PARALLEL DYNAMIC PROGRAMMING ALGORITHMS

Marinus Veldhorst

RUU-CS-85-27
October 1985

Rijksuniversiteit Utrecht

Vakgroep.informatica

Budapestiaan 6 3584 CD Utrecht
Corr. adres: Postbus 80.012 3508 TA tirecht

PARALLEL DYNAMIC PROGRAMMING ALGORITHMS

Marinus Veldhorst

Technical Report RUU-CS-85-27
QOctober 1985

Department of Computer Science
University of Utrecht
P.0. Box 80.012
3508 TA Utrecht
the Netherlands

PARALLEL DYNAMIC PROGRAMMING ALGORITMS
Marinus Veldhorst

Department of Computer Science, University of Utrecht
P.0.Box 80.012, 3508 TA Utrecht, The Netherlands.

ABSTRACT

In this paper we will present a number of parallel algorithms

for the dynamic programming problem

c(i,i) = 0 (0sisn)
e(i,j) = w(i,j) + min (e(i,m-1)+c(m,j))
i<msj

A standard example is the construction of optimal binary search
trees (ef. [5]). Sequential algorithms run in 0(n3) time or,
if the quadrangle inequality holds (cf. [81), in O(nz) time.
For the former we will design parallel algorithms that run in
0(n3/p) time on p<n2 processors. We will also show that dynam4
iec programming problems satisfying the quadrangle inequality
can be solved in 0(n2/p + n log log p) time wusing p (1<psn)
processors. A global shared memory is assumed.
Moreover, we will design a systolic array for computing the

c¢(i,j)'s that runs in linear time using e(n2) processors.

1. Introduction. Many combinatorial optimization problems can be

solved with the dynamic programming technique. Essential in it is the
principle of optimality (cf. [31): the optimal solution can be written
as a recurrence relation in optimal solutions of subproblems. Computed
optimal solutions (and possibly additional information) of subproblems
are maintained in memory so that they are computed only once. This
latter aspect creates also the difficulty of dynamic programming:

storage requirements may become unacceptably high (the "curse of

Parallel Dynamic Programming

dimensionality" (cf. [31)).
In this paper we will consider the dynamic programming problem

Compute c¢(0,n) defined as

ce(i,i) = 0 (0sisn)
e(i,9) = w(i,j) + min (e(i,m=1)+c(m,j)) for 0S1<jsn (1)
i<msj

in which the values w(i,j) (0sisjsn) are known,

A straightforward sequential algorithm to solve (1) is given in algo-
rithm A. It runs in time O(n3).

Example 1. Optimal binary search trees (cf. [5]). Given n keys a,,

ooy an and 2n+1 probabilities p1, oey pn and qo, eeey Qp where

p; = probability that a, is the search argument (15isn)

i
q = probability that the search argument is between ay and ai+1.
The problem is to find a binary search tree which minimizes the expec-

ted number of comparisons during a search. Thus
n n level of external node that

I pj*(1+ level of a,) + L

q * .
3=1 J k=0 k corresponds to interval (ak

’ak+1)

must be minimized (the root of a binary tree has level 0).

Let c(i,j) be the cost (i.e., the expected number of comparisons during

(1) for i:=0 to n do ec(i,i) := 0;
(2) for k:=1 to n do begin

(3) for 1:=0 to n-k do begin

() value := w;

(5) for m:=i+1 to i+k do)

(6) value := min(value, c(i,m=1)+c(m,i+k));
(7) c(i,i+k) := value + w(i,i+k)

(8) enddo

(9) enddo

algorithm A: program to solve dynamic programming problem (1).

Parallel Dynamic Programming.

a search) of the optimal subtree Tij with weights (probabilities for

internal and external nodes) p.

f41° *0 pj and Qqs oo qj. Then
e(i,i) = 0 (0sisn)
w(i,j) = P 41 + ...+ pj +qy 4 ... + qj
c(i,§) = w(i,j) + min (e(i,m-1) + e(m,j))

i<msj

and algorithm A can be used.

In many applications (e.g. example 1) algorithm A can be acceler-—
ated. to run in 0(n2) time, namely when the cost function c(i,j) satis-

fies the quadrangle inequality.

DEFINITION 1(cf. [81). A function f£(i,j) satisfies the quadrangle ine-
quality if

£(i,3) + £(1',3") S £(i',3) + £(1,3") (2)

for all iSi'sjsj' for which it is defined.

