

*
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question can be rephrased as follows: Given positive integers k and D,
what is the maximum diameter of the graph obtained by deleting k edges
from a graph G with diameter D, assuming that the resulting graph 1is
still connected.

For the case of undirected graphs, Plesnik [3] was the first to
note that the deletion of one edge from a graph can at most double the
diameter of the graph, and that this bound is best possible. Chung
and Garey [1] studied the problem in more detail. They proved a lower
bound for the maximal resulting diameter of (k+1)(D-3) and an upper
bound of (k+1)D+k. In this paper we improve the bounds as follows.
We derive an upper bound of (k+1)D. For even D, we prove a lower
bound of (k+1)D4k, while for odd D23, we prove a lower bound of
(k+1)D-2k+2. The results are proved in section 2.

In section 3 we discuss some special cases. For k=2 and k=3 we
derive exact bounds of 3D-1 and 4p~2 respectively. For the case D=1,
(i.e., G is a complete graph) we prove an exact bound of order o(vk).

In section 4 we deal with the corresponding problem for directed
graphs, now demanding that the resulting graph is strongly connected.
The results now depend critically on D: for D=1 wWe prove an exact
bound of 0(vk), for D=2 we prove an exact bound of 2k+2 and for D23
one can bound the resulting diameter only by the number of vertices
minus one.

In section 5 we prove that the following related problems are
NP-complete: (a) Given k,D and an undirected graph G, determine
whether there exists a connected subgraph of G, obtained by deleting k
edges from G, that has diameter at least D; (b) Given k,D and an
undirected graph G, determine whether there exists a supergraph of G,
obtained by adding k edges to G, that has diameter at most D. We

prove similar results for directed graphs.

2. General bounds on diameter increase for undirected graphs. For

connected graphs G=(V,E) let dG(x,y) denote the shortest distance from
x to y (the smallest number of edges of any path from x to y). If the
choice of G is clear from the context, we drop the subscript and write

d(x,y). The diameter of a (connected) graph G=(V,E) 1is defined Dby
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diameter(G) = max{d(x,y)lx,er}. Let f£(k,D) denote the maximum diame-
ter of any connected graph G' obtained after deleting k edges from a
(connected) graph G with diameter D. We are interested in deriving
precise bounds for f(k,D). Let k and D be positive integers.

Theorem 2.1. f(k,D)s(k+1)D.

Proof. Let G be a connected graph with diameter D, and let G' be a
connected graph obtained Dby deleting k edges from G. Assume
diameter(G')>(k+1)D. Then there are vertices x and y in G' such that
dG,(x,y)>(k+1)D. Let the shortest path from x to y be X=X,, X,;, X5,

...,X

)=y. We know x is on this path from x to y since

dG,(x,y (k+1)D+1
dG,(x,y)z(k+1)D+1. Now we have dG'(xiD’x(1+1)D+1)=D+1>D for 0sisk.
Since the diameter of G is D, dG(XiD’X(i+1)D+1)SD' Hence for each 1,
0Sisk, there 1is a shorter path in G from Xip to X(i+1)D+1 which con-~
tains at least one of the k deleted edges. Let the k deleted edges be
(u1,v1), ceey (uk,vk). Define sets of deleted edges as follows: for
0sisk Si={(uj’vj)|(uj’vj) is contained in the shortest path from X,
to X(1+1)D+1 in G}. We know that for 0sisk, Sisd. We can represent
the sets Si by a column of k zero's and ones, which together form a
kx(k+1) matrix (aji) over the field GF(2): aji=1 if s; contains
(uj,vJ), and aJi=0 otherwise. Since there are more columns than rows,
the columns are linearly dependent over GF(2) and there exists a non-
trivial linear combination of columns over GF(2) that yields the zero

vector. Since the only non-trivial coefficient in GF(2) equals 1,

n
there are an n21 and indices i1<12< o <in such that L aji =0 for
m=1 m
all j with 1s8jsk. This means that in the sets Si , Si s oo ’Si
) 1 2 n

each deleted edge occurs an even number of times. Now we construct a
graph G'' which intuitively condenses all the segments to and from the

deleted edges of paths from Xip to x(1+1)D+1 to single ‘edges. For-
mally we define G'!'=(V'',E'') with

1 o
vrr=ixg, *1,00 ¥ D K enDert o X (1,+1)D41 X (k+1)p+1} Y

{uj,vjl(uj,vj) oceurs in S; , ...sS; 1,

1 n



Eus{(xo,x(i1+1)D) if i1$0,

(x(in+1)D+1'x(k+1)D+1) 1f 1=k,

(x X ) for 1smsn-1
(1m+1)D+1’ 1m+1D ’

(ximD’uJ) if the shortest path in G from ximD to x(im+1)D+1 uses

(uj,vj), and the segment of that path from X p to uj contains no
m

deleted edges, (for 1smsn)

(vj’x(im+1)D+1) if the shortest path in G from ximD to x(im+1)D+1

uses (uj,vj), and the segment of that path from vJ to x(im+1)D+1

contains no deleted edges, (for 1smsn)
(vj,uj,) if for some m, 1sSmsn , the shortest path in G from X p
m

to x(im+1)D+1‘uses (uj,vj) and (uj,,vj,), and the segment of the

path from Vj to uj, contains no deleted edges.
}'
(If in G ui=vj, for certain i=#j, we define different vertices uy and

v in G''.) Hence the edges of G'' represent ndeleted-edge~free" seg-

J
ments of shortest paths in G, combined with segments of .the shortest

path between X and y in G'. See for an example figure 2.1. 1In this

T
example V is {xo, Xg s x7, X109 x13, X197 X550 Uy v v3} and

1, u3’
E"={(x19,x25), (x7)x6)’ (x13,x12), (xo,u1), (V1 ,x7)9 (X6’v1)n

(u1,u3), (v2,x13), (x12,u3), (v3,x13)}. We use these segments to find

" g ad g

X 0%13 X18%19 Xy 4 Xo5 ¥

Figure 2.1. Example of a construction of a shorter path in G' from X
to y, with D=6 and k=3.
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a shorter path from x to y to arrive at a contradiction with the ini-
tial assumption. The idea will be that some deleted edges must have
been "avoided" at least twice, and thus the path from X, to x(k+1)D+1

in G' can be shortened by eliminating one of the bypasses.

Claim 2.1.1. The degree of all vertices in G'' is even, except for X,

and x(k+1)D+1 which have degree one.

Proof. Every vertex X p is incident to two edges: one edge of the
m
form (ximD’uj) and one of the form (xi D'x(inr1+1)D+1) , except X,
which has degree one. Every vertex x(i +1)D+1 is incident to two
m

edges: one edge of the form (x(1 +1)D+1’xi ), and one of the form
m

m+1D

(vj’x(im+1)D+1)’ except x(k+1)D+1 which has degree one. The other
vertices in G'' are vertices incident to a deleted edge in Si ,

...,Si . Since each deleted edge occurs an even number of times 1in
n

si , ...,Si , and each occurence of (uj,vj) gives rise to one edge
1 n

adjacent to uj and one adjacent to Vj’ the degree of these vertices is
even too. Q.E.D.