THEOREM 1(cf. [8]). If the cost function c in (1) satisfies the qua-
drangle inequality, then (1) can be solved in 0(n2) time.

The acceleration is due to the fact that the possible values m for
which the right hand side of (1) attains it minimum, is restricted.
Let

Rc(i,j) = max{ m : c(i,j) = w(i,j) + c(i,m-1) + c(m,J)}
Then, if c(i,j) satisfies the quadrangle inequality (2,
Rc(i,j-1) < Rc(i,j) < Rc(i+1.j)

Moreover, if w(i,j) is monotone increasing on the lattice of intervals
and w(i,j) satisfies the quadrangle inequality, then c(i,j) satisfies
the quadrangle inequality. Algorithm B gives a precise sequential ver-

sion of this acceleration.

Parallel Dynamic Programming

for i:=0 to n do begin c(i,i) := O; R(i,i) := i enddo;
for k:=1 ton do begin
for i:=0 to n—-k do begin
value := *;)
for m:=R(i,i+k-1) to R(i+1,i+k) do
if value > e(i,m=1)+c(m,i+k))
then value := c(i,m=1)+c(m,i+k); R(i,i+k) :=m endif;
c(i,i+m) := value + w(i,i+m)
enddo
enddo

algorithm B: program to solve a dynamic programming problem (1) that
satisfies the quadrangle inequality.

In order to be able to assess parallel algorithms we will use the
so—-called speed¥up and efficiency of processor utilization. Let X be
an algorithm using p processors to solve some problem. Then the
speed-up is defined as:

Time used by the most efficient sequential algorithm
Time used by algorithm X on p processors

S _(X) =
p()
and the efficiency as:
E (X) = S_(X)/
p() p()p

Obviously we have Sp(X)Sp and OSEp(X)S1. It is our purpose to design
parallel algorithms for p processors that have a speed-up near p and an

efficiency near 1.

In dynamic programming one distinguishes between stages, state
variables and control variables and similarly between a stage loop, a
state loop and a control loop that are nested (ef. [3]). In algorithm A
these loops consist of the lines 2-9, 3-8 and 5-6, respectively. The
term inspection is used in this paper to denote the execution of the
body of the control loop for some value of m. Observe that in algo-
rithm A the number of inspections in the control loop is independent of
the state (i.e., the value of i). This is not the case in algorithm B.

In the past results on parallel algorithms for dynamic programming

-4 -

Parallel Dynamic Programming

problems used one of the following 3 ways (ef. [4], [1]):

(1) divide the control loop among the processors. Thus at each time
there is one state such that all processors are performing

inspections for this state.

(ii) divide the state loop among the processors. Each processor per-
forms all inspections necessary for the state assigned to it. At
any moment all processors (some of which may be idle) are per-

forming inspections in the same stage.

(iii) divide the state loop and control loops among the processors. In
[4] and [1] it is required that the number of controls is equal
for all states. If this would not be the case some processors
may be idle in their approach. At any moment all processors
(some of which may be idle) are performing inspections for states

in the same stage.

Also strategy (ii) may lead to inefficient use of processors when the
number of inspections varies per state. We will prove that this may
yield for dynamic programming problems satisfying the quadrangle ine-
quality a speed-up that is constant even when an arbitrary number of

processors can be used.

This paper is organized as follows. In section 2 we will consider
algorithms A and B as a task system with some precedence constraints.
In section 3 we will design a linear time systolic implementation of
algorithm A using O(n2) processors. In section 4 we will prove that
each parallel algorithm following strategy (ii) for solving (1) must
run in Q(n2) time on any number of processors even when the problem
satisfies the quadrangle inequality. In this section we will also
present O(n3/p) time algorithms that use p(Snz) processors. In section
5 we will present a parallel algorithm to solve dynamic programming
problems with the quadrangle inequality in 0(n log log n) time on a
shared memory computer with n processors. We will generalize this

result for shared memory computers with p (1<psn) processors.

Parallel Dynamic Programming

2. A precedence graph. We consider algorithms A and B to consist of

a number of tasks Jij (0<isjsn) such that Jij computes the cost e(i,j).
Because the task Jij uses a number of other costs c(i',j'), we can
define a precedence relation on the set Jn = {Jij : 0sigjsn}

dJd <K d

[y < dpy g If (a7 or g=gn)

Moreover define the relation < as
J.. < J., iy 1if (i=i' and j=j'=1) or (i=i'+1 and j=3i"
1] 17,3
The relation << includes the relation < and moreover, if Jij<<J

i'j'
then there are i=i1,...,ik=i' and J=j1,...,jk=j' such that

For our purposes it suffices to use the relation < instead of <<. Fig~
ure 1 shows graphically the relation < in the form of a pyramld In

this pyramid, stage k consists of tasks Jm m+k (0smén-k), the J left
?

/ / / "/55
\5\/ N /
AW /\/%
/\/
/

Figure 1. Precedence graph for the set J5.

Parallel Dynamic Programming

oriented diagonal and the ith right oriented diagonal consist of the

tasks ij (0smsj) and J.m (ismsn), respectively. We say that the ith

right oriented and the jt left oriented diagonals cross at task Jij'

3. Systolic arrays. In a systolic array of processors the connec~

tivity pattern between processors 1is fixed. Processors may have a
local memory, but there is no shared memory. The processors run in
lockstep and it is desirable that many processors are identical (i.e.,
execute (a copy) of the same program code). For this reason systolic
arrays tend to be well suited for implementation on silicon chips. Now
Wwe will design a systolic array for the dynamic programming problem
(1). We will assume that when processor Pi sends a value to Pj at time

t, Pj must read this value at time t, otherwise it would be lost.

Our systolic array consists of n{(n+1)/2 processors Pij (0sigjsn)
that are arranged in a pyramid like the tasks Jij' Processor Pij per-
forms task Jij' We assume that processor Pij contains the weight

w(i,j) in its register w.

Remark. In case of example 1 these values w(i,j) can be computed

easily. Assume that Pii (0€isn) receives from input the probabilities
Py and q;- Obviously w(i,j)=w(i,j—1)+pj+qj. Thus, Pij needs the
weight of 1its neighbor on the right oriented diagonal and the value
pj+q\j from the left oriented diagonal. Observihthat this latter value
is independent of the index i. Thus, on the J left oriented diagonal
the value pj+qj is sent forward, while on the right oriented diagonal

each processor sends forward its own weight (see figure 2).

The calculation of the cost c(i,j) must be dealt with more care-
fully. Processor Pij needs optimal costs from processors on both diag-
onals that cross at it. Pij must send forward the costs on the right
and left oriented diagonals, but the cost c(i,j) computed at Pij mst
be sent in both directions (see figure 3). The obvious order to send
the costs forward as they are received, appended by the newly computed
e(i,j), however, leads to an n(nz) time systolic array: the order in
which costs are received does not fit the order of computation of a new

cost. Moreover, in this case processor Pi {4k needs (k) memory.
?

-:7—-

Parallel Dynamic Programming

w(i,j'n\ /pmJ
Pj+q/ \w(i,j)

Figure 2. Communication pattern for the computation of weights.

{e(i,k) : iSksj—1} {e(k,j) : i+1sksj}
{e(k,d) : iSij} {e(i,k) : isksj}

Figure 3. Skeleton of communication pattern to compute costs.

The problem is to find for each i,j a permutation “13 of the numbers

1..j-1 (i.e., the order in which Pij receives the costs) such that

(1)

(2)

c(i,i+w J(k) -1) and c(i+wij(k) ,j) are the kth number received from

the right and left oriented diagonals, respectively;

knowing permutation w. ., the permutations w and 7, , . can be
“ ij i,jv1 i-1,]

determined on-line using a constant amount of memory, i.e. proces=

sor P ij can determine the order in which costs are sent forward

easily from the order in which costs are received.

Such permutations exist but we have to distinguish between processors

of even and odd stages.

Ti,i+2k

Let “i,i+2k and ﬂi,i+2k+1 defined as

m, (2m+1)=k-m 0smsk

1,1+2K (2m+1)=k+1+m O0sSmsk

Ty, i+2k+1

(2m)=k+m 1$msk ni’i+2k+1(2m)=k+1-m 1Smsk

- 8 =

Parallel Dynamic Programming

Figure 4 shows in what order P2,6 receives and sends forward cost
values. Remind that the sending orders established by P2,6 is the
receiving order of P1,6 and P2’7.

Processor Pij can easily modify the order in which costs are sent for-
ward. Pi,i+2k interchanges on the left oriented diagonal the 2nd and
3rd, the 4th and 5th, etec. values; c(i,i+2k) and c(i+2k,i+2k) are sent
last. As for the right oriented diagonal Pi,i+2k interchanges the 1st
and 2nd, the 3rd and 4th, etc. values and finally sends forward

c(i,i+2k). Similarly, interchanges on the left oriented

Pi,i+2k+1
diagonal the 1st and 2nd, the 3rd and 4th, etc. values and finally
sends c(i,i+2k+1) and c(i+2k+1,i+2k+1). On the right oriented diagonal
the 2nd and 3rd, the 4th and 5th, etc. values are interchanged and
c(i,i+2k+1) is sent last.