Note that G'' is not necessarily connected., However, one easily sees
from claim 2.1.1 that G'' must contain a connected component C which
contains both vertices of odd degree xo and x(k+1)D+1' As all other
vertices have even degree, C contains an Eulerian path from X, to
x(k+1)D+1' Since each edge in C corresponds to a path in G', we have
1
found an alternative path from X to x(k+1)D+1 in G', and hence an
alternative path from x to y. We will now estimate the length of this

path. For all 1smsn, dG(ximD'x(im+1)D+1

ysD-1, where

)SD, hence dG'(ximD’uj1)+

A (V. Uy )+ e +d . (v, ,X (u, ,v,: ),

G j1 32 | G Jr' (1m+1)D+1 31 J1

(uJ ,vJ Yy ees ,(uJ ,vj ) are the successive deleted edges on the
2 2 r r

shortest path in G from ximD to x(im+1)D+1' Taking the sum over all

m, 1Smsn gives



n-1
d., (x.,x, ) + d.,(x X Y+ £d.,, (x,, ,X . ) =
G 0- 11D‘ G (in+1)D+1 (k+1)Db+1 ne1 G' (1m+1)D+1 1m+1D
k+(k+1-n)(D-1) = (k+1)D-n(D-1)=1. Thus the total length of this

alternative path from x to y is at most n(D-1)+(k+1)D=n(D—=1) +
Q1 K ganyper¥) = (RHDID=1 4 Ao (Xqypyqay) < (kDD
n "
dG'(x(k+1)D+1’y) which was the length of the original shortest path
in G' between x and y. Hence we have a contradiction and conclude

that diameter(G')s(k+1)D. Q.E.D.

For the lower bound on f(k,D), the results depend on whether D is even

or odd.
Theorem 2.2. If D is even, f(k,D)2(k+1)D-k.

Proof. We construct a graph which attains this bound as follows. See
figure 2.2 for an example. Let p = D/2 and n={k+1)D-k. The vertices

of G are X veesX . The edges of G are (xi,xi+1) for 0s8isn—1

X
o’ 1’
plus the k to be deleted edges (xp’xp+1+i(D*1)) for 18isk. We now
show that the diameter of G is D. For each Xj with j22p+1 we can

. < 3 —
reach one of the xp+1+i(D~1)’ 18igsk in at mgst p~1 steps. The dis
tance between X541 +k (D=1) and x  1is (k+1)D~k=(p+1+k(D—=1)) = kD+D-k~p~-
1-kD+k = D~1-p = p~1. Hence we can reach xp within p steps from every
vertex xj, with j22p+1. Moreover, xO up to x2p are within p steps of
xp. Hence every pair of vertices of G is joined by a path of 1length
at most 2p=D via xp. Thus the diameter of G is D. Deleting the k

edges (xp,x 1)) for 1$isk leaves us with just the path Xgr Xy

p+1+i(D4

Figure 2.2.
Lower bound construction of theorem 2.2 for k=4 and D=8.
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ceesX which is (k+1)D~k long. Hence (k+1)D~k is a lowerbound for the

maximal value the diameter can reach for graphs with even D. Q.E.D.
Theorem 2.3. For odd D23, f(k,D)2(k+1)D-2k+2.

Proof. For odd D23 we construct a graph similar to the one in the
proof of theorem 2.2. See figure 2.3 for an example. Let p=(D-1)/2
and n=(k+1)D-2k+2. The vertices of G are Xgr Xqs seesXpe As edges we
) for 0s8isn-1, plus the k edges (x_,x ) and

i+ / P q
(xq,XQ+1+1(D42)) for 15isk-1, to be deleted, where g=3p+2. For each

take (xi,x

xJ with j2q we can reach xq in p steps as in the construction of
theore@ 2.2, as theq dispance betwgen X, and xq+1+(k*1)(Df2) is
{(k+1)D-2k+2—-(3p+2+1+(k-1)(D~2)) = 2D-2k+2-3p~3+2k=2 = 2D=3p~3 =

2(2p+1)=3p~3 = p-=1. The X, with jSp are at most p+1 steps away from

xq, as are the xj with p<j<q. Hence each xJ with jsq is at most 2p+1

xj, with j'2q. Since the xJ with p<jsq are
within p+1 steps from xp, all xj, j<q are within 2p+1 steps from each

steps distant from an

other. Hence the diameter of G is 2p+1=D, while the deletion of k
edges leaves us with a path of length (k+1)D-2k+2. Q.E.D.

Note that this construction does not work for D=1. In the next sec-
tion we derive a sharper bound for the special case that G is a com-

plete graph (i.e., the case D=1).

Figure 2.3.
Lower bound construction of theorem 2.3 for k=4 and D=T7.
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3. Bounding diameter increase for special values of k and D in undi-

rected graphs. For the special case of k=1, Plesnik [3] already
derived a best possible bound of 2D. We will derive best possible

bounds for the case of k=2 and k=3, and also for the special case of
D=1. For the proof we use twWwo lemmas about the effect of adding two,

respectively three, edges to a path of length n.

Lemma 3.1. Let the graph G be a path of length n. Let G' be a graph
obtained by adding two edges to G, and let the diameter of G' be
D. Then ns3D-1.

Proof. Let the vertices of G be xo, x1, cees Xpo Let the edges of G
be (xi,xi+1) for O0$isn-1, plus two edges (xi,xi,) and (xj,xj,).
Without loss of generality let isj, i<i', j<j'. Now i, i', J and j'
divide the path of length n into five segments of non-negative lengths
a, b, ¢, d and e. Hence a+b+c+d+e=n. Assume n23D. Since the diameter
of G' 1is D, we can derive several relations between a, b, ¢, d and e
by computing the shortest path between several points in G'. We dis-

tinguish three cases.

case 1. 1'5). a v\ e [aNe |

0 i i 3 xj, X Figure 3.1.

Clearly a=i, b=i'-i, c=j-i', d=j'-j and e=n-j'. Also

a+c+et2 S D (the distance from X, to xn),
db+crid S |2(b+1) |+e+|2(a+1) ] S D (halfway b to halfway d),
and hence a+b+3c+d+e S 3D-2. Contradiction.

Case 2. 1sj<i'<j"'. a b c d e

X X, Figure 3.2.

In this case we have a=1i, b=j-1, c=i'-j, d=j'-i' and e=n—j'. Now dis-

tinguish three subcases.
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Case 2.1. c+2=min(b+1,c+2,d+1). Then

ate+c+2 £ D (the distance from X, to xn),
b+d § 2| 3(b+1) [+2|3(d+1)] < 2D (halfway b to halfway d),
and hence a+b+c+d+e S 3D-2. Contradiction.

Case 2.2. b+1=min(b+1,c+2,d+1). Then

a+e+b+l £ D (the distance from X, to xn),
c+d s 2|3(e+1) |+2|$(d+1) ] s 2D (halfway c to halfway d),
and hence a+b+c+d+e S 3D~1. Contradiction.

case 2.3. d+1=min(b+1,c+2,d+1). This is symmetric to case 2.2.

Case 3. isj<j'si'. a b ///;\\\ d e

X X xn Figure 3.3.

Now we have a=i, b=j-i, ¢=j'-j, d=i'-j' and e=n-i'. Then

ate+l €D (the distance from Xq to xn),
de+k(b+d) s [2(c+1) |+[2(b+d+1) | S D (halfway c to halfway b+d),
and hence a+b+c+d+e £ 3D-1. Contradiction.

Since all three cases lead to a contradiction if we assume n23D, we
conclude that ns3D-1. Q.E.D.