Obviously a processor can perform this receive/send pattern on-line

while using a constant amount of memory.

e(2,5) 1356,6)
\C(Z,\Z) g(3,6)
c(2,4) 0/(5.6)
~N2,3) /u.e)

/P2,6
c(6,6) c(2,6)
/ ~
c(2,6) c(2,2)
/ ~
c(5,6) c(2,5)
/ ~
3(3,6) 0(2’3)
c(4,6) \\c(z,u)

Figure 4. Communication pattern for the computation of costs.

pParallel Dynamic Programming

Now the question arises whether we can develop programs for all
processors such that this receive/send pattern is obtained, the cost at
this processor can be computed and moreover that a value sent to a pro-
cessor must be read by this processor at the same time. We may expect
to find different programs for processors on odd and even stages. Each
value received by a processor will be used three times by it: it must
be read, it must be used for an inspection, and it must be sent for-—
ward. In one unit of time two values from different diagonals can be
used for an inspection. Thus, to do for two values from both diagonals
all the work at one processor requires at least 10 units of time. In
order to prevent loss of efficiency no values should be swapped from
one register to another. Algorithm C shows programs for processors at
odd and even stages that will do the job. It is assumed that all com-
mands on one line can be done in one unit of time. Less than 7 memory
locations are needed when different programs are written for processors
at stages Uk, Uk+1, yk+2 and Lk+3 and the loops are untangled. The
programs given in algorithm C satisfy all the requirements provided
that each processor starts 6 units of time after the processors at the
previous stage started (except for processors at stage 1, that must
start 1 unit of time later than processors at stage 0 do). A1l this
leads to it that processor POn must wait at most 6n-5 units of time

before it can start execution and it needs 5n+9 units of time itself.

THEOREM 2. There is a systolic array for the dynamic programming prob-
iem (1) that runs in o(n) time, using n(n+1)/2 processors with a con=

stant amount of memory for each processor.

COROLLARY 3. There is a systolic array for the dynamic programming
problem (1) using p=n(n+1)/2 processors and has a speed-up of Sp=n(p)
and efficiency Ep=9(1).

However, when the dynamic programming problem satisfies the quadrangle
inequality, these numbers are Sp=9(n)=9(/p) and Ep=9(1//p), which is
not very satisfactory. Observe that the systolic array designed does

not adhere to the strategies mentioned in the introduction: computa-

._10_

Parallel Dynamic Programming

Pi,i+2k (k21) Pi,i+2k+1 (k20)
read (ROD,R[0]; read (LOD,L[O];
C:==, Fi=1; Ci=o, F:=1;
read (LOD,L[F]); read (ROD,RLF1);
wait; wait;

C := min(C,R[1-F1+LL[F1);
read (LOD,L[1-F1);

C := min(c,L[1-F]+R[F]);
to k do begin

send (LOD,L[F]); read(ROD,RL1-F1);
read (ROD,R[F1); send (ROD,RLF]);
send (ROD,R[F1); , read (LOD,LLF1);
C := min(C,R[FI+LL1-F1); send (LOD,L[F1);
to k-1 do begin C := min(C,R[1-F]+L[F1);
read (ROD,RLF1); read (LOD,L{F1);
send (ROD,R[1-F1); send (LOD,L[1-F1);
read (LOD,L[F1); read (ROD,R[F]);
send (LOD,L[F]); send (ROD,R[F1);
C := min(C,R[FI+LLF1); ¢ := min(C,R[FJ]+L[F1); F:=1-F
read (LOD,L[F]); enddo;
send(LOD,L[1-F1); C := C+W;
read (ROD,R[1-F1); send (ROD,R[F1);
send (ROD,R[1-F1); wait;
C := min(C,RI1-FI+LIF]); F:=1-F; send(LOD,C);
enddo; wait;
C := C+W; ‘ walt;
send (ROD,R[1-F1); send (LOD,L[1-F1);
wait; wait;
send (LOD,C); send (ROD,C);
wait;
wait;
send (LOD,L{1-F1);
walit; Pii
send (ROD,C);
C:=0;
send (LOD,C);
wait;
send (ROD,C);

Algorithm C: programs for the systolic array for dynamic programming
problem (1). LOD and ROD stand for left and right orient-
ed diagonal, respectively.

tions for different stages are done simultaneously.

...11_

Parallel Dynamic Programming

K., Using less than n2 processors. In this section we will consider

the case that p<n2 processors are available. Obviously a linear time
algorithm is then impossible. But we will design an algorithm that
requires 0(n3/p) parallel time, which is the best possible. We will
also develop some ideas important for the next section. As a machine
model, we WwWill wuse the PRAM model: processors have a shared memory,
processors may execute different programs and moreover processors can
be synchronized, i.e., points in the program can be specified where the
processor may only proceed when the other processors have arrived at
the corresponding synchronization points in their programs.

A first approach would be to divide the tasks of Jn among the proces-
sors and to establish synchronization between each two consecutive

stages. However this may lead to an Q(nz) algorithm.

THEQREM 5. Let A be a scheduling of the task system Jn with precedence

relation < on a set of processors such that

(i) each Jij is assigned to exactly one processor, and

(ii) the execution of a task in stage k will only start when the execu~
tion of all tasks in stage k-1 are finished.

Then the execution of A requires at least Q(nz) time.

Proof. We will construct an example of an optimal binary search tree
problem. Suppose n keys a1<...<an are given. We will assign probabil-
ities to these keys and the intervals between two consecutive keys such
that there is a task at each stage i (1 even) that requires to inspect
at least 2i keys for being the root of the corresponding optimal sub-
tree. Thus between the starts of stages i and i+1 (i even) there is a
time difference of at least 2i. With at least n/2 even stages, total
time will be Q(nz).

Let n be even. Let the search probabilities for the intervals
between keys all be zero. Assign positive weights to a /o and /241
such that /241 is the root of the optimal subtree Tn/2—1,n/2+1' Now

CHYPATTRR .« Then
such that the optimal

suppose that weights are assigned to

weights can be assigned to a ,_; and & /oki+

subtrees T, o i 1 ns2+1’ Tn/e-i,n/2+i¢1 2 Tn/e-i-1,n/2¢i4

are as

12

Parallel Dynamic Programming

shown in figure 5. Then we have

R(n/2-1i,n/2+i) = n/2+i, R(n/2-i-1,n/2+i) = n/2-1 and

R(n/2-1i,n/2+i+1) = n/2+i+1.

and as a consequence task Jn/2—i n/o-1i+21 requires at least 2i Kkeys
that must be inspected to be the root. Thus for each i (18isn/2) there
is a task at stage 2i whose execution requires at least 2i control
values for inspectlon. Summing over all even stages leads to Q(n)
control values that are inspected sequentially. Because each inspec-
tion requires a constant amount of time, the overall parallel time is
9(n2). Q.E.D.

In order to obtain an upperbound 0(n3/p) even with p=0(n1+€) (e>0) we

must divide inspections of one task to different processors. The main

idea 1is to number all inspections of each stage k from Iik) ooy
(k) (k) -
Linok+1)n® THED inspection 1"’ 1s used for task Jy .y with i=[x/n]

and the involved control variable uvar is uvar=mod(x,n). Thus, given
the index of an inspection, we can easily determine the task it belongs
to and the control variable involved. The total number of inspections
in stage k is (n—k+1)n (Osksn).

To/o-1,n/2+1 n/2-1,n/2+1

Figure 5. n/2-1i,n/2+1

13

PP O 2

Parallel Dynamic Programming

When at stage k p>(n-k+1)*n, there are more processors than inspec
tions. All inspections can be done in parallel, hence the time needed
for it is bounded by a constant. The results of the inspections must
be used to find the n-k+l optimal costs. With more processors than
results of inspections, the optimal costs can be found in 0(log n)
time.

When nsp< (n—k+1)n each processor can perform T(n—k+1)n/p] inspections
and it performs inspections of at most 2 different tasks. Each proces-—
sor can already take the minimum of all inspections it performs and
that belong to the same task (we will call such a minimum a partial
minimum).

Computation of the partial minima requires at most 0((n-k+1)n/p) paral-

lel time. Suppose Pj , ..., P, compute partial minima for some task
1 m
J. Then Pj (3 <3<j) computes only one partial minimum. We can use

processors Pj s ey Pj -1 for the computation of the optimal cost for
1 m

task J.

In this way no processor is involved in the computation of more than

one optimal cost and when m partial minima are given for one task, we

can use m—-1 processors to determine the optimal cost. Obviously this

can be done in 0(log p/(n-k+1)) time.