Lemma 3.2. Let G be a path of length n. Let G' be obtained by adding
three edges to G, and let the diameter of G' be D. Then nsliD-2.

Since the proof of this lemma is completely analogous to the proof of
the previous lemma, albeit considerably longer, it is defered to the

appendix.
Theorem 3.1. f(2,D)=3D-1.

Proof. We first show that 3D-1 is an upper bound. Let G be any graph
with diameter D, and let G' be a connected graph obtained by deleting
two edges from G. Let the diameter of G' be D', and let x and y be
two vertices such that dG,(x,y)=D'. Partition the vertices of G' into
sets X, (0SisD') by defining Xi={u| d(x,u)=1i}. Notice that all these

i
sets are non empty. Let H and H' be the graphs obtained from G and
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G', respectively, by contracting each set Xi to a single vertex xi and
removing any selfloops and duplicate edges. Let the diameter of H and
H' be h and h', respectively. Then hsD and h'sD'. Since H' simply
consists of the path xo, x1,...,xD,, we have h'=D', The graph H con-
tains the path xo, x1,...,xD, and at most two additional edges. From
lemma 3.1 we know that D'<3h-1 and hence D'sS3D-1.

The following constuction shows that this bound can be achieved.

141
). It is easily seen that

Define the graph G with vertices Xy x1,...,x3D_1 and edges (xi,x
for 0si<3D-2 plus (XD'X2D) and (XD—l’x3D—1
the diameter of this graph is D. Since deleting the two edges
(xD’XZD) and (XD~1’X3D41) from G results in a path of length 3D-1, we
can conclude that f£(2,D)23D-1. Q.E.D.

Theorem 3.2. f£(3,D)=4D-2.

Proof. We use exactly the same argument as in theorem 3.1. We can
use the same projection on a path in the resulting graph G' of D'
long. With lemma 3.2 we now have D'sSiD-2.

The following construction shows that this bound can be achieved.
Define a graph G with vertices Xgs XqseeesXyp s i+1)
for 0s<igiD-3 plus (xo,x2D;1), D-1’X3D—1) and (XZD_1,qu_2). The
diameter of this graph is D. (See figure 3.4,) Since deleting the

and edges (xi,x
(x
) from G results in

three edges (xo,x2d), (x ) and (x

D-1°%3D-1 2D~1"%*4p-2
a path of length 4D-2, we can conclude that f(3,D)24D-2. Q.E.D.

Finally we consider the case D=1. We prove that if we start out with
a complete graph G=Kn of n vertices and delete a number of edges, then
the maximum diameter of the resulting graph is of a different order

than suggested by theorem 2.1. We recall that f(k,1) denotes the

9 X1y X8

Figure 3.4. Lower bound construction of theorem 3.2 for D=5.

xo XL' X
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maximum diameter of a connected graph G' which is obtained by deleting
k edges from a complete graph G. Let fn(k,1) denote the maximum diam-
eter of a connected graph G' obtained by deleting k edges from Kn.

Lemma 3.3. If one can obtain a graph G' with diameter D, 1<D<n, by
deleting k edges from K , then k 2 4D(D-1)+(D-2) (n-D-1).

Proof. Let x and y be vertices in G' with dG,(x,y)=D. Let X=Xqs X4,

«»X,=y be a shortest path from x to y. Hence d(xo,xD)=D. This

D

means that the edges (xi,x ) for 0sisD—~1 are the only edges Dbetween

i+1
vertices xi and xJ for 1i,jsD, otherwise there would have been a
shorter path from X to Xpe Hence all the other edges between these

vertices must have been deleted. This accounts for 4D(D+1)-D=iD(D-1)
deleted edges; Let the remaining vertices in G' be y1, y2, veey
Ypp-i+ If a vertex y, has edges to X, and Xg00 then |j-j'|s2,
because otherwise the path from X to Xy could have been shortened by
going over yi. Hence each Yy can have edges to at most three (con-
secutive) x-vertices. Thus the edges to the other x-vertices must
have been deleted., If, for each y-vertex, we delete the edges to the
same x—vertices, we can leave all the edges between y-vertices in G',
without having to fear for a shortcut between x, and x_. over y-

0 D
vertices. Hence k 2 4D(D-1)+(D-2) (n-D-1). Q.E.D.

Lemma 3.4, fn(k,1)= Ln+§—\J(n+%)2+M—Mn—2kJ for ks(n-1)(n-2),
undef ined otherwise.

Proof. Since the maximum number of edges we can delete from a com-
plete graph on n vertices without necessarily disconnecting it is
4(n-1) (n-2), we have
f, (k,1)=max{D|Dsn-1, 4D(D-1)+(D-2)(n-1-D)sk, #(n-1)(n-2)2k}.

Let g:R»R be the function given by g(D)=D(D-1)+(D-2)(n—-1-D). g'(D) =
-D+n+4 hence g'(D)=0 for D=n+4. Thus the function g is increasing for
all Dsn-1. Since 4(n-1)(n-2)=g(n-1), £k, 1) = max{D|Dsn-1, g(D)sk,
4(n-1) (n-2) 2k} = max{D|g(D)sk}. g(D)-ks0 implies Dsn+i-

, -
\J(n+})2+u—un—2k. Since the value of fn(k,1) is an integer, we have
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£ (k,1)= Ln+§—\j}n+%)2+u—un42kj for ksi(n-1)(n-2),
undefined otherwise.
Q.E.D.

Theorem 3.3.

f(k,1)=L[\|2k+¥‘+1g]+g~\fk[\|2k+¥ +1g]+%)2+u-u[\|2k2¥'+1¢]42k].

Proof. f(k,1)=max{fn(k,1)|k$%(n—1)(n—2)}. Since kst (n-1) (n-2)
n
implies 2k+%s(n—1%)2, we have n2\J2k++ +14 and

f(k,1)=max{fn(k,1)|n2\|2k+% +14}. Let h:R»R be the function defined
n

by h(n)=n+§4\J(n+})2+u4un42k:

Since h'(n)=1- 2n-3 , we have h'(n)sSO for 2n-3 2
| 2\[ (n+2)2+4-tn-2k

2\](n+§)2+44un—2k: which inequality is true for k21. Hence the func-

tion h is decreasing in n, and f(k,1) = max{Lh(n)J|n2\|2k:¥ +14} =
n

[h(T\Zx*F +14])].  Q.E.D.

Note that the function f(k,1) is neither monotone increasing nor mono-
tone decreasing. For example f(6,1)=U while £(7,1)=3. This is due to
the fact that £(6,1) is obtained in a complete graph with 5 vertices,
while we need to start with a complete graph with 6 vertices to ensure
that the resulting graph is connected if we delete 7 edges.

y, General bounds on diameter increase for directed graphs. The

problem of bounding the diameter of directed graphs after some edges
are deleted turns out to be much simpler. Let g(k,D) denote the max-
imum diameter of a strongly connected directed graph G' which can be
obtained by deleting k edges from a directed graph G with diameter D.

Theorem 4.1. Let D23 and k21. There exists a strongly connected
directed graph G', which is the result of deleting k edges from a
directed graph G=(V,E) with diameter D, such that
diameter(G')=|V|-1.
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Proof. The largest diameter any strongly connected directed graph on
n vertices can have, 1is n-1. This is clear by the example of a
directed cycle on n vertices. The fact that this bound can be reached
even for k=1 is shown by the following construction. Let the vertices
of G be X, ;"’X(D;Z)m’ and the edges (XO’X(DQZ)m)’ (Xi’xi+1) for
0sig(D-2)m~1, (x(Déz)m
1$ism1. See figure 4.1 for an example. The diameter of G is D,

,xi) for 0sis(D-2)m-1 and (x(D42)i'x0) for

since from each X, we can reach some vertex X (D=2) j in at most D-3
steps, from where we need one step to reach xo, one more to reach
x(D—Z)m and finally one step more to reach any other Xjpe However, if
we delete the edge (xo,x(D;z)m), the only way to get to x(DFZ)m from
X is along the path x1, x2, x3, ... . Hence the diameter becomes

0
(D-2)m. Q.E.D.

Theorem 4.1 implies that in general g(k,D) is not bounded in terms of
k and D, for D23. We can derive better results for D=1 and D=2. As
in the undirected case, we first count the number of edges we need to
delete from a complete directed graph with n vertices to arrive at a

graph with a diameter of n-1.

Lemma 4.1. In order to obtain a strongly connected graph G' with
diameter n-1 by deleting k edges from a complete directed graph
with n vertices, it is necessary that 1(n-1)(n-2) s k s n(n-2).

Figure 4.1. Lower bound construction of theorem 4.1 of a graph with 9
vertices with diameter 4.
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Proof. Since a complete directed graph with n vertices contains n(n-
1) edges, we can delete at most n(n=1)-n=n(n-2) of the edges without
disconnecting the graph. Let x and X be two vertices in G' with

1
d(x1,xn)=n~1, and ;et Xys Xp ceesXy be a shortest path from X, to X,e
Thus all edges (xi,xj) with j>i+1 must have been deleted, otherwise
x1, X5 ..;,xn would not have been a shortest path. Hence we must at

least delete 4(n-1)(n-2) edges. Q.E.D.

Theorem 4.2. g(k,1) = [\[2k+¥ +4].

Proof. Since 3(n-1) (n=2)<n(n-2) we can conclude from lemma U4.1 that
3(n-1) (n=2) sk<4n(n-1) implies g(k,1)2n-1. Since we can apply the
proof of the lower bound of k in lemma 4.1 to any complete directed
graph, and not only to a complete directed graph with n vertices, we
conclude g(k,1)2n-1 implies k24(n-1) (n-2).  Hence k2t(n-1) (n-2) <=
g(k,1)2n-1 and thus g(k,1)=n-1 for all k such that
3(n-1) (n~2) Sk<4n(n-1) . Hence (n—1-§)2 s 2k+: < (n—%)2 and n-1

\J2k+F' +4 < n s0 n-1=| \[2k+3 +4]. Thus g(k, )=/ \J2k+% +4]. Q.E.D.

Next we consider the case D=2.

Lemma 4.2. Let G be a strongly connected directed graph on n+1 ver-
tices with diameter n. Let G' be obtained by adding k edges to
G, and let the diameter of G' be 2. Then ns2k+2.

Proof. Let x, and x Dbe two vertices in G with d(xo,xn)=n, such that
the shortest path from xo to xn is xo,x1, ...,xn. Hence the only
edges (xi,xj) with j>1 that G can contain are (xi,xi+1). So all edges
(xi,xj) in G' with j>i+1 must be one of the k added edges. Let Xy be
the lowest numbered vertex that has no edge (xi,xj) with j>i+1, Since
the diameter of G' is two, we must be able to reach every other vertex
in two steps from xi; Hence we need edges (xj,,xj) with j>»j'+1 for
all j with i+38jsn, since these vertices could not be reached in two
steps from xi in G. Thus we have kz2i (1'<i implies there is an edge

(xi,,xj) with j>1'+1) and k2 n-(i+3)+1=n-2-1 (i'21+3 implies there is
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an edge (Xj’xi') with i'>j+1). So 2k2n-2 and ns2k+2. Q.E.D.
Theorem 4.3. g(k,2) = 2k+2.

ggggg. We first show that 2k+2 is an upper bound. Let G Dbe any
strongly connected directed graph with diameter two, and let G' be a
strongly connected directed graph obtained from G by deleting K
edges. Let the diameter of G' be D', and let x and y be two vertices
with d , (x,y)=D". Partition the vertices in G' into sets Xi (0gisDp")
by setting X ={u|dG,(x u)=1i}. Notice that all these sets are non
empty. Let H and H' be the graphs obtained from G and G' respec-
tively, by contracting each set Xi to a single vertex Xy and removing
any selfloops and duplicate edges. Let the diameter of H and H' be h
and h' respectively; Then hs2 and h'sD'. Since H' consiéts of the
path on xo, x1, ...,xD, and some edges (xi,xj) with j<i, h'=D'. H

consists of the path Xy eeesX

X
1°? D!
in H', and at most k additional edges. From lemma 4.2 we know that if

, some edges (xi,xj) with j<i as

h=2, then h's2k+2. Since it is clear that we need to add even more
edges ta get h=1, we can conclude from hs2, h's2k+2. Hence D' £2k+2.

The following construction shows that this bound can be achieved. See
figure 4,2 for an example. Let the vertices of G be Xy corrXopyno
with edges (xi,xi 1) for 0sis2k+1, (x ,xj) for 05j<is2k+2 and the k to
be deleted edges (xi,x2k+2 i) for 0Sisk-=1. It is clear that if we
delete those k edges, the diameter becomes 2k+2. That the diameter of

" the original graph is two, {s clear if we note that a path between any

all edges "back"

Figure 4.2. Lower bound graph for theorem 4.3 for 9 vertices and k=3.
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two vertices can always be made by either one edge n"pback" eventually
followed by one edge nforward", or by one edge nforward" eventually
followed by one edge nphack". (There is one exeption: from xk to Xk+2

we need two edges forward.) Q.E.D.

5. NP-complete problems related to edge deletion and diameter bounds.

We now consider several related problems and prove that they are
NP-complete; For all preliminaries from the theory of NP-completeness

we refer to Garey and Johnson [21.

Theorem 5.1. The following problem is NP-complete.
[MINIMUM DIAMETER EDGE DELETION]
Instance : k,DeN+, a connected graph G=(V,E).
Question : Can we obtain a connected subgraph G' of G by deleting
k edges from G, such that G' has a diameter of at
least D?

gzggg. It is easy to see that the problem is in NP, since we can
guess the k edges to delete and compute the diameter of G' in polyno~
mial time. To prove NP-completeness we use a polynomial transforma-
tion from the HAMILTONIAN PATH problem. Let a graph G=(V,E) be given.
G contains a Hamiltonian path if and only if G has a connected sub—
graph G' with |V|-1 edges and diameter D=|V|=1 (G' is a path). So by
choosing k=|E|=(|v|~-1) and D=|V|-1 we have a reduction from HAMIL-
TONIAN PATH to MINIMUM DIAMETER EDGE DELETION. Hence the latter prob-
lem is NP-complete. Q.E.D.

Theorem 5.2. The following problem is NP-complete.
[MAXIMUM DIAMETER EDGE ADDITION]
Instance : k,DeN+, a connected graph G.
Question : Can we obtain a supergraph G' of G by adding k edges
to G, such that G' has a diameter of at most D?

Proof. This problem is in NP because we can guess which k edges to

add to get G', and then compute the diameter of G' in polynomial time.
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To prove NP-completeness we use a polynomial transformation from a
variant of EXACT COVER BY 3-SETS (X3C). X3C is the following problem:

[x3C]

Instance : Set X with |X|=3q and a collection C of 3-element subsets
of X.