Thus at stage Kk (ngp< (n-k+1)n) the amount of time is O(SE:%:llE +
P
1°gn—k+1)‘

THEOREM 5. With p= e(n1+€) (0<e<1), the dynamic programming problem 1)
can be computed in time 0(n3/p)

Proof. At stage k O0(log n) time is needed when p>(n-k+1)n and

0(12:%1113 + logn_§+1) time otherwise. Taking the sum over all stages
k (1Sksn) ylelds the time bound. Q.E.D.

When n or less processors are available, the easiest way is to assign
each task to one processor. Then at stage k each processor has to per-

form at most T(n¥k+1)/p1 tasks, each requiring 0(n) time.

1)‘_

parallel Dynamic Programming

THEOREM 6. With psn the dynamic programming problem (1) can be solved
in 0(n3/p) time on p processors.

Proof. In stage k at most O(n2/p) time is needed. Summing over all
stages yields the bound. Q.E.D.

Observe that in the latter two theorems most time is used for perform
ing the inspections; Computation of the optimal costs out of the par-

tial minima is only a minor term.

5. An 0(n2/p + n log log p) algorithm. Though theorem 4 was proven

for dynamic programming problems in general, it even holds in those

cases that the quadrangle inequality is satisfied. In order to achieve
an upper bound lower than 0(n2) we must allow for assignments of parts
of tasks J to different processors. when the quadrangle inequality
holds, there are at most a linear (in n) number of inspections (cf.
[5]). With p=@(n) we could assign inspections to processors in such a
way that the number of inspections performed by one processor, is
pbounded by a constant. Unfortunately, the inspections can be divided
very unevenly among the tasks of one stage (e.g. in the example used in
the proof of theorem 4)., As a consequence we must take more care of
the computation of the optimal costs out of the partial minima.

Suppose that at stage k-1 the control variables at which the optimal
costs are achieved, are stored in the array R(k—1)[0..n~k+1]. Task

Jq q+k consists only of inspections assoclated with control variable
9

R(k—1)[q], eees R(k-1)[q+1]. Let us therefore number the control vari-

ables as follows:

inspection task control variable
(k) (k-1) .

Ii 1$i§R 1] | Jo,k i
(k) (k-1) (k=1) -

Ii | R [1]+1sisR [2]+1 J1,k+1 i-1
(k) o(k=1) (k=1) e

Ii R [2]+28isR [3]+2 J2,k+2 i-2

etc.

Thus we have:

- 15 =

Parallel Dynamic Programming

Given i (1sis2n-k); let q (0sqsn—k) satisfy that
R Dg1eq s 1 5 RV [a+1 20 (3)

Then inspection ng) is used in task Jq K+q and involves con-
H
trol variable ui4q (i.e., in example 1 key ai—q is inspected
for being the root of the optimal subtree Tq k+q).
’
A search on R(k-1) seems to be involved when for an arbitrary 1 the q
satisfying (3) must Dbe found. However, things are easier when several

consecutive values for i or consecutive stages k are involved.

LEMMA 7. Let q; satisfy (3) for a given value i. Then qiSqi+1Sqi+1
and qi—1$qi;15qi.
Proof. Obvious.

LEMMA 8. Let inspection Iik) be used for task Jq k+q" Then inspection
?

k)
Ii is used for either task Jqﬁ1,k+q or Jq,k+q+1'

Proof. %) g used for J . Hence R(k-1)[q]+q $is R(k_1)[q+1]
I (k=1) K (k1) (k)
+q. With R° ‘[g-1] SR [q] and R [q+1] s R* '[g+1], this leads

to R(k)[q¥1]+q sisg R(k)[q+1]+q and thus

R(k)[q—1]+q—1 sis R(k)[q+1]+q

This is identical to i satisfies either R(k)[q¥1]+q sizs R(k)[q]+q—1

or R(k)[q]+q sis R(k)[q+1]+q. This latter statement is nothing else
(k+1)

than that I, is used for either Jq—1,k+1+q—1 or Jq,k+1+q' Q.E.D.

These two lemmas make the following assignment of inspections of stage

k to processors obvious.

Pj (mod(2n-k,p)sjsp) will perform the inspections Iik) for all i
with ngifj*(j—1) + mod(2n-k,p)+1 S 1 S LE%ZEJ*j + mod(2n-k,p).
Pj (1jmod(2n4k,p)) will perform the inspections Iik) for all i

with rzg"kW*(j41) M sis ng‘kW*j.