Question : Does C contain an exact cover for X, i.e., a subcollection
C'cC such that every element of X occurs in exactly one
member of C'?

X3C is NP-complete (see Garey and Johnson [2]). We use a variant of
X3C which is clearly equivalent with X3C, and hence also NP-complete.

Instance : Set X with |X|=3q and a collection C of 3-element subsets
of X such that each element of X occurs in at least one
member of C.

Question : Does C contain a cover for X, i.e., a subcollection C'cC
with |C'|=q, such that every element of X occurs in at

least one member of C'?

Let an instance of this latter problem be given. We will construct a
graph G such that we can obtain a supergraph of G with diameter at
most three by adding q edges, if and only if C contains a subset C'cC
with |C'|=q such that every element of X occurs in at least one member
of C'. So we take D=3 and k=q. Let G=(V,E) be as follows (see figure
5.1). Let |[C|=n.
V={x1, .;.,x3q; Yys =oes¥oqus Gy .+esc, @ and b}.
Es{(ci,cj) for 18i<jsn, (xi,cj) if xieCj,

(b,yi) for 15i£2q+1, (01,a) and (a,b)}.

Claim 5.2.1. C contains a subset C'=C with [C'|=q such that every
element of X occurs in at least one member of C', if and only if
G has a supergraph with diameter at most three obtained by adding
q edges.
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(c-vertices form a clique)

/\

y1 e o -y2q+1

Figure 5.1. Graph used in proof of theorem 5.2.

Proof. Suppose C contains such a subset C'. Now we add the following
edges to G: (b,ci) if cieC'. This are exactly q edges. The diameter
of the resulting graph is three, since the distance from b to any xj
is two via the proper (b,ci). Conversely, suppose G has such a super-
graph. Since there are 2q+1 y-vertices, there is at 1least one Yi
which is not incident with one of the q added edges. Hence the shor-
test path from ¥y to any xj contains b. Thus the distance from b to
any xj is at most two. Hence for every xj we must either have an edge
(b,xj) or an edge (b,c,,) for a Cj' such that xjeCJ,. Suppose there
are s edges of the type (b,xj) and t edges of the type (b,cj). This
gives us at most s+3t x—vertices at distance two from b. Since |X]=3q
and s+tsq, we have s=0. Define C'={ceC|there is an edge (b,c)}.
|C'|=t$q. Furthermore, since every x—-vertex has distance two to b, it
nust have an edge to a ceC'. Hence |C'|=q and C' is the desired cover
of X. Q.E.D.

Finally note that G can be constructed in polynomial time in the size
of X, given an instance of the "cover by 3-sets" problem. Hence the
MAXIMUM DIAMETER EDGE ADDITION problem is NP-complete. Q.E.D.

Note that in the results of theorem 5.2 we can even take D=3, fixed.
However, if we fix Xk, then the problem is polynomially solvable in
time exponential in Kk, but polynomial in the size of G).



- 19 =

Theorem 5.3. The following problem is NP-complete.
[DIRECTED MINIMUM DIAMETER EDGE DELETION]
Instance : k,deN+, a strongly connected directed graph G.
Question : Can we obtain a strongly connected directed subgraph
G' of G by deleting k edges from G such that G' has a
diameter of at least D?

Proof. The proof is very similar to the proof of theorem 5.1, and
uses a polynomial transformation from DIRECTED HAMILTONIAN CIRCUIT.
Q.E.D.

Theorem 5.4. The following problem is NP-complete.
[DIRECTED MAXIMUM DIAMETER EDGE DELETION]
Instance : k;DeN+, a strongly connected directed graph G=(V,E).
Question : Can we obtain a strongly connected subgraph G' of G by
deleting k edges from G, such that G' has a diameter

of at most D?

Proof. Similar to the proof of theorem 5.2. Q.E.D.

Theorem 5.5. The following problem is NP-complete.
[DIRECTED MAXIMUM DIAMETER EDGE ADDITION]
Instance : k,DeN+, a strongly connected directed graph G.
Question : Can we obtain a supergraph G' of G by adding k edges
to G, such that G' has a diameter of at most D?

Proof. Analogous to the proof of theorem 5.2. Let |c]=n. The
directed graph G=(V,E) is now defined as:
v={x,, ..;,x3q, ¥y ’;"y2q+1’ Cys eesCpy @ and b}.
E={(°1'°J) for 15i,jsn, i=#j, (ci,b) for 18isn,
(xi,cj) and (cj,xi) if xieCJ, (01,a), (a,c1),
(b,yi) and (yi,b) for 1sis2q+1, (a,b) and (b,a)}.
Q.E.D.
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Agpendix: the detailed proof of lemma 3.2.

Let G and G' have as vertices xo, x1, ey xn. Let G have as edges
(xi,xi+1) for 0sisn-1. Let G' have the edges of G plus three edges
(x4 0%44 )5 (xj,xj,) and (X ,Xp,)- Without loss of generality let iKi',
j<j', h<n'  and isjsh. Now i, 1Y, J, j', h and h' divide the path of
length n into seven segments of non-negative lengths a, b, ¢, d, e, T
and g. Hence a+b+c+d+e+f=n. Assume nzlD-1. As in the proof of lemma
3.1 we derive several relations between a, b, ¢, d, e, £ and g, based
on the fact that the diameter of G' is D. Now we distinguish fifteen

cases.

Case 1. 1<i'$3§<j'sh<n'. ._a [N\ ¢ [ o e TN\ g

Xg X3 X %y X5 ¥p Xpr Xp

Clearly a=i, b=i'-i, e=j-i', d=j'-j, e=n-3', f=h'-h and g=n-h'. Also

atc+e+g+3 S D (the distance from X, to xn),
ib+crdd $ [2(b+1) |+e+[3(d+1) ] S D (halfway b to halfway d),
Jd+rerdf S [2(d+1) Jves|2(£+1) ] S D (halfway d to halfway f),

Jbtc+l+erdf S [4(o+1) J+c+1+es|2(£+1) | S D (halfway b to halfway f),
and hence a+b+3c+d+3e+f+g S 4D-L. Contradiction.

Case 2. 15j<i'sj'sh<n'. _a /b o\ d\ e N\ g

Now we have a=i, b=j-i, c=i'-J, d=j'-i', e=h-j', f=h'-h and g=n-h'.
We distinguish three subcases.
Case 2.1. c+2=min(b+1,c+2,d+1). Then

a+c+2+e+l+g S D (the distance from X, to xn),
dp+dd S [2(b+1) +|2(a+1)] S D (nalfway b to halfway d),
Jbrerdf S [2(b+1) J+er[2(r+1) ] S D (halfway b to halfway f),
Jd+erdf S [3(d+1) J+e+|2(e+1) ] S D (nalfway d to halfway f),

and hence at+b+c+d+3e+f+g = yp-3. Contradiction.
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Case 2.2. b+1=min(b+1,c+2,d+1). Then

at+b+l1+e+l+g S D (the distance from Xq to xn),
de+dd S [4(c*1) |+[$(a+1)] £ D (halfway ¢ to halfway d),
jo+rerdf S |H(c+1) J+ver[3(£+1)] S D (halfway ¢ to halfway f),
dd+erdf § |2(a+1) J+e+|H(£+1) ] < D (halfway d to halfway f),

and hence atb+c+d+3e+f+g S 4p-2. Contradiction.
Case 2.3. d+1=min(b+1,c+2,d+1). Then

ard+l+e+l+g S D (the distance from x, to xn),
db+ke S [2(p+1) J+|2(c*)] S D (halfway b to halfway c),
tb+e+df S [2(b+1) J+er|2(£+1) ] S D (halfway b to halfway f),
Jore+df S |2(c+1) |rer|2(£+1) | S D (nalfway c¢ to halfway f),

and hence a+b+c+d+3e+f+g S 4D-2. Contradiction.