16

Parallel Dynamic Programming

LEMMA 9. Given the above assignment of inspections to processors.

Given k, p, n and an arbitrary index x. Then we can determine in con—
(k)

stant time which processor Pj performs inspection Ix

Proof. The following formula does the job.

it x > [(2n-k)/p|xmod(2n-k,p)
then j := r(x4mod(2n¥k,p))/Lg%:5J1
else J := Lx/rzg_kWJ

Q.E.D.

With this assignment we have that a processor that performs the inspec-

tions I;k), ooy Iék) performs also the inspections Iék+1), ceoy Iék+1)
r I;E:). ceey Ié5:1), put no other inspections of stage k and k+1.

Now we have assigned the inspections of stage k very evenly to the pro-
cessors. Before we present the precise data structure and algorithm,
we have to solve another problem. Inspections of one task (state) can
be assigned to different (consecutive) processors. These processors
compute only partial minima for this task. Thus, the minimum (i.e.,
the optimal cost) of these partial minima must be computed. It even
may happen that q(p) partial minima for one task are computed; (see the
example in the proof of theorem 4). [7] and [6] presented parallel al-
gorithms that compute the minimum of N numbers 1in O(N/p + log log p)
time 1if 1<psSN processors were available. We will use the algorithm of

[61.

In the algorithm we distinguish in each stage k the following steps.

(1) Each processor must determine the indices of the inspections that

it must perform (say I;k), vees Iék)).

(2) Each processor must determine the index gs such that inspection

(k)
Is belongs to task Jqs,qs+k'

(3) Each processor Pj must determine the smallest index firsts of all

processors that perform inspections for task Jqs,qs+k'

_17.—

Parallel Dynamic Programming

0 (k) Iék) and

Each processor must perform its inspections IS sy esey
compute as many partial minima as there are tasks in stage k of

which inspections are performed by this processor.

(5) Each processor Pj must determine the index gt such that inspection

(k)
It belongs to task th,qt+k’ each processor PJ must determine
the largest index lastt of all processors that perform inspections
for task th,qt+k'

(6) Find for each task in stage k its optimal cost.

THEOREM 10. With psn the algorithm runs in 0(n2/p + n log log p) par-
allel time.

Proof. The initialization of all relevant data and stage 1 can Dbe
done in O(n2/p) time. Then for each stage k (2sksn) we have:

Step (1) requires constant time.

Step (2) can be done in constant time (see lemma 8).

In step (3) P, computes which processor performs inspection I(k)
with x = R(k)(qi)+qs; According to lemma 9 this can be done in cgn—
stant time.

Each inspection in step (4) can be performed in constant time. With
0(n/p) inspections per processor per stage, step (4) needs at most
0(n/p) time.

Step (5) can be done in constant time (similar to step (2) and (3)).

With step (6) we must be more careful. Observe that each processor
computes at most 2 partial minima (for tasks Jqs,qs+k and/or th,qt+k)
and at most t—s+1 optimal costs. These optimal costs can be stored in
the appropriate storage locations in O0(n/p) time.

Now suppose that the partial minima for a task J have been computed by

P. , +eey P. @ P and P, might have computed partial minima for
4 In 3, Im
other tasks too, but the processors in between have not. Then proces—
" sors Pj s esey Pj 21 will be involved in the computation of the optimal
1 m

cost for task J. With this assignment no processor will be involved in
the computation of more than one optimal cost. Thus, when y partial

minima must be composed to one optimal cost, there are y¥1 processors

- 18 -

Parallel Dynamic Programming

to do this job. According to [6] it can be done in 0(log log (y-1)) <
0(log log p) time.

Step (6) requires at most O(n/p + log log p) time in each stage.

With n stages, the overall parallel time of the algorithm amounts to
O(n2/p + n log log p) time. Q.E.D.

COROLLARY 11. With n processors the dynamic programming problem 1)
satisfying the quadrangle inequality can be solved in 0O(n log lo08 n)
time, thus achieving a speed-up of Sn = Q(n / log log n) and an effi-
ciency of E = Q(1 / log log n).

The algorithm uses the following data structures in shared memory:

W a matrix of size [0..n]*[0..n] where Ww[i,j] (is3y) contains the
welght w(i,J);

C a matrix of size [0..n]*¥[0..n]. C will eventually contain the
optimal costs c(i,J) (0sisjsn).

partm a matrix of size [0..p]*[0..n]. During stage K pahtm[j,q] will

contain the partial minimum computed by P for task J .
J q,q+k

R an array of size [0..n]. During stage K R[i] contains the con-
trol variable for which the optimal solution for J; ;. .p.q is
’
achieved (0Sisn—k+1).

partr a matrix of size [0..p]*[0..n]. partr[j,q] will contain during
stage k the control variable for which the partial minimum
partm[j,ql is achieved.

n the size of the dynamic programming problem.
p the number of processors.