Case 3. 1Sj<j'<i'sh<h'. a /b /e d\ e /N g

Now a=i, b=j-i, c=j'-j, d=i'-j', e=h-i', f=h'-h and g=n—-h', Then

a+e+g+2 S D (the distance from X, to xn).
2(b+d+1)+ke S [$(b+d+2) [+{F(e+1)] S D (nalfway b+d to halfway c),
+(b+d+1)+e+df S [$(b+d+2) [+e+|4(£+1) | s D (halfway b+d to halfway f),
Jorerdf $ |4(c+1) J+es|2(e+1) ] <D (halfway c to halfway f),

and hence a+b+c+d+3e+f+g = 4p-3. Contradiction.

Case U, 15j<j'sh<i'sh'. _a /b o\ d Se £\ &g

Now a=i, b=j-i, c=j'=j, d=h-j', e=i'=h, f=h'-i' and g=n-h'. We dis-
tinguish three subcases.
Case 4.1. e+2=min(b+d+2,e+2,f+1). Then
at+e+2+g S D (the distance from X, to xn),
A(b+d+e+1)+dec S [2(b+a+e+2) [+|4(c+1) | s D

(halfway b+d+e to halfway c),
Jo+df S [d(e+) J+[3(e+1) ] S D (halfway ¢ to halfway f),
3£+4(b+d+1) S |[3(£+1) [+ F(0+as2) | S D (halfway £ to halfway b+d),
and hence atb+c+d+ide+f+g S 4D-3. Contradiction.




—23_.

Case 4.2. b+d+2=min(b+d+2,e+2,f+1). Then

a+b+d+2+g S D (the distance from X, to xn),
derdf S [2(e+) J+[3(e+1)] S D (halfway c¢ to halfway f),
jo+rde S |3(e+1) |+[2(e+1) ] s D (halfway ¢ to halfway e),
Je+df S |d(e+1) J+|2(£+1)] s D (halfway e to halfway f),

and hence a+b+c+d+e+f S UD-2. Contradiction.
case 4.3. f+1=min(b+d+2,e+2,f+1). Then

a+f+1+g S D (the distance from Xq to xn),
2(b+d+1)+ke S [2(b+d+2) [+[(c+1)] <D (halfway b+d to halfway c),
jo+pe s [d(c+1) [+[2(e+1) ] S D (halfway ¢ to halfway e),
$(b+d+1)+de S |H(b+d+2) J+|H(e+1) ] S D (halfway b+d to halfway e),

and hence a+b+c+d+e+f S 4D-2. Contradiction.

Case 5. 1$j<j'sh<h'<i'. a b/ o\ d /e £\ 8 |

Now a=i, b=j4i, c=j'-j, d=h~j', e=h'-h, f=i'-h' and g=n—-i'. Then

arh(b+d+f+2) S a+|4(p+d+f+3)] S D (x, to halfway b+d+f),
g+L(b+d+£+2) S g+|4(b+d+f+3)] S D (x, to halfway b+d+f),
c+e $ 2| 2(e+1) |+2|2(e*1) ] s 2D (halfway c to halfway e),

and hence at+b+c+d+e+f S yp-2. Contradiction.

Case 6. i<i'sjsh<j'<n'. a/ D\ c/d e\ N\ 8

Symmetric to case 2.

Case 7. isj<i'sh<j'sh’'. a b c d e f g

Now a=i, b=j-i, ¢=i'-j, d=h-i', e=j'-h, f=h'-j' and g=n-h', We dis-

tinguish five subcases.
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Case T.1. b+f+1=min(b+f+1,c+e+3, b+et+2,c+f+2, d+2). Then

atb+f+i+g S D (the distance from X, to x, ),
de+te s |3(c+1) J+|d(er1) | s D (halfway ¢ to halfway e),
1(d+1)+e s [4(d+2) |+[3(e+1) | S D (halfway c¢ to halfway d (e21)),
1(d+1)+ke s |3(d+2) [+[4(e+1) ] S D (halfway e to halfway d (e21)),

and hence a+b+c+d+e+f S 4D-2. Contradiction.

Case T.2. c+e+3=min(b+f+1,c+e+3, b+e+2,c+f+2, d+2). Then

atc+e+3+g S D (the distance from X, to x. ),
ib+dd $ [2(b+1) |+[2(d+1) ] s D (halfway b to halfway d),
Jb+3f S [2(b+1) +[2(£+1) ] S D (halfway b to halfway f),

d+3f S [2(av1) [+ 3(e+1) ] S D (halfway d to halfway f),
and hence a+b+c+d+e+f S 4p-3. Contradiction.
Case T.3. b+e+2=min(b+f+1,c+e+3,b+e+2, c+f+2,d+2). Then

a+b+e+2+g S D (the distance from Xq to X, ),
de+dd $ [2(e+1) J+[2(a+1) ] s D (halfway ¢ to halfway d),
dordf S [3(e+t) |+ 3(£+1)] S D (halfway ¢ to halfway f),
2d+3f < [3(d+1) [+ 2(e+1) ] S D (halfway d to halfway f),

and hence a+b+c+d+e+f S 4p-2. Contradiction.

Case 7.4, c+f+2=m1n(b+f+1,c+e+3,b+e+2,c+f+2,d+2).

Symmetric to case 7.3.

Case 7.5. d+2=min(b+f+1,c+e+3,b+e+2,c+f+2,d+2). We distinguish four
subcases.

Case 7.5.1. b+f+1=min(b+f+1,c+e+3,b+e+2,c+f+2). Then

ar(b+f+d+2) S a+|4(b+f+d+3) | S D (x, to halfway b+f+d),
g+i(b+f+d+2) S g+|3(b+f+d+3)] S D (x, to halfway b+f+d),
c+e s 2|2(e+1) j+2[2(e+1) ]| s 2D (halfway ¢ to halfway e),
and hence a+b+c+d+e+f S UD-2. Contradiction.

Case T7.5. 2. c+e+3=min(b+f+1,c+e+3,b+e+2, c+f+2). Then

a+1+h(crerd) S a+1+[d(crerds1)] S D (x, to halfway c+d+e),
g+l +h(crerd) S g+i+|d(crerd+1)] S D (xn to halfway c+d+e),
per+2 S 2| 2(b+1) J+2+2| 2(£+1) ] S 2D (halfway b to halfway f),

and hence at+b+c+d+e+f S 4p-4. Contradiction.
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Case 7.5. 3. b+e+2=min(b+f+1,c+e+3, b+e+2,c+f+2). Then

a+d(bre+d+1) S a+|d(b+e+d+2)| S D (xo to halfway b+d+e),
g+1+k(b+e+d+1) < g+1+|2(b+d+e+2) ] S D (x, to halfway p+d+e),
e+t s 2|3(c+1) [+2]3(£+1) ] s 2D (halfway ¢ to halfway f),
and hence a+b+c+d+e+f 2 4p-2. Contradiction.
Case 7.5.4. c+f+2=min(b+f+1,c+e+3,b+e+2,c+f+2).
Symmetric to case 7.5.3.
Case 8. isjsh<i'sj'sh'. ,a b C d e f g

Xo X3 X5 ¥y Xio Xy Xy X,

Now a=i, b=j-i, c=h-j, d=i'-h, e=j'-1', f=h'-j' and g=n-h'. We dis-
tinguish five subcases.