All other data structures will be 1ocal to each processor. We assume

that each processor PJ knows its index J.

19

Parallel Dynamic Programming

Initialization and stage 1:

for m:=| (n+1)/p]*(j=1) to minim (| (n+1)/p]*j =1, n)
do C[m,m] := 0 od;

for m := |n/p|*(J-1) to minim (ln/p]*3 -1, n-1)
do C[m,m+1] := Wlm,m+1]; R[m] := m+1 od;

remaind := mod(2n-2,p)

size := | (2n-2)/p|; slzel := f(2n~2)/p1;

if j > remaind 7

then s := size*(j-1) + remaind +I

else s := sizel*(j-1) +1;

gs := |L(s-1)/2];

stage 2..n:
for k:=2ton
do remaind := qu(2n—k,p); ,
size := L(2n~k)/pj; size := [(2n4k)/p1;
if j > remaind
then s := size*(j-1) + remaind +1; t := size¥*j + remaind
else s := sizel¥*(j-1) +1; t := sizel*]
fi;
if R[qs]+qs+i>s
then qs := gs-1; if R[qs]+qs+1 > s then g8 := gs-1 fi
fi;
q := 4s; min := ®;
if R[ql+q*q > sizel*remaind
then firsts := r(R[q]+q+1—remaind)/size1
else firsts := r(R[q]+q+1)/size1]
fi;
for r :=8 to t
do uvar := r—q-1;
if min > Cc[q,uvar-1] + c[uvar,q+k]
then min := C[q,uvar-1] + c[uvar,q+k];
partr[j,q] := uvar-i
fi;
if r = R[q+1]+q+
then partm[j,q] := min; min := ®»; q := g+l
fi
od;
if R[q+1 J+q+1 > remaind*sizel
then lastt := r(R[q+1]+q+1—rema1nd)/size]
olse lastt := | (R[q+11+q+1)/sizel]
fi;
qt := q;
(* now all partial minima has been computed ¥)
if firsts =]
then C[qs,qs+k] := partm[1,qs] + wlgs,qs+k]; R[gs] := partr(j,qs]
fi;
if lastt =]
then Cl[qt,qt+k] :
fi;

partm{1,qt] + wlqt,qt+k]; R[qt] := partr[j,qt]

20

Parallel Dynamic Programming

for q := s+l to qt-1

do C[q,q+k] := partm{1,q] + Wlq,q+k]; RLal := partr(j,ql od;

if lastt>]

then P is involved in the computation of the minimum of
pgrtm[st..lastt,qt] is which st=1 if gs#qt and st=firsts
otherwise. Thus all information needed for the application
of the algorithm of [6] is available to Pj'

od;

Algorithm D: Parallel algorithm to solve a dynamic programming problem
with the quadrangle inequality.

REFERENCES.

[1] Al-Dabass, D., Two methods for the solution of the dynamic pro-
gramming algorithm on a multiprocessor cluster, Opt. Contr.
Applic. & Methods 1 (1980), pp. 227-238.

[2] Aho, A.V., J. Hopcroft and J. Ullmann, The design and analysis of
computer algorithms, Addison-Wesley, Reading Mass., 1974.

[3] Bertsekas, D.P., Distributed dynamic programming, IEEE Trans.
. []
Autom. Contr., AC-27 (1982), pp. 610-616.

[4] cati, J., M. Richardson and R. Larson, Dynamic programming and
parallel computers, J. Opt. Theor. Applic. 12 (1973), pp. 423-438.

[5] Knuth, D.E., Optimum binary search trees, Acta Inform. 1 (1971),
pp. 14-25.

[6] Shiloach, Y. and U. Vishkin, Finding the maximum, merging, and
sorting in a parallel computation model, J. Algor. 2 (1981), pp.
88-102.

[7] valiant, L.G., Parallelism in comparison problems, SIAM J. Comput.
4 (1975), pp. 348-355.

[8] 7Yao, F.F., Efficient dynamic programming using quadrangle inequal-
ities, Proc. 12th Ann. ACM Symp. Theory of Comp., ACM, 1980, pp.
429-435.

-21 =