Case 8.1. b+f+1=min(b+f+1,cte+3,b+c+l, e+f+1,d+2). Then

a+b+f+g+1 S D (the distance from X, to X, )
de+dd L%(c+1)J+L%(d+1)J <D (halfway ¢ to halfway d),
}(cve+1) S [H(cter2)| S D (nalfway ¢ to halfway e (d21)),
4d+ye S |3(a+1) J+|$(e+) | s D (nalfway d to halfway e),

and hence a+b+c+d+e+f S 4D-14. Contradiction.
Case 8.2. c+e+3=min(b+f+1,cte+3,b+c+l,e+f+1, d+2). Then

at+c+e+g+3 S D (the distance from %o to x ),
1b+dd S |2(b+1) J+|2(a+1) | s D (nalfway b to halfway d),
Jo+3f S [2(b+1) [+ 4(£+1)] S D (halfway b to halfway f),
2d+bf S [4(a+1) J+|2(£+1) ] S D (halfway d to halfway f),

and hence a+b+c+d+e+f S 4D-3. Contradiction.
Case 8.3. b+c+1=min(b+f+1,c+e+3,b+c+l ,e+f+1, d+2). Then

a+b+c+g+l S D (the distance from X, to xn),
dd+ke S [2(d+1) [+ 2(e+1) ] S D (halfway d to halfway e),
3d+f s [2(a+1) [+ 2(e+1) ] S D (halfway d to halfway f),
$(e+f+1) S |d(e+f+2)| S D (halfway e to halfway f (d21)),

and hence atb+c+d+e+f S 4D-14. Contradiction.
Case 8.4, e+f+1=min(b+f+1,c+e+3,be+l, e+f+1,d+2).

Symmetric to case 8.3.
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Case 8.5. d+2=min(b+f+1,c+e+3,b+c+1,e+f+1,d+2). We distinguish four

subcases.

Case 8.5.1. b+f+1=min(b+f+1,c+e+3,b+c+l,e+f+1). Then

a+k(b+f£+d+2) S a+|3(b+f+d+3)] S D (x, to halfway b+d+f),
g+i(b+f+d+2) S g+|2(b+f+d+3) ] S D (x, to halfway p+d+f),
cte+! s 2|2(c+e+2) | s 2D (halfway ¢ to halfway e (d21)),

and hence a+b+c+d+e+f S UD-2. Contradiction.

Case 8.5.2. c+e+3=min(b+f+1,c+e+3,b+c+1,e+f+1). Then

a+1+k(c+d+e) S a+1+|(c+d+e+1) ] S D (x, to halfway c+d+e),
g+l +i(c+d+e) S g+1+|2(c+d+e+1) ] S D (x, to halfway c+d+e),
b+f S 2| 2(b+1) |+2|2(F+1) ] S 2D (halfway b to halfway f),

and hence a+b+c+d+e+f S 4D-2. Contradiction.
case 8.5.3. b+c+l=min(b+f+1,c+e+3,b+c+l,e+f+1). Then

a+}(b+c+d) S a+|d(b+c+d+1)]| S D (x, to halfway p+c+d),
g+ +h(b+c+d) S g+i+|4(b+erd+1) ]| S D (x, to halfway bic+d),
e+f+1 s 2| 2(e+f+2) | < 2D (halfway e to halfway f (d21)),

and hence a+b+c+d+e+f S 4D-2. Contradiction.
Case 8.5.14. e+f+1=m1n(b+f+1,c+e+3,b+c+1,e+f+1).
Symmetric to case 8.5.4.

Case 9. isjsh<j'<i'<n'. a b c d e f g

Now a=i, b=j-i, c=h-j, d=j'~h, e=i'-J', f=n'-i' and g=n-h'. We dis-
tinguish five subcases.

Case 9.1. b+c+1=min(b+c+1,b+d+2,e+d+2,e+c+3,f+1). Then

a+b+c+g+l S D (the distance from X, to xn),
2d+de s |2(d+1) J+[3(e*1)] S D (halfway d to halfway e),
$(d+f+1) S |$(a+f+2) ] S D (halfway d to halfway f (e21)),
J(e+f+1) S [2(e+£+2) | < D (nalfway e to halfway f (d21)),

and hence a+b+c+d+e+f S UD-2. Contradiction,
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Case 9.2. b+d+2=min(b+c+1,b+d+2,e+d+2,e+c+3,f+1). Then

a+b+d+g+2 $ D (the distance from Xy to xn),
de+de < [2(c+1) |+ (e+1) ] s D (halfway ¢ to halfway e),
dordf S [2(e+) |+[2(£+1) ] S D (halfway ¢ to halfway f),
J(e+f+1) S |2(e+f+2) ] <D (nalfway e to halfway f (d21)),

and hence at+b+c+d+e+f < 4D-24. Contradiction.

Case 9.3. e+d+2=min(b+c+1,b+d+2,e+d+2,e+c+3,f+1). Then

atetd+g+2 S D (the distance from Xq to Xn)’
ib+de < L%(b+1)J+L%(c+1)J <D (halfway b to halfway c),
3b+3f < |[2(b+1) J+[2(£+1) | s D (halfway b to halfway f),
derdf S [3(e+1) J+[2(£+1)] S D (halfway c to halfway f),

and hence a+b+c+d+e+f £ 4D-2. Contradiction.

Case 9.4, e+c+3=min(b+c+1,b+d+2,e+d+2,e+c+3,f+1). Then

atetc+g+3 S D (the distance from Xq to xn),
3b+dd < |[2(b+1) [+[2(a+1) ] £ D (halfway b to halfway d (e21)),
4b+3f < [2(p+1) [+ 2(F+1) ] S D (halfway b to halfway f),
2d+3f S |E(a+1) [+#[3(£+1) ] S D (halfway d to halfway f),

and hence a+b+c+d+e+f < 4D-3. Contradiction.
Case 9.5. f+1=min(b+c+1,b+d+2,e+d+2,e+c+3,f+1). We distinguish four
subcases.

Case 9.5.1. b+c+1=min(b+c+1,b+d+2,e+d+2,e+c+3). Then

ark(b+c+f+1) S a+r|d(b+c+f+2)| £ D (x, to halfway brc+f),
g+i(b+c+f+1) S g+|2(b+c+f+2) | S D (x, to halfway p+c+f),
e+d+l £ 2L%(e+d+2)J g 2D (halfway e to halfway d (f21, b+cz21)),

and hence atb+c+d+e+f S 4p-2. Contradiction.

Case 9.5.2. b+d+2=min(b+c+1,b+d+2,e+d+2,e+c+3). Then

a+k(b+d+f+2) S a+|4(b+d+f+3)] <D (x, to halfway b+d+f),
g+L(p+d+f+2) S g+|(b+d+£+3)] S D (x, to halfway b+d+f),
cte § 2|2(c+1) |+2|2(e+1) | s 2D (halfway ¢ to halfway e),

and hence atb+c+d+e+f £ yp~2. Contradiction.

Case 9.5.3. e+d+2=min(b+c+1,b+d+2,e+d+2,e+c+3). Then

a+1+3(d+e+f) S a+l+|3(d+e+f+1)]| S D (x, to halfway d+e+f),
g+i(d+e+f) < g+|+(d+e+f+1) | S D (x, to halfway d+e+f+1),
b+c+l s 2|2(b+c+2) | S 2D (halfway b to halfway c),

and hence a+b+c+d+e+f S 4D-2. Contradiction.
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Case 9.5.4. e+c+3=min(b+c+1,b+d+2,e+d+2,e+c+3). Then

at1+h(cre+f+1) S a+l+|d(crerf+2)]| S D (x, to halfway c+e+f),
grh(cte+rf+1) S g+|d(crerf+2)| s D (x, to halfway c+e+f),
b+d S 2| 4(b+1) [+2|+(d+1) | s 2D (halfway b to halfway d),

and hence a+b+c+d+e+f S 4D-2. Contradiction.

Case 10. isjsh<j'sh'si'. a b C d eN f g

Now we have a=i, b=j~i, e¢=h-j, d=j'~h, e=h'-j', f=i'-h' and g=n-1i'.
We distinguish three subcases.
Case 10.1. d+2=min(d+2,c+1,e+1). Then

a+d(b+d+f+2) S a+|3(b+d+f+3)] S D (x, to halfway b+d+f),
g+i(b+d+f+2) S g+|d(b+d+f+3)]| < D (x, to halfway b+d+f),
cte S 2| 2(c+1) |+2|2(e*1) | S 2D (halfway c to halfway e),

and hence a+b+c+d+e+f S 4D-2. Contradiction.
Case 10.2. c+1=min(d+2,c+1,e+1). Then

a+ max min(b+1+d~k,f+2+k,b+c+k,f+1+e+d-k) S D (x. to somewhere in d):
0
0sksd
We distinguish six subcases.

Case 10.2.1. f+esb, f+2sb+c, d+2se+1. Then

a+f+d+2 = a+ max min(f+2+k,f+1+e+d-k) S D,
0sksd
g+f+c+l S D (the distance from X to xj),

b+e S 2| 2(b+1) |+2|$(e+1) | s 2D (halfway b to halfway e),
and hence a+b+c+d+e+2f+g S 2D-3. Contradiction.

Case 10.2.2. f+esb, f+2sb+c, e+1sd+2. Then

a+f+3(e+d) S a+ max min(f+2+k,f+1+e+d~k) S D,

0sksd ,

g+f+c+l S D (the distance from X to xJ),
db+dd < [E(b+1) J+#[2(d+1) | s D (halfway b to halfway d),
1(b+e+1) s [$(b+e+2) | <D (halfway b to halfway e (d21)),

and hence at+b+c+d+e+2f+g < 4D-14. Contradiction.
Case 10.2.3. f+esb, f+2>b+c.

Thus f+e+csb+c<f+2 and hence c=0 which gives case 15.
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Case 10.2.4, f+edb, f+2sb+c. Then
a+1+4(b+d+f) S a+ max min(f+2+k,b+1+d~k) s D,

0sksd
g+i(f+e+b+1) S g+ max min(b+2+k,f+e~k) £ D (xn to somewhere in e),
Oskse
dc+le s [d(c+1) |+el S D (halfway ¢ to halfway e (dz21)),
Fd+3f S [2(a+) J+[2(f+1) ] S D (halfway d to halfway f),-

and hence at+b+c+d+e+f S UD-14. Contradiction.
Case 10.2.5. f+edb, fsb+c+2<f+4. Then
a+b+}(d+c) < a+ max min(b+c+k,b+1+d-k) S D,

0sksd
g+i(f+e+tb+1) S g+ max min(b+2+k,f+e~k) S D (xn to somewhere in e),
0skse
A(b+£+d+2) S |(b+£+d+3)| S D (nalfway d to halfway b+f),
Je+de < |[2(c+1) J+[4(e+1) | 5D (halfway ¢ to halfway e (d21)),

and hence a+1}b+c+d+e+f+g < 4D-14. Contradiction.
Case 10.2.6. f+edb, f>b+c+2. Then

a+b+}(d+c) S D,

g+b+1+h(c+e+1) S g+ max min(b+2+k,b+c+2+e~k) S D

0skse
(xn to somewhere in e),
2a+df < | 2(a+1) J+[2(£+1) ] S D (halfway d to halfway f),
de+df < |d(e+1) J+[2(£+1) ] S D (halfway e to halfway f),

and hence a+2b+c+d+e+f+g $ UD-14. Contradiction.

Case 10.3. e+1=min(d+2,c+1,e+1). Symmetric to case 10.2.

Case 11. i<i'sSjsh<h'<j'. a /DN ec 4/ e\ f\ &

Xy X3 Xy xJ Xy X xj, X,
Symmetric to case 3.
Case 12. 15j<i'sh<h'<{j"'. a b c d ,//E*\\ f g
Xy X4 xj Xiv Xy X xJ, X,
Symmetric to case U.
Case 13. isjsh<irsh'<j'. a b c d e £ g
Xg Xy xJ Xy Xgr X Xj' X,

Symmetric to case 9.



Case 14. 1Sjsh<h'<i'sj'. a /b /c/aN\e\ £\ g

Now a=i, b=j—-i, c=h~j, d=h'-h, e=i'-h', f=j'-i' and g=n-j'. We dis-
tinguish four subcases.

Case 14.1. e+1sb+c, c+1sf+e. Then

ate+1+3d S a+e+1+|2(d+1)] <D (x0 to halfway d),
gre+i+id S gre+1+|[2(d+1) ] S D (x_ to halfway d),
b+f S 2| 2(b+1) |+2|2(£+1)] S 2D (halfway b to halfway f),

and hence a+b+c+d+e+f S 4D-2, Contradiction.

Case 14.2. e+1sb+c, c+1>f+e. Then

ate+1+3d < ate+1+|4(d+1) | S D (x, to halfway d),
g+f+e+dd S gef+er|2(d+1) | <D (x, to halfway d),
bre+l S 2| 4(b+1) |+2|4(e+2) ] S 2D (halfway b to halfway c),

and hence a+b+c+d+2e+f+g S UD-2. Contradiction,

Case 14.3. e+1>b+c, c+1sf+e. Symmetric to case 14,2,

Case 14.4., e+1>b+c, c+l1>f+e,

Thus f+e+b<b+c+1<e+2, so f+b=0 and (xi,xi,) = (xj,xj,).
Case 15. isjsh<h'<j'<i'. 2 b e 1/7;\\ e f g
Xy X4 xJ Xy Xy xJ, Xiv X,

Now a=i, b=j-i, c=h-j, d=h'-h, e=j'-h', f=1'-j' and g=n-i'. Then

a+g+! S D (the distance from Xy to xn),
L(b+f+crer1) S |d(b+frcrer2)| S D (halfway b+f to halfway c+e),
+(cte+d) S |*(c+e+d+1) | S D (halfway c+e to halfway d),

2(b+r+1)+4d S [A(b+£+2) |+]4(d+1) J+min(c,e) S D

(halfway b+f to halfway d),
and hence a+b+c+d+e+f S UD-2. Contradiction.
Q.E.D.






